Subscribe to RSS
DOI: 10.1055/a-2018-3396
Photon-Counting Computed Tomography – Basic Principles, Potenzial Benefits, and Initial Clinical Experience
Photon-Counting-Computertomografie – Grundlagen, mögliche Vorteile und erste klinische ErfahrungenAbstract
Background Photon-counting computed tomography (PCCT) is a promising new technology with the potential to fundamentally change today’s workflows in the daily routine and to provide new quantitative imaging information to improve clinical decision-making and patient management.
Method The content of this review is based on an unrestricted literature search on PubMed and Google Scholar using the search terms “Photon-Counting CT”, “Photon-Counting detector”, “spectral CT”, “Computed Tomography” as well as on the authors’ experience.
Results The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCCT allows counting of every single photon at the detector level. Based on the identified literature, PCCT phantom measurements and initial clinical studies have demonstrated that the new technology allows improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing.
Conclusion For clinical practice, the potential benefits include fewer beam hardening artifacts, radiation dose reduction, and the use of new contrast agents. In this review, we will discuss basic technical principles and potential clinical benefits and demonstrate first clinical use cases.
Key Points:
-
Photon-counting computed tomography (PCCT) has been implemented in the clinical routine
-
Compared to energy-integrating detector CT, PCCT allows the reduction of electronic image noise
-
PCCT provides increased spatial resolution and a higher contrast-to-noise ratio
-
The novel detector technology allows the quantification of spectral information
Citation Format
-
Stein T, Rau A, Russe MF et al. Photon-Counting Computed Tomography – Basic Principles, Potenzial Benefits, and Initial Clinical Experience. Fortschr Röntgenstr 2023; 195: 691 – 698
Zusammenfassung
Hintergrund Die Technologie der Photonen zählenden Computertomografie hat Einzug in die klinische Praxis gehalten und wird erstmals in der klinischen Routine eingesetzt. Während die ersten Erfahrungen mit diesem Verfahren in bestimmten Patientengruppen gemacht werden, hat die Technologie das Potenzial, bestehende Arbeitsabläufe zu verändern und öffnet neue Möglichkeiten in der diagnostischen Bildgebung.
Methode Der Inhalt dieser Übersicht basiert auf einer uneingeschränkten Literaturrecherche in den Datenbanken PubMed und Google Scholar unter der Verwendung der Suchbegriffe “Photon-Counting CT”, “Photon-Counting detector”, “spectral CT”, “Computed Tomography” sowie auf den Erfahrungen der Autoren.
Ergebnisse Der grundlegende Unterschied zu den derzeit etablierten energieintegrierenden CT-Detektoren besteht darin, dass die PCCT die Zählung jedes einzelnen Photons auf Detektorebene ermöglicht. Basierend auf der identifizierten Literatur haben PCCT-Phantommessungen und erste klinische Studien gezeigt, dass die neue Technologie eine verbesserte räumliche Auflösung, eine reduziertes Bildrauschen und neue Möglichkeiten für neue quantitative Bildnachbearbeitung ermöglicht.
Schlussfolgerung PCCT ist eine neuartige, innovative Technologie mit dem Potenzial, viele der derzeitigen Einschränkungen der CT-Bildgebung in der klinischen Praxis zu überwinden. In diesem Review diskutieren wir grundlegende technische Prinzipien, potenzielle klinische Vorteile und demonstrieren erste klinische Anwendungsfälle.
Kernaussagen
-
Die Photon-Counting-Computertomografie (PCCT) wird erstmals in der klinischen Routine eingesetzt
-
Verglichen mit herkömmlichen CT ermöglicht die PCCT eine Reduzierung des elektronischen Bildrauschens
-
PCCT bietet eine höhere räumliche Auflösung und ein besseres Kontrast-Rausch-Verhältnis
-
Die neuartige Detektortechnologie ermöglicht die Quantifizierung von spektralen Bildinformationen
Key words
Photon Counting - Computed Tomography - Diagnostic Imaging - Spectral Computed Tomography - Photon-Counting Detector - Energy-Integrating DetectorsPublication History
Received: 29 August 2022
Accepted: 18 January 2023
Article published online:
02 March 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973; 46 (552) 1016-1022
- 2 Ertl-Wagner B. et al. [Diagnostic evaluation of the craniocervical vascular system with a 16-slice multi-detector row spiral CT. Protocols and first experiences]. Radiologe 2002; 42 (09) 728-732
- 3 Kalender WA. Thin-section three-dimensional spiral CT: is isotropic imaging possible?. Radiology 1995; 197 (03) 578-580
- 4 Klingenbeck-Regn K. et al. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 1999; 31 (02) 110-124
- 5 Flohr T, Ohnesorge BM. et al. Multi-slice CT Technology, in Multi-slice and Dual-source CT in Cardiac Imaging: Principles – Protocols – Indications – Outlook. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007: 41-69
- 6 Leng S. et al. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets. Phys Med Biol 2017; 62 (17) 7216-7232
- 7 Flohr T. et al. Photon-counting CT review. Phys Med 2020; 79: 126-136
- 8 Nakamura Y. et al. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol 2022; DOI: 10.1007/s11604-022-01350-6.
- 9 Flohr TG. et al. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys 2007; 34 (05) 1712-1723
- 10 Leng S. et al. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019; 39 (03) 729-743
- 11 Rajendran K. et al. Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 2021; 66 (20) DOI: 10.1088/1361-6560/ac155e.
- 12 Flohr T. et al. Basic principles and clinical potential of photon-counting detector CT. Chinese Journal of Academic Radiology 2020; 3 (01) 19-34
- 13 Giersch J, Niederlöhner D, Anton G. The influence of energy weighting on X-ray imaging quality. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2004; 531 (01) 68-74
- 14 Persson M. et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol 2014; 59 (22) 6709-6727
- 15 Shefer E. et al. State of the Art of CT Detectors and Sources: A Literature Review. Current Radiology Reports 2013; 1 (01) 76-91
- 16 Leng S. et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J Med Imaging (Bellingham) 2016; 3 (04) 043504
- 17 da Silva J. et al. Resolution characterization of a silicon-based, photon-counting computed tomography prototype capable of patient scanning. J Med Imaging (Bellingham) 2019; 6 (04) 043502
- 18 Willemink MJ. et al. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018; 289 (02) 293-312
- 19 Schlomka JP. et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 2008; 53 (15) 4031-4047
- 20 Rajendran K. et al. High Resolution, Full Field-of-View, Whole Body Photon-Counting Detector CT: System Assessment and Initial Experience. Proc SPIE Int Soc Opt Eng 2021; 11595
- 21 Leng S. et al. 150-mum Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Invest Radiol 2018; 53 (11) 655-662
- 22 Bartlett DJ. et al. High-Resolution Chest Computed Tomography Imaging of the Lungs: Impact of 1024 Matrix Reconstruction and Photon-Counting Detector Computed Tomography. Invest Radiol 2019; 54 (03) 129-137
- 23 Grunz JP. et al. Image Quality Assessment for Clinical Cadmium Telluride-Based Photon-Counting Computed Tomography Detector in Cadaveric Wrist Imaging. Invest Radiol 2021; 56 (12) 785-790
- 24 Si-Mohamed SA. et al. Coronary CT Angiography with Photon-counting CT: First-In-Human Results. Radiology 2022; 303 (02) 303-313
- 25 Soschynski M. et al. High Temporal Resolution Dual-Source Photon-Counting CT for Coronary Artery Disease: Initial Multicenter Clinical Experience. J Clin Med 2022; 11 (20) DOI: 10.3390/jcm11206003.
- 26 Virk JS, Singh A, Lingam RK. The role of imaging in the diagnosis and management of otosclerosis. Otol Neurotol 2013; 34 (07) e55-e60
- 27 Kanzara T, Virk JS. Diagnostic performance of high resolution computed tomography in otosclerosis. World J Clin Cases 2017; 5 (07) 286-291
- 28 Purohit B, Hermans R, Op de Beeck K. Imaging in otosclerosis: A pictorial review. Insights Imaging 2014; 5 (02) 245-252
- 29 Duan X. et al. Electronic noise in CT detectors: Impact on image noise and artifacts. Am J Roentgenol 2013; 201 (04) W626-W632
- 30 Liu Y. et al. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector. J Comput Assist Tomogr 2014; 38 (03) 398-403
- 31 Iwanczyk JS. et al. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging. IEEE Trans Nucl Sci 2009; 56 (03) 535-542
- 32 Yu Z. et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging (Bellingham) 2016; 3 (04) 043503
- 33 Schmidt TG. CT energy weighting in the presence of scatter and limited energy resolution. Med Phys 2010; 37 (03) 1056-1067
- 34 Symons R. et al. Low-dose lung cancer screening with photon-counting CT: a feasibility study. Phys Med Biol 2017; 62 (01) 202-213
- 35 Long Z. et al. Clinical Assessment of Metal Artifact Reduction Methods in Dual-Energy CT Examinations of Instrumented Spines. Am J Roentgenol 2019; 212 (02) 395-401
- 36 Schmidt TG. Optimal “image-based” weighting for energy-resolved CT. Med Phys 2009; 36 (07) 3018-3027
- 37 Johnson TR. et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (06) 1510-1517
- 38 Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 2007; 52 (15) 4679-4696
- 39 Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 1976; 21 (05) 733-744
- 40 Lakshmanan M. et al. WE-FG-207B-01: BEST IN PHYSICS (IMAGING): Abdominal CT with Three K-Edge Contrast Materials Using a Whole-Body Photon-Counting Scanner: Initial Results of a Large Animal Experiment. Medical Physics 2016; 43: 3834-3834
- 41 Symons R. et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging 2017; 33 (08) 1253-1261
- 42 Symons R. et al. Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study. Med Phys 2017; 44 (10) 5120-5127
- 43 Sartoretti T. et al. Photon-counting CT with tungsten as contrast medium: Experimental evidence of vessel lumen and plaque visualization. Atherosclerosis 2020; 310: 11-16
- 44 Bornefalk H, Persson M. Theoretical comparison of the iodine quantification accuracy of two spectral CT technologies. IEEE Trans Med Imaging 2014; 33 (02) 556-565
- 45 Chen H. et al. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study. J Med Imaging (Bellingham) 2015; 2 (04) 043504
- 46 Fedorov A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30 (09) 1323-1341
- 47 van Griethuysen JJM. et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 2017; 77 (21) e104-e107
- 48 Vaishnav JY. et al. Objective assessment of image quality and dose reduction in CT iterative reconstruction. Med Phys 2014; 41 (07) 071904
- 49 Chun M. et al. Fully automated image quality evaluation on patient CT: Multi-vendor and multi-reconstruction study. PLoS One 2022; 17 (07) e0271724