Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00133
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.7 Radical Cascade Reactions

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter briefly summarizes the concept of radical cascade reactions (RCR). The chapter is divided into two main parts, describing intramolecular and intermolecular radical cascade reactions, which are further classified based on the six types of relay manner (intramolecular RCR) and six commonly used relay molecules (intermolecular RCR), respectively. This simple classification allows readers to understand this area easily and quickly. Features of radical cascade reactions include step-economy and waste minimization, which endow these radical cascades with a bright future.

 
  • 1 Tietze LF. Chem. Rev. 1996; 96: 115
  • 2 Walton JC, McCarroll AJ. Angew. Chem. Int. Ed. 2001; 40: 2224
  • 3 Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
  • 4 Parsons PJ, Penkett CS, Shell AJ. Chem. Rev. 1996; 96: 195
  • 5 Malacria M. Chem. Rev. 1996; 96: 289
  • 6 Godineau E, Landais Y. Chem.–Eur. J. 2009; 15: 3044
  • 7 Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard J.-P, Lacôte E, Larraufie M.-H, Maestri G, Malacria M, Ollivier C, Encyclopedia of Radicals in Chemistry, Biology and Materials. Studer A, Chatgilialoglu C. Wiley; Chichester, UK 2012. 2. 729–766
  • 8 Huang H.-M, Garduño-Castro MH, Morrill C, Procter DJ. Chem. Soc. Rev. 2019; 48: 4626
  • 9 Kolbe H. Ann. Chem. Pharm. 1848; 64: 339
  • 10 Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
  • 11 Foster RE, Larchar AW, Lipscomb RD, McKusick BC. J. Am. Chem. Soc. 1956; 78: 5606
  • 12 Julia M, Le Goffic F, Katz L. Bull. Soc. Chim. Fr. 1964; 1122
  • 13 Curran DP, Rakiewicz DM. J. Am. Chem. Soc. 1985; 107: 1448
  • 14 Wu JH, Radinov R, Porter NA. J. Am. Chem. Soc. 1995; 117: 11029
  • 15 Yang D, Gu S, Yan Y.-L, Zhao H.-W, Zhu N.-Y. Angew. Chem. Int. Ed. 2002; 41: 3014
  • 16 Julia M. Acc. Chem. Res. 1971; 4: 386
  • 17 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
  • 18 Handa S, Pattenden G. J. Chem. Soc., Perkin Trans. 1 1999; 843
  • 19 Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
  • 20 Gu Q.-S, Li Z.-L, Liu X.-Y. Acc. Chem. Res. 2020; 53: 170
  • 21 Wolff ME. Chem. Rev. 1963; 63: 55
  • 22 Barton DHR, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
  • 23 Sejbal J, Klinot J, Vystrcil A. Collect. Czech. Chem. Commun. 1988; 53: 118
  • 24 Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
  • 25 Wu X, Wu S, Zhu C. Tetrahedron Lett. 2018; 59: 1328
  • 26 Liu X, Xiong F, Huang X, Xu L, Li P, Wu X. Angew. Chem. Int. Ed. 2013; 52: 6962
  • 27 Chen Z.-M, Bai W, Wang S.-H, Yang B.-M, Tu Y.-Q, Zhang F.-M. Angew. Chem. Int. Ed. 2013; 52: 9781
  • 28 Egami H, Shimizu R, Usui Y, Sodeoka M. Chem. Commun. (Cambridge) 2013; 49: 7346
  • 29 Li L, Li Z.-L, Wang F.-L, Guo Z, Cheng Y.-F, Wang N, Dong X.-W, Fang C, Liu J, Hou C, Tan B, Liu X.-Y. Nat. Commun. 2016; 7: 13852
  • 30 Gansäuer A, Lauterbach T, Narayan S. Angew. Chem. Int. Ed. 2003; 42: 5556
  • 31 Clive DLJ, Magnuson SR, Manning HW, Mayhew DL. J. Org. Chem. 1996; 61: 2095
  • 32 Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317
  • 33 Maillard B, Forrest D, Ingold KU. J. Am. Chem. Soc. 1976; 98: 7024
  • 34 Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
  • 35 Batey RA, Motherwell WB. Tetrahedron Lett. 1991; 32: 6649
  • 36 De Smaele D, Bogaert P, De Kimpe N. Tetrahedron Lett. 1998; 39: 9797
  • 37 Kim S, Lee S. Tetrahedron Lett. 1991; 32: 6575
  • 38 Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 39 Hayashi H, Kaga A, Chiba S. J. Org. Chem. 2017; 82: 11981
  • 40 Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
  • 41 Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; Oxford 2015
  • 42 Wessig P, Muehling O. Eur. J. Org. Chem. 2007; 2219
  • 43 Jin J, MacMillan DWC. Nature (London) 2015; 525: 87
  • 44 Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
  • 45 Shang X, Liu Z.-Q. Huaxue Xuebao 2015; 73: 1275
  • 46 Harris EFP, Waters WA. Nature (London) 1952; 170: 212
  • 47 Walling C. Pure Appl. Chem. 1967; 15: 69
  • 48 Roberts BP. Chem. Soc. Rev. 1999; 28: 25
  • 49 Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature (London) 2014; 516: 343
  • 50 Wille U. Chem. Rev. 2013; 113: 813
  • 51 Yu J.-T, Pan C. Chem. Commun. (Cambridge) 2016; 52: 2220
  • 52 Leardini R, Nanni D, Tundo A, Zanardi G. Tetrahedron Lett. 1998; 39: 2441
  • 53 Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
  • 54 Curran DP, Ko S.-B, Josien H. Angew. Chem. Int. Ed. Engl. 1995; 34: 2683
  • 55 Ryu I, Sonoda N. Angew. Chem. Int. Ed. Engl. 1996; 35: 1050
  • 56 Ryu I, Kusano K, Ogama A, Kambe N, Sonoda N. J. Am. Chem. Soc. 1990; 112: 1295
  • 57 Cartier A, Levernier E, Corcé V, Fukuyama T, Dhimane A.-L, Ollivier C, Ryu I, Fensterbank L. Angew. Chem. Int. Ed. 2019; 58: 1789
  • 58 Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
  • 59 Gong X, Yang M, Liu J.-B, He F.-S, Fan X, Wu J. Green Chem. 2020; 22: 1906
  • 60 Moureu C, Dufraisse C. Chem. Rev. 1926; 3: 113
  • 61 Milas NA. Chem. Rev. 1932; 10: 295
  • 62 Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
  • 63 Liang Y, Wei J, Qiu X, Jiao N. Chem. Rev. 2018; 118: 4912
  • 64 Walling C, Active Oxygen in Chemistry. Foote CS, Valentine JS, Greenberg A, Liebman JF. Blackie Academic & Professional; London 1995: 24
  • 65 Szpilman AM, Korshin EE, Rozenberg H, Bachi MD. J. Org. Chem. 2005; 70: 3618
  • 66 Bachi MD, Korshin EE. Synlett 1998; 122
  • 67 Crich D. Helv. Chim. Acta 2006; 89: 2167
  • 68 Devin P, Fensterbank L, Malacria M. J. Org. Chem. 1998; 63: 6764
  • 69 Larraufie M.-H, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J. Am. Chem. Soc. 2010; 132: 4381
  • 70 Beaume A, Courillon C, Derat E, Malacria M. Chem.–Eur. J. 2008; 14: 1238
  • 71 Rowlands GJ. Tetrahedron 2009; 65: 8603
  • 72 Rowlands GJ. Tetrahedron 2010; 66: 1593
  • 73 Majumdar KC, Basu PK, Gonzalez A. Curr. Org. Chem. 2009; 13: 599
  • 74 Mantrand N, Renaud P. Tetrahedron 2008; 64: 11860