Laryngorhinootologie 2022; 101(02): 96-108
DOI: 10.1055/a-1709-7899
Leitlinien und Empfehlungen

T2-Inflammation bei entzündlichen Atemwegserkrankungen: Grundlage neuer Behandlungsoptionen

L. Klimek
1   Zentrum für Rhinologie und Allergologie, Wiesbaden
2   Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mainz
,
J. Hagemann
2   Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mainz
,
H. J. Welkoborsky
3   HNO-Klinik Hannover
,
M. Cuevas
4   Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
I. Casper
1   Zentrum für Rhinologie und Allergologie, Wiesbaden
,
U. Förster-Rurmann
5   HNO-Universitätsklinik Charité, Berlin
,
F. Klimek
1   Zentrum für Rhinologie und Allergologie, Wiesbaden
,
C. A. Hintschich
6   Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Regensburg
,
T. Huppertz
2   Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mainz
,
K.-Ch. Bergmann
7   Klinik für Dermatologie, Venerologie und Allergie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
,
P. V. Tomazic
8   HNO-Universitätsklinik Graz, Medizinische Universität Graz
,
C. Bergmann
9   HNO, RKM 740-Klinik Düsseldorf
,
S. Becker
10   HNO-Universitätsklinik Tübingen
› Author Affiliations


Publication History

Article published online:
22 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hastan D, Fokkens WJ, Bachert C. et al Chronic rhinosinusitis in Europe – an underestimated disease. A GA²LEN study. Allergy 2011; 66: 1216-1223 DOI: 10.1111/j.1398-9995.2011.02646.x. . doi: 343917 de-38m
  • 2 Hirsch AG, Stewart WF, Sundaresan AS. et al Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy 2017; 72: 274-281 DOI: 10.1111/all.13042.
  • 3 Ostovar A, Fokkens WJ, Vahdat K. et al Epidemiology of chronic rhinosinusitis in Bushehr, southwestern region of Iran: a GA2LEN study. Rhinology 2019; 57: 43-48 DOI: 10.4193/Rhin18.061.
  • 4 Shi JB, Fu QL, Zhang H. et al Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy 2015; 70: 533-539 DOI: 10.1111/all.12577.
  • 5 Stuck BA, Beule A, Jobst D. et al [Guideline for “rhinosinusitis”-long version: S2k guideline of the German College of General Practitioners and Family Physicians and the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery]. HNO 2018; 66: 38-74 DOI: 10.1007/s00106-017-0401-5.
  • 6 Fokkens WJ, Lund VJ, Mullol J. et al European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012; 23: 3p preceding table of contents, 1-298
  • 7 Fokkens WJ, Lund VJ, Mullol J. et al EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012; 50: 1-12 DOI: 10.4193/Rhino50E2.
  • 8 Rosenfeld RM. Clinical practice guideline on adult sinusitis. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2007; 137: 365-377 DOI: 10.1016/j.otohns.2007.07.021. . doi:46829 de-38m
  • 9 Agarwal A, Spath D, Sherris DA. et al Therapeutic Antibodies for Nasal Polyposis Treatment: Where Are We Headed?. Clinical reviews in allergy & immunology 2019; 59: 141-149 DOI: 10.1007/s12016-019-08734-z. . doi:351562 de-38m
  • 10 Franzese CB. The Role of Biologics in the Treatment of Nasal Polyps. Immunology and allergy clinics of North America 2020; 40: 295-302 DOI: 10.1016/j.iac.2019.12.006. . doi:133755 de-38m
  • 11 Klimek L, Förster-Ruhrmann U, Becker S. et al Positionspapier: Anwendung von Biologika bei chronischer Rhinosinusitis mit Polyposis nasi (CRSwNP) im deutschen Gesundheitssystem – Empfehlungen des Ärzteverbandes Deutscher Allergologen (AeDA) und der AGs Klinische Immunologie, Allergologie und Umweltmedizin und Rhinologie und Rhinochirurgie der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Halschirurgie (DGHNOKHC). Laryngo-Rhino-Otol 2020; 99 (08) 511-527 DOI: 10.1055/a-1197-0136. . doi:204768 de-38m
  • 12 Koennecke M, Klimek L, Mullol J. et al Subtyping of polyposis nasi: phenotypes, endotypes and comorbidities. Allergo journal international 2018; 27: 56-65 DOI: 10.1007/s40629-017-0048-5 doi.
  • 13 Jutel M, Van de Veen W, Agache I. et al Mechanisms of allergen-specific immunotherapy and novel ways for vaccine development. Allergology international: official journal of the Japanese Society of Allergology 2013; 62: 425-433 DOI: 10.2332/allergolint.13-RAI-0608. . doi:482779 de-38m
  • 14 Klimek L, Bachert C, Pfaar O. et al ARIA guideline 2019: treatment of allergic rhinitis in the German health system. Allergologie select 2019; 3: 22-50 DOI: 10.5414/ALX02120E. . doi:1016429 de-38m
  • 15 Klimek L, Brehler R, Hamelmann E. et al CME Zertifizierte Fortbildung. Entwicklung der subkutanen Allergen-Immuntherapie (Teil 2): präventive Aspekte der SCIT und Innovationen. Allergo J Int 2019; 28: 107–119: Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations/CME-Fragebogen. Allergo-Journal 2019; 28: 31-45 . doi:317060 de-38m
  • 16 Klimek L, Brehler R, Hamelmann E. et al CME-Fortbildung. Entwicklung der subkutanen Allergen- Immuntherapie (Teil 1): von den Anfängen zu immunologisch orientierten Therapiekonzepten. Evolution of subcutaneous allergen immunotherapy (part 1): from first developments to mechanism-driven therapy concepts. Allergo J Int 2019; 28: 78–95/CME-Fragebogen. Allergo-Journal 2019; 28: 26-47 . doi:317060 de-38m
  • 17 Klimek L, Casper I, Bergmann KC. Positionspapier. Die Therapie der allergischen Rhinitis in der Routineversorgung: evidenzbasierte Nutzenbewertung der kombinierten Anwendung mehrerer Wirkstoffe. Therapy of allergic rhinitis in routine care: evidence-based benefit assessment of freely combined use of various active ingredients. Allergologie 2020; 43: 476 . doi:50376 de-38m
  • 18 Klimek L, Sperl A, Becker S. et al Current therapeutical strategies for allergic rhinitis. Expert opinion on pharmacotherapy 2018; 20: 83-89 DOI: 10.1080/14656566.2018.1543401. . doi:483379 de-38m
  • 19 Ade R, Rehm M. A prediction of dust mite populations in different categories of housing quality in Auckland, New Zealand. Allergo Journal International 2020; 29: 187-198 DOI: 10.1007/s40629-020-00130-w.
  • 20 Pitsios C, Pantavou K, Terreehorst I. et al Use of allergy tests to identify dietary and environmental triggers of eosinophilic esophagitis: protocol for a systematic review. Allergo Journal International 2020; 29: 280-283 DOI: 10.1007/s40629-020-00141-7.
  • 21 Seidenberg J, Stelljes G, Lange L. et al Airlines provide too little information for allergy sufferers!. Allergo Journal International 2020; 29: 262-279 DOI: 10.1007/s40629-020-00147-1.
  • 22 GINA. Global strategy for asthma management and prevention (update 2021). 2021 In. Available from: www.ginasthma.org
  • 23 Bousquet J, Vignola AM, Demoly P. Links between rhinitis and asthma. Allergy 2003; 58: 691-706 DOI: 10.1034/j.1398-9995.2003.00105.x. . doi:343917 de-38m
  • 24 de Groot EP, Nijkamp A, Duiverman EJ. et al Allergic rhinitis is associated with poor asthma control in children with asthma. Thorax 2012; 67: 582-587 DOI: 10.1136/thoraxjnl-2011-201168. . doi:283139 de-38m
  • 25 Hayashi H, Mitsui C, Nakatani E. et al Omalizumab reduces cysteinyl leukotriene and 9α,11β-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016; 137: 1585-1587.e1584 DOI: 10.1016/j.jaci.2015.09.034.
  • 26 Kurukulaaratchy RJ, Zhang H, Patil V. et al Identifying the heterogeneity of young adult rhinitis through cluster analysis in the Isle of Wight birth cohort. The Journal of allergy and clinical immunology 2014; 135: 143-150 DOI: 10.1016/j.jaci.2014.06.017. . doi:37848 de-38m
  • 27 Scichilone N, Arrigo R, Paternò A. et al The effect of intranasal corticosteroids on asthma control and quality of life in allergic rhinitis with mild asthma. The Journal of asthma: official journal of the Association for the Care of Asthma 2011; 48: 41-47 DOI: 10.3109/02770903.2010.528821. . doi:346370 de-38m
  • 28 Bilodeau L, Boulay M-E, Prince P. et al Comparative clinical and airway inflammatory features of asthmatics with or without polyps. Rhinology 2010; 48: 420-425 DOI: 10.4193/Rhino09.095. . doi:341423 de-38m
  • 29 Håkansson K, Bachert C, Konge L. et al Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported. PloS one 2015; 10: e0127228 DOI: 10.1371/journal.pone.0127228.
  • 30 Scadding GK, Kariyawasam HH, Scadding G. et al BSACI guideline for the diagnosis and management of allergic and non-allergic rhinitis (Revised Edition 2017; First edition 2007). Clin Exp Allergy 2017; 47: 856-889 DOI: 10.1111/cea.12953.
  • 31 Al Badaai Y, Valdés CJ, Samaha M. Outcomes and cost benefits of functional endoscopic sinus surgery in severely asthmatic patients with chronic rhinosinusitis. The Journal of laryngology and otology 2014; 128: 512-517 DOI: 10.1017/S0022215114001133. . doi:76468 de-38m
  • 32 Bachert C, Zhang N, Patou J. et al Role of staphylococcal superantigens in upper airway disease. Current opinion in allergy and clinical immunology 2008; 8: 34-38 DOI: 10.1097/ACI.0b013e3282f4178f. . doi:540749 de-38m
  • 33 Chen F-H, Zuo K-J, Guo Y-B. et al Long-term results of endoscopic sinus surgery-oriented treatment for chronic rhinosinusitis with asthma. The Laryngoscope 2014; 124: 24-28 DOI: 10.1002/lary.24196. . doi:76315 de-38m
  • 34 Fokkens WJ, Lund VJ, Hopkins C. et al Executive summary of EPOS 2020 including integrated care pathways. Rhinology 2020; 58: 82-111 DOI: 10.4193/Rhin20.601. . doi:341423 de-38m
  • 35 Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis research & therapy 2009; 11: 257 DOI: 10.1186/ar2843. . doi:599177 de-38m
  • 36 Klimek L, Koennecke M, Hagemann J. et al [Immunology of chronic rhinosinusitis with nasal polyps as a basis for treatment with biologicals]. HNO 2019; 67: 15-26 DOI: 10.1007/s00106-018-0557-7.
  • 37 Plager DA, Kahl JC, Asmann YW. et al Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis. PloS one 2010; 5: e11450 DOI: 10.1371/journal.pone.0011450.
  • 38 Van Zele T, Claeys S, Gevaert P. et al Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006; 61: 1280-1289 DOI: 10.1111/j.1398-9995.2006.01225.x. . doi:343917de-38m
  • 39 Zygmunt B, Veldhoen M. T helper cell differentiation more than just cytokines. Advances in immunology 2011; 109: 159-196 DOI: 10.1016/B978-0-12-387664-5.00005-4. . doi:43811 de-38m
  • 40 Kopf M, Le Gros G, Bachmann M. et al Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 1993; 362: 245-248 DOI: 10.1038/362245a0. . doi:43481 de-38m
  • 41 Ouyang W, Ranganath SH, Weindel K. et al Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998; 9: 745-755 . doi:351310 de-38m
  • 42 Danielsen A, Tynning T, Brokstad KA. et al Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology – Head and Neck Surgery 2006; 263: 282-289 DOI: 10.1007/s00405-005-1031-1. . doi:219928 de-38m
  • 43 Derycke L, Eyerich S, Van Crombruggen K. et al Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PloS one 2014; 9: e97581 DOI: 10.1371/journal.pone.0097581 doi.
  • 44 Li Z, Zhang Y, Sun B. Current understanding of Th2 cell differentiation and function. Protein & cell 2011; 2: 604-611 DOI: 10.1007/s13238-011-1083-5 doi.
  • 45 Prussin C, Yin Y, Upadhyaya B. T(H)2 heterogeneity: Does function follow form?. The Journal of allergy and clinical immunology 2010; 126: 1094-1098 DOI: 10.1016/j.jaci.2010.08.031. . doi:37848 de-38m
  • 46 Bachert C, Wagenmann M, Hauser U. et al IL-5 synthesis is upregulated in human nasal polyp tissue. The Journal of allergy and clinical immunology 1997; 99: 837-842 . doi:37848 de-38m
  • 47 Bachert C, Gevaert P, Holtappels G. et al Nasal polyposis: from cytokines to growth. American journal of rhinology 2000; 14: 279-290 . doi:348449 de-38m
  • 48 Hurst SM, Wilkinson TS, McLoughlin RM. et al Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14: 705-714 . doi:351310 de-38m
  • 49 Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. Journal of immunology (Baltimore, Md: 1950) 2005; 175: 3463-3468 . doi:60148 de-38m
  • 50 Kaplanski G, Marin V, Montero-Julian F. et al IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in immunology 2003; 24: 25-29 . doi:485944 de-38m
  • 51 Chin D, Harvey RJ. Nasal polyposis: an inflammatory condition requiring effective anti-inflammatory treatment. Current opinion in otolaryngology & head and neck surgery 2013; 21: 23-30 DOI: 10.1097/MOO.0b013e32835bc3f9. . doi:351458 de-38m
  • 52 Kato A. Immunopathology of chronic rhinosinusitis. Allergology international: official journal of the Japanese Society of Allergology 2015; 64: 121-130 DOI: 10.1016/j.alit.2014.12.006. . doi:482779 de-38m
  • 53 Lam EPS, Kariyawasam HH, Rana BMJ. et al IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. The Journal of allergy and clinical immunology 2016; 137: 1514-1524 DOI: 10.1016/j.jaci.2015.10.019. . doi:37848 de-38m
  • 54 Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunological reviews 2008; 223: 20-38 DOI: 10.1111/j.1600-065X.2008.00624.x. . doi:29355 de-38m
  • 55 Kim D-K, Jin HR, Eun KM. et al The role of interleukin-33 in chronic rhinosinusitis. Thorax 2017; 72: 635-645 DOI: 10.1136/thoraxjnl-2016-208772. . doi:283139 de-38m
  • 56 Reh DD, Wang Y, Ramanathan M. et al Treatment-recalcitrant chronic rhinosinusitis with polyps is associated with altered epithelial cell expression of interleukin-33. American journal of rhinology & allergy 2010; 24: 105-109 DOI: 10.2500/ajra.2010.24.3446. . doi:791174 de-38m
  • 57 Cherry WB, Yoon J, Bartemes KR. et al A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. The Journal of allergy and clinical immunology 2008; 121: 1484-1490 DOI: 10.1016/j.jaci.2008.04.005. . doi:37848 de-38m
  • 58 Mjösberg JM, Trifari S, Crellin NK. et al Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature immunology 2011; 12: 1055-1062 DOI: 10.1038/ni.2104. . doi:483981 de-38m
  • 59 Robinette ML, Colonna M. Immune modules shared by innate lymphoid cells and T cells. The Journal of allergy and clinical immunology 2016; 138: 1243-1251 DOI: 10.1016/j.jaci.2016.09.006. . doi:37848 de-38m
  • 60 Ho J, Bailey M, Zaunders J. et al Cellular comparison of sinus mucosa vs polyp tissue from a single sinus cavity in chronic rhinosinusitis. International forum of allergy & rhinology 2015; 5: 14-27 DOI: 10.1002/alr.21417. . doi:868989 de-38m
  • 61 Ho J, Bailey M, Zaunders J. et al Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2015; 45: 394-403 DOI: 10.1111/cea.12462. . doi:175877 de-38m
  • 62 Rackemann FM. A working classification of asthma. Am J Med 1947; 3: 601-606 DOI: 10.1016/0002-9343(47)90204-0.
  • 63 Brown HM. Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet 1958; 2: 1245-1247 DOI: 10.1016/s0140-6736(58)91385-0.
  • 64 Wenzel SE, Schwartz LB, Langmack EL. et al Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160: 1001-1008 DOI: 10.1164/ajrccm.160.3.9812110.
  • 65 Woodruff PG, Modrek B, Choy DF. et al T-helper type 2-driven inflammation defines major subphenotypes of asthma. American journal of respiratory and critical care medicine 2009; 180: 388-395 DOI: 10.1164/rccm.200903-0392OC. . doi:295090 de-38m
  • 66 Lambrecht BN, Hammad H. The immunology of asthma. Nature immunology 2015; 16: 45-56 DOI: 10.1038/ni.3049. . doi:483981 de-38m
  • 67 Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity 2019; 50: 975-991 DOI: 10.1016/j.immuni.2019.03.018. . doi:351310 de-38m
  • 68 Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. The Journal of allergy and clinical immunology 2012; 130: 829-842 DOI: 10.1016/j.jaci.2012.06.034. . doi:37848 de-38m
  • 69 Zhu Z, Homer RJ, Wang Z. et al Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. The Journal of clinical investigation 1999; 103: 779-788 DOI: 10.1172/JCI5909. . doi:42725 de-38m
  • 70 Pelaia C, Paoletti G, Puggioni F. et al Interleukin-5 in the Pathophysiology of Severe Asthma. Frontiers in physiology 2019; 10: 1514 DOI: 10.3389/fphys.2019.01514. . doi:833524 de-38m
  • 71 Fitzpatrick AM, Chipps BE, Holguin F. et al T2-“Low” Asthma: Overview and Management Strategies. The journal of allergy and clinical immunology In practice 2020; 8: 452-463 DOI: 10.1016/j.jaip.2019.11.006. . doi:917835 de-38m
  • 72 Rakowski E, Zhao S, Liu M. et al Variability of blood eosinophils in patients in a clinic for severe asthma. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2019; 49: 163-170 DOI: 10.1111/cea.13310. . doi:175877 de-38m
  • 73 Jatakanon A, Uasuf C, Maziak W. et al Neutrophilic inflammation in severe persistent asthma. American journal of respiratory and critical care medicine 1999; 160: 1532-1539 DOI: 10.1164/ajrccm.160.5.9806170. . doi:295090 de-38m
  • 74 Agache I, Ciobanu C, Agache C. et al Increased serum IL-17 is an independent risk factor for severe asthma. Respiratory medicine 2010; 104: 1131-1137 DOI: 10.1016/j.rmed.2010.02.018. . doi:177459 de-38m
  • 75 Al-Ramli W, Préfontaine D, Chouiali F. et al T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. The Journal of allergy and clinical immunology 2009; 123: 1185-1187 DOI: 10.1016/j.jaci.2009.02.024. . doi:37848 de-38m
  • 76 GINA. Difficult-to-treat and severe asthma in adolescent and adult patients: diagnosis and management. 2021 In. Global initiative for asthma www.ginasthma.org
  • 77 Jackson DJ, Busby J, Pfeffer PE. et al Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax 2020; 76: 220-227 DOI: 10.1136/thoraxjnl-2020-215168. . doi:283139 de-38m
  • 78 Heaney LG, Perez de Llano L, Al-Ahmad M. et al Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest 2021; 160: 814-830 DOI: 10.1016/j.chest.2021.04.013. . doi:30464 de-38m
  • 79 Azim A, Newell C, Barber C. et al Clinical evaluation of type 2 disease status in a real-world population of difficult to manage asthma using historic electronic healthcare records of blood eosinophil counts. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2021; 51: 811-820 DOI: 10.1111/cea.13841. . doi:175877 de-38m
  • 80 Azim A, Freeman A, Lavenu A. et al New Perspectives on Difficult Asthma; Sex and Age of Asthma-Onset Based Phenotypes. The journal of allergy and clinical immunology In practice 2020; 8: 3396-3406.e3394 DOI: 10.1016/j.jaip.2020.05.053. . doi:917835 de-38m
  • 81 Lefaudeux D, De Meulder B, Loza MJ. et al U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. The Journal of allergy and clinical immunology 2017; 139: 1797-1807 DOI: 10.1016/j.jaci.2016.08.048. . doi:37848 de-38m
  • 82 Moore WC, Meyers DA, Wenzel SE. et al Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. American journal of respiratory and critical care medicine 2009; 181: 315-323 DOI: 10.1164/rccm.200906-0896OC. . doi:295090 de-38m
  • 83 Fong WCG, Azim A, Knight D. et al Real-world Omalizumab and Mepolizumab treated difficult asthma phenotypes and their clinical outcomes. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2021; 51: 1019-1032 DOI: 10.1111/cea.13882. . doi:175877 de-38m
  • 84 Molina C, Brun J, Coulet M. et al Immunopathology of the bronchial mucosa in “late onset” asthma. Clinical allergy 1977; 7: 137-145 DOI: 10.1111/j.1365-2222.1977.tb01434.x. . doi:31067 de-38m
  • 85 Djukanović R, Wilson JW, Britten KM. et al Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry. The American review of respiratory disease 1990; 142: 863-871 DOI: 10.1164/ajrccm/142.4.863. . doi:30516 de-38m
  • 86 Jarjour NN, Peters SP, Djukanović R. et al Investigative use of bronchoscopy in asthma. American journal of respiratory and critical care medicine 1998; 157: 692-697 DOI: 10.1164/ajrccm.157.3.9705020. . doi:295090 de-38m
  • 87 Ricciardolo FLM. Revisiting the role of exhaled nitric oxide in asthma. Current opinion in pulmonary medicine 2014; 20: 53-59 DOI: 10.1097/MCP.0000000000000006. . doi:408027 de-38m
  • 88 Chibana K, Trudeau JB, Mustovich AT. et al IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2008; 38: 936-946 DOI: 10.1111/j.1365-2222.2008.02969.x. . doi:175877 de-38m
  • 89 Ichinose M, Sugiura H, Yamagata S. et al Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. American journal of respiratory and critical care medicine 2000; 162: 701-706 DOI: 10.1164/ajrccm.162.2.9908132. . doi:295090 de-38m
  • 90 Kupczyk M, ten Brinke A, Sterk PJ. et al Frequent exacerbators – a distinct phenotype of severe asthma. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2014; 44: 212-221 DOI: 10.1111/cea.12179. . doi:175877 de-38m
  • 91 Coumou H, Westerhof GA, de Nijs SB. et al Predictors of accelerated decline in lung function in adult-onset asthma. The European respiratory journal 2018; 51 DOI: 10.1183/13993003.01785-2017. . doi:145674 de-38m
  • 92 Matsunaga K, Hirano T, Oka A. et al Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergology international: official journal of the Japanese Society of Allergology 2016; 65: 266-271 DOI: 10.1016/j.alit.2015.12.006. . doi:482779 de-38m
  • 93 Vijverberg SJ, Hilvering B, Raaijmakers JA. et al Clinical utility of asthma biomarkers: from bench to bedside. Biologics: targets & therapy 2013; 7: 199-210 DOI: 10.2147/BTT.S29976. . doi:1155163 de-38m
  • 94 Dweik RA, Boggs PB, Erzurum SC. et al An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. American journal of respiratory and critical care medicine 2011; 184: 602-615 DOI: 10.1164/rccm.9120-11ST. . doi:295090 de-38m
  • 95 Price DB, Buhl R, Chan A. et al Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility: a randomised controlled trial. The Lancet Respiratory medicine 2017; 6: 29-39 DOI: 10.1016/S2213-2600(17)30424-1. . doi:938190 de-38m
  • 96 Cloutier MM, Baptist AP, Blake KV. et al 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. The Journal of allergy and clinical immunology 2020; 146: 1217-1270 DOI: 10.1016/j.jaci.2020.10.003. . doi:37848 de-38m
  • 97 McNicholl DM, Stevenson M, McGarvey LP. et al The utility of fractional exhaled nitric oxide suppression in the identification of nonadherence in difficult asthma. American journal of respiratory and critical care medicine 2012; 186: 1102-1108 DOI: 10.1164/rccm.201204-0587OC. . doi:295090 de-38m
  • 98 Petsky HL, Cates CJ, Kew KM. et al Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax 2018; 73: 1110-1119 DOI: 10.1136/thoraxjnl-2018-211540. . doi:283139 de-38m
  • 99 Castro M, Corren J, Pavord ID. et al Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. The New England journal of medicine 2018; 378: 2486-2496 DOI: 10.1056/NEJMoa1804092. . doi:59650 de-38m
  • 100 Pavord ID, Korn S, Howarth P. et al Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet (London, England) 2012; 380: 651-659 DOI: 10.1016/S0140-6736(12)60988-X. . doi:43108 de-38m
  • 101 Wagener AH, de Nijs SB, Lutter R. et al External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax 2015; 70: 115-120 DOI: 10.1136/thoraxjnl-2014-205634. . doi:283139 de-38m
  • 102 Yancey SW, Keene ON, Albers FC. et al Biomarkers for severe eosinophilic asthma. The Journal of allergy and clinical immunology 2017; 140: 1509-1518 DOI: 10.1016/j.jaci.2017.10.005. . doi:37848 de-38m
  • 103 Lommatzsch M, Klein M, Stoll P. et al Impact of an increase in the inhaled corticosteroid dose on blood eosinophils in asthma. Thorax 2018; 74: 417-418 DOI: 10.1136/thoraxjnl-2018-212233. . doi:283139 de-38m
  • 104 Hancox RJ, Pavord ID, Sears MR. Associations between blood eosinophils and decline in lung function among adults with and without asthma. The European respiratory journal 2018; 51 DOI: 10.1183/13993003.02536-2017. . doi:145674 de-38m
  • 105 Tan WC, Bourbeau J, Nadeau G. et al High eosinophil counts predict decline in FEV1: results from the CanCOLD study. Eur Respir J 2021; 57 DOI: 10.1183/13993003.00838-202.
  • 106 Price D, Wilson AM, Chisholm A. et al Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. Journal of asthma and allergy 2016; 9: 1-12 DOI: 10.2147/JAA.S97973. . doi:797791 de-38m
  • 107 Shrimanker R, Keene O, Hynes G. et al Prognostic and Predictive Value of Blood Eosinophil Count, Fractional Exhaled Nitric Oxide, and Their Combination in Severe Asthma: A Post Hoc Analysis. Am J Respir Crit Care Med 2019; 200: 1308-1312 DOI: 10.1164/rccm.201903-0599LE.
  • 108 Price DB, Rigazio A, Campbell JD. et al Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. The Lancet Respiratory medicine 2015; 3: 849-858 DOI: 10.1016/S2213-2600(15)00367-7. . doi:938190 de-38m
  • 109 Bleecker ER, Wechsler ME, FitzGerald JM. et al Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. The European respiratory journal 2018; 52 DOI: 10.1183/13993003.00936-2018. . doi:145674 de-38m
  • 110 Licari A, Manti S, Castagnoli R. et al Measuring inflammation in paediatric severe asthma: biomarkers in clinical practice. Breathe (Sheffield, England) 2020; 16: 190301 DOI: 10.1183/20734735.0301-2019. . doi:832974 de-38m
  • 111 Pavord ID, Afzalnia S, Menzies-Gow A. et al The current and future role of biomarkers in type 2 cytokine-mediated asthma management. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2017; 47: 148-160 DOI: 10.1111/cea.12881. . doi:175877 de-38m
  • 112 Denning DW, O'Driscoll BR, Hogaboam CM. et al The link between fungi and severe asthma: a summary of the evidence. The European respiratory journal 2006; 27: 615-626 DOI: 10.1183/09031936.06.00074705. . doi:145674 de-38m
  • 113 Rick EM, Woolnough K, Pashley CH. et al Allergic Fungal Airway Disease. Journal of investigational allergology & clinical immunology 2016; 26: 344-354 DOI: 10.18176/jiaci.0122. . doi:350447 de-38m
  • 114 Fairs A, Agbetile J, Hargadon B. et al IgE sensitization to Aspergillus fumigatus is associated with reduced lung function in asthma. American journal of respiratory and critical care medicine 2010; 182: 1362-1368 DOI: 10.1164/rccm.201001-0087OC. . doi:295090 de-38m
  • 115 Goh KJ, Yii ACA, Lapperre TS. et al Sensitization to Aspergillus species is associated with frequent exacerbations in severe asthma. J Asthma Allergy 2017; 10: 131-140 DOI: 10.2147/jaa.S130459.
  • 116 Medrek SK, Kao CC, Yang DH. et al Fungal Sensitization Is Associated with Increased Risk of Life-Threatening Asthma. The journal of allergy and clinical immunology In practice 2017; 5: 1025-1031.e1022 DOI: 10.1016/j.jaip.2016.11.015. . doi:917835 de-38m
  • 117 Menzies D, Holmes L, McCumesky G. et al Aspergillus sensitization is associated with airflow limitation and bronchiectasis in severe asthma. Allergy 2011; 66: 679-685 DOI: 10.1111/j.1398-9995.2010.02542.x. . doi:343917 de-38m
  • 118 O'Driscoll BR, Hopkinson LC, Denning DW. Mold sensitization is common amongst patients with severe asthma requiring multiple hospital admissions. BMC pulmonary medicine 2005; 5: 4 DOI: 10.1186/1471-2466-5-4. . doi:592183 de-38m
  • 119 Targonski PV, Persky VW, Ramekrishnan V. Effect of environmental molds on risk of death from asthma during the pollen season. The Journal of allergy and clinical immunology 1995; 95: 955-961 DOI: 10.1016/s0091-6749(95)70095-1. . doi:37848 de-38m
  • 120 Woolnough KF, Richardson M, Newby C. et al The relationship between biomarkers of fungal allergy and lung damage in asthma. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2016; 47: 48-56 DOI: 10.1111/cea.12848. . doi:175877 de-38m
  • 121 Wark PA, Saltos N, Simpson J. et al Induced sputum eosinophils and neutrophils and bronchiectasis severity in allergic bronchopulmonary aspergillosis. The European respiratory journal 2000; 16: 1095-1101 DOI: 10.1034/j.1399-3003.2000.16f13.x. . doi:145674 de-38m
  • 122 Denning DW, Pashley C, Hartl D. et al Fungal allergy in asthma-state of the art and research needs. Clinical and translational allergy 2014; 4: 14 DOI: 10.1186/2045-7022-4-14. . doi:871682 de-38m
  • 123 Li J-X, Fan L-C, Li M-H. et al Beneficial effects of Omalizumab therapy in allergic bronchopulmonary aspergillosis: A synthesis review of published literature. Respiratory medicine 2017; 122: 33-42 DOI: 10.1016/j.rmed.2016.11.019. . doi:177459 de-38m
  • 124 Wark PAB, Gibson PG, Wilson AJ. Azoles for allergic bronchopulmonary aspergillosis associated with asthma. The Cochrane database of systematic reviews 2003; DOI: 10.1002/14651858.CD001108.
  • 125 Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE Investigators. European Network on Aspirin-Induced Asthma. The European respiratory journal 2000; 16: 432-436 DOI: 10.1034/j.1399-3003.2000.016003432.x. . doi:145674 de-38m
  • 126 Christie PE, Tagari P, Ford-Hutchinson AW. et al Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. The American review of respiratory disease 1991; 143: 1025-1029 DOI: 10.1164/ajrccm/143.5_Pt_1.1025. . doi:30516 de-38m
  • 127 White AA, Stevenson DD. Aspirin-Exacerbated Respiratory Disease. The New England journal of medicine 2018; 379: 1060-1070 DOI: 10.1056/NEJMra1712125. . doi:59650 de-38m
  • 128 Adelman J, McLean C, Shaigany K. et al The Role of Surgery in Management of Samter's Triad: A Systematic Review. Otolaryngology – head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery 2016; 155: 220-237 DOI: 10.1177/0194599816640723. . doi:46829 de-38m
  • 129 Sommer DD, Rotenberg BW, Sowerby LJ. et al A novel treatment adjunct for aspirin exacerbated respiratory disease: the low-salicylate diet: a multicenter randomized control crossover trial. International forum of allergy & rhinology 2016; 6: 385-391 DOI: 10.1002/alr.21678. . doi:868989 de-38m
  • 130 Waldram J, Walters K, Simon R. et al Safety and outcomes of aspirin desensitization for aspirin-exacerbated respiratory disease: A single-center study. The Journal of allergy and clinical immunology 2017; 141: 250-256 DOI: 10.1016/j.jaci.2017.05.006. . doi:37848 de-38m
  • 131 EMA. Cinqaero. In: European Medicines Agency; 2019.
  • 132 EMA. Fasenra In: European Medicines Agency; 2019.
  • 133 EMA. Xolair In: European Medicines Agency; 2021.
  • 134 EMA. Nucala. In: European Medicines Agency; 2021.
  • 135 EMA. Dupixent. In: European Medicines Agency; 2021.
  • 136 Arroyave WD, Rabito FA, Carlson JC. The relationship between a specific IgE level and asthma outcomes: results from the 2005-2006 National Health and Nutrition Examination Survey. The journal of allergy and clinical immunology In practice 2013; 1: 501-508 DOI: 10.1016/j.jaip.2013.06.013. . doi:917835 de-38m
  • 137 Naqvi M, Choudhry S, Tsai H-J. et al Association between IgE levels and asthma severity among African American, Mexican, and Puerto Rican patients with asthma. The Journal of allergy and clinical immunology 2007; 120: 137-143 DOI: 10.1016/j.jaci.2007.02.045. . doi:37848 de-38m
  • 138 Shamji MH, Valenta R, Jardetzky T. et al The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021; online ahead of print. DOI: 10.1111/all.14908
  • 139 Guntern P, Eggel A. Past, present, and future of anti-IgE biologics. Allergy 2020; 75: 2491-2502 DOI: 10.1111/all.14308. . doi:343917 de-38m
  • 140 Ledford D, Busse W, Trzaskoma B. et al A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. The Journal of allergy and clinical immunology 2017; 140: 162-169.e162 DOI: 10.1016/j.jaci.2016.08.054. . doi:37848 de-38m
  • 141 Normansell R, Walker S, Milan SJ. et al Omalizumab for asthma in adults and children. The Cochrane database of systematic reviews 2014; DOI: 10.1002/14651858.CD003559.pub4.
  • 142 Bousquet J, Humbert M, Gibson PG. et al Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. The journal of allergy and clinical immunology In practice 2021; 9: 2702-2714 DOI: 10.1016/j.jaip.2021.01.011. . doi:917835 de-38m
  • 143 Alhossan A, Lee CS, MacDonald K. et al “Real-life” Effectiveness Studies of Omalizumab in Adult Patients with Severe Allergic Asthma: Meta-analysis. The journal of allergy and clinical immunology In practice 2017; 5: 1362-1370.e1362 DOI: 10.1016/j.jaip.2017.02.002. . doi:917835 de-38m
  • 144 Berger W, Gupta N, McAlary M. et al Evaluation of long-term safety of the anti-IgE antibody, omalizumab, in children with allergic asthma. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology 2003; 91: 182-188 DOI: 10.1016/S1081-1206(10)62175-8. . doi:322119 de-38m
  • 145 Di Bona D, Fiorino I, Taurino M. et al Long-term “real-life” safety of omalizumab in patients with severe uncontrolled asthma: A nine-year study. Respiratory medicine 2017; 130: 55-60 DOI: 10.1016/j.rmed.2017.07.013. . doi:177459 de-38m
  • 146 Long A, Rahmaoui A, Rothman KJ. et al Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. The Journal of allergy and clinical immunology 2014; 134: 560-567.e564 DOI: 10.1016/j.jaci.2014.02.007. . doi:37848 de-38m
  • 147 Bousquet J, Rabe K, Humbert M. et al Predicting and evaluating response to omalizumab in patients with severe allergic asthma. Respiratory medicine 2007; 101: 1483-1492 DOI: 10.1016/j.rmed.2007.01.011. . doi:177459 de-38m
  • 148 Wahn U, Martin C, Freeman P. et al Relationship between pretreatment specific IgE and the response to omalizumab therapy. Allergy 2009; 64: 1780-1787 DOI: 10.1111/j.1398-9995.2009.02119.x. . doi:343917 de-38m
  • 149 Casale TB, Chipps BE, Rosén K. et al Response to omalizumab using patient enrichment criteria from trials of novel biologics in asthma. Allergy 2017; 73: 490-497 DOI: 10.1111/all.13302. . doi:343917 de-38m
  • 150 Hanania NA, Wenzel S, Rosén K. et al Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. American journal of respiratory and critical care medicine 2013; 187: 804-811 DOI: 10.1164/rccm.201208-1414OC. . doi:295090 de-38m
  • 151 Casale TB, Luskin AT, Busse W. et al Omalizumab Effectiveness by Biomarker Status in Patients with Asthma: Evidence From PROSPERO, A Prospective Real-World Study. The journal of allergy and clinical immunology In practice 2018; 7: 156-164.e151 DOI: 10.1016/j.jaip.2018.04.043. . doi:917835 de-38m
  • 152 Humbert M, Taillé C, Mala L. et al Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study. The European respiratory journal 2018; 51 DOI: 10.1183/13993003.02523-2017. . doi:145674 de-38m
  • 153 Tajiri T, Matsumoto H, Gon Y. et al Utility of serum periostin and free IgE levels in evaluating responsiveness to omalizumab in patients with severe asthma. Allergy 2016; 71: 1472-1479 DOI: 10.1111/all.12922. . doi:343917 de-38m
  • 154 Jia G, Erickson RW, Choy DF. et al Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. The Journal of Allergy and Clinical Immunology 2012 Sept, v 130, no 3 2012. doi:10.1016/j.jaci.2012.06.025. doi:B26650 de-38m: p. 647-654.e610. doi:10.1016/j.jaci.2012.06.025. doi:B26650 de-38m
  • 155 Tran TN, Zeiger RS, Peters SP. et al Overlap of atopic, eosinophilic, and TH2-high asthma phenotypes in a general population with current asthma. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology 2016; 116: 37-42 DOI: 10.1016/j.anai.2015.10.027. . doi:322119 de-38m
  • 156 Bagnasco D, Menzella F, Caminati M. et al Efficacy of mepolizumab in patients with previous omalizumab treatment failure: Real-life observation. Allergy 2019; 74: 2539-2541 DOI: 10.1111/all.13937. . doi:343917 de-38m
  • 157 Carpagnano GE, Pelaia C, D'Amato M. et al Switching from omalizumab to mepolizumab: real-life experience from Southern Italy. Therapeutic advances in respiratory disease 2020; 14: 1753466620929231 DOI: 10.1177/1753466620929231. . doi:787344 de-38m
  • 158 Chapman KR, Albers FC, Chipps B. et al The clinical benefit of mepolizumab replacing omalizumab in uncontrolled severe eosinophilic asthma. Allergy 2019; 74: 1716-1726 DOI: 10.1111/all.13850. . doi:343917 de-38m
  • 159 Farne HA, Wilson A, Powell C. et al Anti-IL5 therapies for asthma. The Cochrane database of systematic reviews 2017; 9: CD010834 DOI: 10.1002/14651858.CD010834.pub3 doi.
  • 160 Park SW, Kim DJ, Chang HS. et al Association of Interleukin-5 and Eotaxin with Acute Exacerbation of Asthma. International Archives of Allergy and Immunology 2003; 131: 283-290 DOI: 10.1159/000072140. . doi:255315 de-38m
  • 161 Kay AB, Phipps S, Robinson DS. A role for eosinophils in airway remodelling in asthma. Trends in immunology 2004; 25: 477-482 DOI: 10.1016/j.it.2004.07.006. . doi:485944 de-38m
  • 162 Bel EH, Wenzel SE, Thompson PJ. et al Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. The New England journal of medicine 2014; 371: 1189-1197 DOI: 10.1056/NEJMoa1403291. . doi:59650 de-38m
  • 163 Ortega HG, Liu MC, Pavord ID. et al Mepolizumab treatment in patients with severe eosinophilic asthma. The New England journal of medicine 2014; 371: 1198-1207 DOI: 10.1056/NEJMoa1403290. . doi:59650 de-38m
  • 164 Bjermer L, Lemiere C, Maspero J. et al Reslizumab for Inadequately Controlled Asthma With Elevated Blood Eosinophil Levels: A Randomized Phase 3 Study. Chest 2016; 150: 789-798 DOI: 10.1016/j.chest.2016.03.032. . doi:30464 de-38m
  • 165 Castro M, Zangrilli J, Wechsler ME. et al Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. The Lancet Respiratory medicine 2015; 3: 355-366 DOI: 10.1016/S2213-2600(15)00042-9. . doi:938190 de-38m
  • 166 FitzGerald JM, Bleecker ER, Nair P. et al Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet (London, England) 2016; 388: 2128-2141 DOI: 10.1016/S0140-6736(16)31322-8. . doi:43108 de-38m
  • 167 Nair P, Wenzel S, Rabe KF. et al Oral Glucocorticoid-Sparing Effect of Benralizumab in Severe Asthma. The New England journal of medicine 2017; 376: 2448-2458 DOI: 10.1056/NEJMoa1703501. . doi:59650 de-38m
  • 168 Bagnasco D, Caminati M, Menzella F. et al One year of mepolizumab. Efficacy and safety in real-life in Italy. Pulmonary pharmacology & therapeutics 2019; 58: 101836 DOI: 10.1016/j.pupt.2019.101836. . doi:397431 de-38m
  • 169 Forster-Ruhrmann U, Stergioudi D, Pierchalla G. et al Omalizumab in patients with NSAIDs-exacerbated respiratory disease. Rhinology 2020; 58: 226-232 DOI: 10.4193/Rhin19.318. . doi:341423 de-38m
  • 170 Harvey ES, Langton D, Katelaris C. et al Mepolizumab effectiveness and identification of super-responders in severe asthma. The European respiratory journal 2020; 55 DOI: 10.1183/13993003.02420-2019. . doi:145674 de-38m
  • 171 Ibrahim H, O'Sullivan R, Casey D. et al The effectiveness of Reslizumab in severe asthma treatment: a real-world experience. Respiratory research 2019; 20: 289 DOI: 10.1186/s12931-019-1251-3. . doi:986957 de-38m
  • 172 Kavanagh JE, d'Ancona G, Elstad M. et al Real-World Effectiveness and the Characteristics of a “Super-Responder” to Mepolizumab in Severe Eosinophilic Asthma. Chest 2020; 158: 491-500 DOI: 10.1016/j.chest.2020.03.042. . doi:30464 de-38m
  • 173 Kavanagh JE, Hearn AP, d'Ancona G. et al Benralizumab after sub-optimal response to mepolizumab in severe eosinophilic asthma. Allergy 2020; 76: 1890-1893 DOI: 10.1111/all.14693. . doi:343917 de-38m
  • 174 Menzella F, Bonavia M, Bonini M. et al Real-World Experience with Benralizumab in Patients with Severe Eosinophilic Asthma: A Case Series. Journal of asthma and allergy 2021; 14: 149-161 DOI: 10.2147/JAA.S295676. . doi:797791 de-38m
  • 175 Padilla-Galo A, Levy-Abitbol R, Olveira C. et al Real-life experience with benralizumab during 6 months. BMC pulmonary medicine 2020; 20: 184 DOI: 10.1186/s12890-020-01220-9. . doi:592183 de-38m
  • 176 Pelaia C, Crimi C, Pelaia G. et al Real-life evaluation of mepolizumab efficacy in patients with severe eosinophilic asthma, according to atopic trait and allergic phenotype. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2020; 50: 780-788 DOI: 10.1111/cea.13613. . doi:175877 de-38m
  • 177 Schleich F, Graff S, Nekoee H. et al Real-word experience with mepolizumab: Does it deliver what it has promised?. Clin Exp Allergy 2020; 50: 687-695 DOI: 10.1111/cea.13601.
  • 178 Wechsler ME, Akuthota P, Jayne D. et al Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. The New England journal of medicine 2017; 376: 1921-1932 DOI: 10.1056/NEJMoa1702079. . doi:59650 de-38m
  • 179 Mukherjee M, Bakakos P, Loukides S. New paradigm in asthma management: Switching between biologics!. Allergy 2019; 75: 743-745 DOI: 10.1111/all.14038. . doi:343917 de-38m
  • 180 Pérez de Llano LA, Cosío BG, Domingo C. et al Efficacy and Safety of Reslizumab in Patients with Severe Asthma with Inadequate Response to Omalizumab: A Multicenter, Open-Label Pilot Study. The journal of allergy and clinical immunology In practice 2019; 7: 2277-2283.e2272 DOI: 10.1016/j.jaip.2019.01.017. . doi:917835 de-38m
  • 181 Burke H, Davis J, Evans S. et al A multidisciplinary team case management approach reduces the burden of frequent asthma admissions. ERJ open research 2016; 2 DOI: 10.1183/23120541.00039-2016. . doi:977640 de-38m
  • 182 Mukherjee M, Aleman Paramo F, Kjarsgaard M. et al Weight-adjusted Intravenous Reslizumab in Severe Asthma with Inadequate Response to Fixed-Dose Subcutaneous Mepolizumab. American journal of respiratory and critical care medicine 2017; 197: 38-46 DOI: 10.1164/rccm.201707-1323OC. . doi:295090 de-38m
  • 183 Manetz S, Maric I, Brown T. et al Successful pregnancy in the setting of eosinophil depletion by benralizumab. The journal of allergy and clinical immunology In practice 2020; 9: 1405-1407.e1403 DOI: 10.1016/j.jaip.2020.11.060. . doi:917835 de-38m
  • 184 Saco T, Tabatabaian F. Breathing for two: a case of severe eosinophilic asthma during pregnancy treated with benralizumab. Ann Allerg Asthma Immunol 2018; 121: 92 DOI: 10.1016/j.anai.2018.09.300.
  • 185 Albers FC, Licskai C, Chanez P. et al Baseline blood eosinophil count as a predictor of treatment response to the licensed dose of mepolizumab in severe eosinophilic asthma. Respiratory medicine 2019; 159: 105806 DOI: 10.1016/j.rmed.2019.105806. . doi:177459 de-38m
  • 186 Busse W, Chupp G, Nagase H. et al Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: Indirect treatment comparison. The Journal of allergy and clinical immunology 2018; 143: 190-200.e120 DOI: 10.1016/j.jaci.2018.08.031. . doi:37848 de-38m
  • 187 Ortega HG, Yancey SW, Mayer B. et al Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. The Lancet Respiratory medicine 2016; 4: 549-556 DOI: 10.1016/S2213-2600(16)30031-5. . doi:938190 de-38m
  • 188 Kavanagh JE, Hearn AP, Dhariwal J. et al Real-World Effectiveness of Benralizumab in Severe Eosinophilic Asthma. Chest 2020; 159: 496-506 DOI: 10.1016/j.chest.2020.08.2083. . doi:30464 de-38m
  • 189 Bagnasco D, Massolo A, Bonavia M. et al The importance of being not significant: Blood eosinophils and clinical responses do not correlate in severe asthma patients treated with mepolizumab in real life. Allergy 2020; 75: 1460-1463 DOI: 10.1111/all.14135. . doi:343917 de-38m
  • 190 Drick N, Seeliger B, Welte T. et al Anti-IL-5 therapy in patients with severe eosinophilic asthma – clinical efficacy and possible criteria for treatment response. BMC pulmonary medicine 2018; 18: 119 DOI: 10.1186/s12890-018-0689-2. . doi:592183 de-38m
  • 191 Agache I, Beltran J, Akdis C. et al Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines – recommendations on the use of biologicals in severe asthma. Allergy 2020; 75: 1023-1042 DOI: 10.1111/all.14221. . doi:343917 de-38m
  • 192 Rabe KF, Nair P, Brusselle G. et al Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. The New England journal of medicine 2018; 378: 2475-2485 DOI: 10.1056/NEJMoa1804093. . doi:59650 de-38m
  • 193 Wenzel S, Castro M, Corren J. et al Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet (London, England) 2016; 388: 31-44 DOI: 10.1016/S0140-6736(16)30307-5. . doi:43108 de-38m
  • 194 Corren J, Castro M, O'Riordan T. et al Dupilumab Efficacy in Patients with Uncontrolled, Moderate-to-Severe Allergic Asthma. The journal of allergy and clinical immunology In practice 2019; 8: 516-526 DOI: 10.1016/j.jaip.2019.08.050. . doi:917835 de-38m
  • 195 Dupin C, Belhadi D, Guilleminault L. et al Effectiveness and safety of dupilumab for the treatment of severe asthma in a real-life French multi-centre adult cohort. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2020; 50: 789-798 DOI: 10.1111/cea.13614. . doi:175877 de-38m
  • 196 Campisi R, Crimi C, Nolasco S. et al Real-World Experience with Dupilumab in Severe Asthma: One-Year Data from an Italian Named Patient Program. Journal of asthma and allergy 2021; 14: 575-583 DOI: 10.2147/JAA.S312123. . doi:797791 de-38m
  • 197 Nowsheen S, Darveaux JI. Real-world efficacy and safety of dupilumab use in the treatment of asthma. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology 2021; 127: 147-149 DOI: 10.1016/j.anai.2021.04.011. . doi:322119 de-38m
  • 198 Renner A, Marth K, Patocka K. et al Dupilumab rapidly improves asthma control in predominantly anti-IL5 / IL5R pretreated Austrian real-life severe asthmatics. Immunity, inflammation and disease 2021; 9: 624-627 DOI: 10.1002/iid3.434 doi.
  • 199 Mümmler C, Munker D, Barnikel M. et al Dupilumab Improves Asthma Control and Lung Function in Patients with Insufficient Outcome During Previous Antibody Therapy. The journal of allergy and clinical immunology In practice 2020; 9: 1177-1185.e1174 DOI: 10.1016/j.jaip.2020.09.014. . doi:917835 de-38m
  • 200 Bosma AL, Gerbens LAA, Middelkamp-Hup MA. et al Paternal and maternal use of dupilumab in patients with atopic dermatitis: a case series. Clinical and experimental dermatology 2021; 46: 1089-1092 DOI: 10.1111/ced.14725. . doi:267053 de-38m
  • 201 Kage P, Simon JC, Treudler R. A case of atopic eczema treated safely with dupilumab during pregnancy and lactation. Journal of the European Academy of Dermatology and Venereology: JEADV 2020; 34: e256-e257 DOI: 10.1111/jdv.16235. . doi:277521 de-38m
  • 202 Mian M, Dunlap R, Simpson E. Dupilumab for the treatment of severe atopic dermatitis in a pregnant patient: A case report. JAAD case reports 2020; 6: 1051-1052 DOI: 10.1016/j.jdcr.2020.08.001. . doi:981552 de-38m
  • 203 Pharmaceuticals R. Registry of Asthma Patients Initiating DUPIXENT® (RAPID). 2021 In: www.clinicaltrials.gov
  • 204 Guntur VP, Manka LA, Denson JL. et al Benralizumab as a Steroid-Sparing Treatment Option in Eosinophilic Granulomatosis with Polyangiitis. The journal of allergy and clinical immunology In practice 2020; 9: 1186-1193.e1181 DOI: 10.1016/j.jaip.2020.09.054. . doi:917835 de-38m
  • 205 Han JK, Bachert C, Fokkens W. et al Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Respiratory medicine 2021; 9: 1141-1153 DOI: 10.1016/S2213-2600(21)00097-7. . doi:938190 de-38m
  • 206 Takabayashi T, Asaka D, Okamoto Y. et al A Phase II, Multicenter, Randomized, Placebo-Controlled Study of Benralizumab, a Humanized Anti-IL-5R Alpha Monoclonal Antibody, in Patients With Eosinophilic Chronic Rhinosinusitis. Am J Rhinol Allergy 2021; 35: 861-870 DOI: 10.1177/19458924211009429.
  • 207 Tversky J, Lane AP, Azar A. Benralizumab effect on severe chronic rhinosinusitis with nasal polyps (CRSwNP): A randomized double-blind placebo-controlled trial. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2021; 51: 836-844 DOI: 10.1111/cea.13852. . doi:175877 de-38m
  • 208 Assa'ad AH, Gupta SK, Collins MH. et al An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 2011; 141: 1593-1604 DOI: 10.1053/j.gastro.2011.07.044. . doi:183338 de-38m