Hamostaseologie 2023; 43(04): 261-270
DOI: 10.1055/a-2080-6602
Review Article

Treatment of Inherited Platelet Disorders: Current Status and Future Options

Caroline Bargehr
1   Department of Paediatrics 1, Medical University of Innsbruck, Innsbruck, Austria
,
Ralf Knöfler
2   Department of Paediatric Haemostaseology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
,
Werner Streif
1   Department of Paediatrics 1, Medical University of Innsbruck, Innsbruck, Austria
› Author Affiliations

Abstract

Inherited platelet disorders (IPDs) comprise a heterogeneous group of entities that manifest with variable bleeding tendencies. For successful treatment, the underlying platelet disorder, bleeding severity and location, age, and sex must be considered in the broader clinical context. Previous information from the AWMF S2K guideline #086–004 (www.awmf.org) is evaluated for validity and supplemented by information of new available and future treatment options and clinical scenarios that need specific measures. Special attention is given to the treatment of menorrhagia and risk management during pregnancy in women with IPDs. Established treatment options of IPDs include local hemostatic treatment, tranexamic acid, desmopressin, platelet concentrates, and recombinant activated factor VII. Hematopoietic stem cell therapy is a curative approach for selected patients. We also provide an outlook on promising new therapies. These include autologous hematopoietic stem cell gene therapy, artificial platelets and nanoparticles, and various other procoagulant treatments that are currently tested in clinical trials in the context of hemophilia.

Zusammenfassung

Angeborene Störungen der Thrombozyten umfassen eine heterogene Gruppe von Erkrankungen, die mit variabler Blutungsneigung einhergehen. Für eine erfolgreiche Behandlung müssen die zugrundeliegende Thrombozytenstörung, Blutungsschwere und -lokalisation, Alter und Geschlecht im klinischen Kontext berücksichtigt werden. Zuvor veröffentlichte Informationen aus der AWMF S2K-Leitlinie #086–004 (www.awmf.org) werden auf ihre Gültigkeit hin überprüft und durch Informationen zu neu verfügbaren und zukünftigen Behandlungsmöglichkeiten, sowie klinischen Szenarien, die spezifische Maßnahmen erfordern, ergänzt. Besonderes berücksichtigt werden die Behandlung von Menorrhagien, sowie das Risikomanagement während der Schwangerschaft bei Frauen mit angeborenen Thrombozytenerkrankungen. Etablierte Behandlungsmöglichkeiten umfassen die lokale Blutstillung, sowie die Verabreichung von Tranexamsäure, Desmopressin, Thrombozytenkonzentraten und rekombinantem, aktivierten Faktor VII. Die hämatopoetische Stammzelltherapie ist ein kurativer Ansatz für ausgewählte PatientInnen. Weiters wird ein Ausblick auf vielversprechende neue Therapien gegeben. Dazu gehören die autologe hämatopoetische Stammzell-Gentherapie, künstliche Blutplättchen und Nanopartikel, sowie verschiedene andere prokoagulatorische Behandlungen, die bereits in klinischen Studien zur Behandlung der Hämophilie getestet werden.

Supplementary Material



Publication History

Received: 01 February 2023

Accepted: 27 April 2023

Article published online:
23 August 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Palma-Barqueros V, Revilla N, Sánchez A. et al. Inherited platelet disorders: an updated overview. Int J Mol Sci 2021; 22 (09) 4521
  • 2 Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: the evolving spectrum. Hamostaseologie 2012; 32 (04) 259-270
  • 3 Bolton-Maggs PHB, Chalmers EA, Collins PW. et al; UKHCDO. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006; 135 (05) 603-633
  • 4 Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 385-399
  • 5 Haley KM. Platelet disorders. Pediatr Rev 2020; 41 (05) 224-235
  • 6 Greinacher A, Eekels JJM. Simplifying the diagnosis of inherited platelet disorders? The new tools do not make it any easier. Blood 2019; 133 (23) 2478-2483
  • 7 Balduini CL. Treatment of inherited thrombocytopenias [in German]. Haematologica 2022; 107 (06) 1278-1292
  • 8 Streif W, Knöfler R, Eberl W. et al. Therapie hereditärer thrombozytopathien. Hamostaseologie 2014; 34 (04) 269-275
  • 9 S2K Leitlinie #086-004, Therapie angeborener thrombozytärer Erkrankungen. Version 2.1. Stand 02.04.2020. AWMF online: https://register.awmf.org/de/leitlinien/detail/086-004. Accessed June 10, 2023.
  • 10 Halperin D, Reber G. Influence of antidepressants on hemostasis. Dialogues Clin Neurosci 2007; 9 (01) 47-59
  • 11 Curry N, Bowles L, Clark TJ. et al. Gynaecological management of women with inherited bleeding disorders. A UK Haemophilia Centres Doctors' Organisation Guideline. Haemophilia 2022; 28 (06) 917-937
  • 12 Lee A, Maier CL, Batsuli G. Iron deficiency anemia and bleeding management in pediatric patients with Bernard-Soulier syndrome and Glanzmann Thrombasthenia: a single-institution analysis. Haemophilia 2022; 28 (04) 633-641
  • 13 Salem K, Eshghi P. Dental health and oral health-related quality of life in children with congenital bleeding disorders. Haemophilia 2013; 19 (01) 65-70
  • 14 Makris M, Conlon CP, Watson HG. Immunization of patients with bleeding disorders. Haemophilia 2003; 9 (05) 541-546
  • 15 Alamelu J, Liesner R. Modern management of severe platelet function disorders. Br J Haematol 2010; 149 (06) 813-823
  • 16 Lee A, Poon MC. Inherited platelet functional disorders: general principles and practical aspects of management. Transfus Apheresis Sci 2018; 57 (04) 494-501
  • 17 Gabay M, Boucher BA. An essential primer for understanding the role of topical hemostats, surgical sealants, and adhesives for maintaining hemostasis. Pharmacotherapy 2013; 33 (09) 935-955
  • 18 Ak G, Alpkılıç Başkırt E, Kürklü E, Koray M, Tanyeri H, Zülfikar B. The evaluation of fibrin sealants and tissue adhesives in oral surgery among patients with bleeding disorders. Turk J Haematol 2012; 29 (01) 40-47
  • 19 Dong R, Zhang H, Guo B. Emerging hemostatic materials for non-compressible hemorrhage control. Natl Sci Rev 2022; 9 (11) nwac162
  • 20 Dueckelmann AM, Hinkson L, Nonnenmacher A. et al. Uterine packing with chitosan-covered gauze compared to balloon tamponade for managing postpartum hemorrhage. Eur J Obstet Gynecol Reprod Biol 2019; 240: 151-155
  • 21 McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 2012; 72 (05) 585-617
  • 22 Srivastava A, Brewer AK, Mauser-Bunschoten EP. et al; Treatment Guidelines Working Group on Behalf of the World Federation of Hemophilia. Guidelines for the management of hemophilia. Haemophilia 2013; 19 (01) e1-e47
  • 23 Lecker I, Wang DS, Whissell PD, Avramescu S, Mazer CD, Orser BA. Tranexamic acid-associated seizures: causes and treatment. Ann Neurol 2016; 79 (01) 18-26
  • 24 Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012; 18 (Suppl. 04) 154-160
  • 25 Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182 (05) 621-632
  • 26 Tauer JT, Gneuss A, Lohse JE, Jürgens T, Knöfler R. Evaluation of desmopressin effect on primary haemostasis in pediatric patients with aspirin-like defect as hereditary thrombocytopathy. Klin Padiatr 2011; 223 (03) 169-172
  • 27 Colucci G, Stutz M, Rochat S. et al. The effect of desmopressin on platelet function: a selective enhancement of procoagulant COAT platelets in patients with primary platelet function defects. Blood 2014; 123 (12) 1905-1916
  • 28 Lozano M, Escolar G, Bellucci S. et al. 1-Deamino (8-D-arginine) vasopressin infusion partially corrects platelet deposition on subendothelium in Bernard Soulier syndrome: the role of factor VIII, Platelets 1999; 10 (02) 141-145
  • 29 Coppola A, Di Minno G. Desmopressin in inherited disorders of platelet function. Haemophilia 2008; 14 (Suppl. 01) 31-39
  • 30 Stanworth SJ, Shah A. How I use platelet transfusions. Blood 2022; 140 (18) 1925-1936
  • 31 Ferrer-Marín F, Sola-Visner M. Neonatal platelet physiology and implications for transfusion. Platelets 2022; 33 (01) 14-22
  • 32 Fustolo-Gunnink SF, Roehr CC, Lieberman L. et al. Platelet and red cell transfusions for neonates: lifesavers or Trojan horses?. Expert Rev Hematol 2019; 12 (10) 797-800
  • 33 Dupuis A, Gachet C. Inherited platelet disorders: management of the bleeding risk. Transfus Clin Biol 2018; 25 (03) 228-235
  • 34 Nurden P, Nurden AT. Congenital disorders associated with platelet dysfunctions. Thromb Haemost 2008; 99 (02) 253-263
  • 35 Fiore M, d'Oiron R, Pillois X, Alessi MC. Anti-αIIb β3 immunization in Glanzmann thrombasthenia: review of literature and treatment recommendations. Br J Haematol 2018; 181 (02) 173-182
  • 36 Ito K, Yoshida H, Hatoyama H. et al. Antibody removal therapy used successfully at delivery of a pregnant patient with Glanzmann's thrombasthenia and multiple anti-platelet antibodies. Vox Sang 1991; 61 (01) 40-46
  • 37 Martin I, Kriaa F, Proulle V. et al. Protein A Sepharose immunoadsorption can restore the efficacy of platelet concentrates in patients with Glanzmann's thrombasthenia and anti-glycoprotein IIb-IIIa antibodies. Br J Haematol 2002; 119 (04) 991-997
  • 38 Poon MC. The use of recombinant activated factor VII in patients with Glanzmann's thrombasthenia. Thromb Haemost 2021; 121 (03) 332-340
  • 39 Ozelo MC, Svirin P, Larina L. Use of recombinant factor VIIa in the management of severe bleeding episodes in patients with Bernard-Soulier syndrome. Ann Hematol 2005; 84 (12) 816-822
  • 40 Almeida AM, Khair K, Hann I, Liesner R. The use of recombinant factor VIIa in children with inherited platelet function disorders. Br J Haematol 2003; 121 (03) 477-481
  • 41 Sánchez-Luceros A, Woods AI, Bermejo E. et al. PT-VWD posing diagnostic and therapeutic challenges - small case series. Platelets 2017; 28 (05) 484-490
  • 42 Coppola A, Simone CD, Palmieri NMA. et al. Recombinant activated factor VII for hemostatic cover of orthopedic interventions in a girl with thrombocytopenia with absent radii syndrome. Blood Coagul Fibrinolysis 2007; 18 (02) 199-201
  • 43 Ghanima W, Cooper N, Rodeghiero F, Godeau B, Bussel JB. Thrombopoietin receptor agonists: ten years later. Haematologica 2019; 104 (06) 1112-1123
  • 44 Meyer O, Dame C. Thrombopoietin receptor agonists for treatment of inherited thrombocytopenias in children and adolescents. Hamostaseologie 2023
  • 45 Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2021; 48: 100784
  • 46 Mullen CA, Anderson KD, Blaese RM. Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: long-term follow-up of 62 cases. Blood 1993; 82 (10) 2961-2966
  • 47 Ozsahin H, Cavazzana-Calvo M, Notarangelo LD. et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood 2008; 111 (01) 439-445
  • 48 Nathan S, Ustun C. Complications of stem cell transplantation that affect infections in stem cell transplant recipients, with analogies to patients with hematologic malignancies. Infect Dis Clin North Am 2019; 33 (02) 331-359
  • 49 Mathews N, Rivard GE, Bonnefoy A. Glanzmann thrombasthenia: perspectives from clinical practice on accurate diagnosis and optimal treatment strategies. J Blood Med 2021; 12: 449-463
  • 50 Friend BD, Roach GD, Kempert PH, Moore TB. Successful use of hematopoietic stem cell transplantation for 2 pediatric cases of Glanzmann thrombasthenia and review of the literature. J Pediatr Hematol Oncol 2020; 42 (06) e521-e526
  • 51 Flood VH, Johnson FL, Boshkov LK. et al. Sustained engraftment post bone marrow transplant despite anti-platelet antibodies in Glanzmann thrombasthenia. Pediatr Blood Cancer 2005; 45 (07) 971-975
  • 52 Bellucci S, Devergie A, Gluckman E. et al. Complete correction of Glanzmann's thrombasthenia by allogeneic bone-marrow transplantation. Br J Haematol 1985; 59 (04) 635-641
  • 53 Bellucci S, Damaj G, Boval B. et al. Bone marrow transplantation in severe Glanzmann's thrombasthenia with antiplatelet alloimmunization. Bone Marrow Transplant 2000; 25 (03) 327-330
  • 54 Locatelli F, Rossi G, Balduini C. Hematopoietic stem-cell transplantation for the Bernard-Soulier syndrome. Ann Intern Med 2003; 138 (01) 79
  • 55 Rivers E, Worth A, Thrasher AJ, Burns SO. How I manage patients with Wiskott Aldrich syndrome. Br J Haematol 2019; 185 (04) 647-655
  • 56 Imai K, Morio T, Zhu Y. et al. Clinical course of patients with WASP gene mutations. Blood 2004; 103 (02) 456-464
  • 57 Pettit RE, Berdal KG. Chédiak-Higashi syndrome. Neurologic appearance. Arch Neurol 1984; 41 (09) 1001-1002
  • 58 Umeda K, Adachi S, Horikoshi Y. et al. Allogeneic hematopoietic stem cell transplantation for Chediak-Higashi syndrome. Pediatr Transplant 2016; 20 (02) 271-275
  • 59 Lozano ML, Rivera J, Sánchez-Guiu I, Vicente V. Towards the targeted management of Chediak-Higashi syndrome. Orphanet J Rare Dis 2014; 9 (01) 132
  • 60 Eapen M, DeLaat CA, Baker KS. et al. Hematopoietic cell transplantation for Chediak-Higashi syndrome. Bone Marrow Transplant 2007; 39 (07) 411-415
  • 61 Woods G, Bajwa RPS, Rose MJ. Reduced intensity transplantation for congenital amegakaryocytic thrombocytopenia: report of a case and review of the literature. Pediatr Transplant 2014; 18 (01) E31-E34
  • 62 Ballmaier M, Germeshausen M. Congenital amegakaryocytic thrombocytopenia: clinical presentation, diagnosis, and treatment. Semin Thromb Hemost 2011; 37 (06) 673-681
  • 63 Capaci V, Adam E, Bar-Joseph I, Faleschini M, Pecci A, Savoia A. Defective binding of ETS1 and STAT4 due to a mutation in the promoter region of THPO as a novel mechanism of congenital amegakaryocytic thrombocytopenia. Haematologica 2022; DOI: 10.3324/haematol.2022.281392.
  • 64 Seo A, Ben-Harosh M, Sirin M. et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in thrombopoietin . Blood 2017; 130 (07) 875-880
  • 65 Germeshausen M, Ancliff P, Estrada J. et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv 2018; 2 (06) 586-596
  • 66 Irie M, Niihori T, Nakano T. et al. Reduced-intensity conditioning is effective for allogeneic hematopoietic stem cell transplantation in infants with MECOM-associated syndrome. Int J Hematol 2023; 117 (04) 598-606
  • 67 Arber DA, Orazi A, Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20) 2391-2405
  • 68 Feurstein S, Drazer MW, Godley LA. Genetic predisposition to leukemia and other hematologic malignancies. Semin Oncol 2016; 43 (05) 598-608
  • 69 Godley LA. Inherited predisposition to acute myeloid leukemia. Semin Hematol 2014; 51 (04) 306-321
  • 70 Galera P, Dulau-Florea A, Calvo KR. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int J Lab Hematol 2019; 41 (Suppl. 01) 131-141
  • 71 Churpek JE, Lorenz R, Nedumgottil S. et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma 2013; 54 (01) 28-35
  • 72 Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 2020; 474 (1-2): 73-81
  • 73 Braun CJ, Boztug K, Paruzynski A. et al. Gene therapy for Wiskott-Aldrich syndrome - long-term efficacy and genotoxicity. Sci Transl Med 2014; 6 (254) 1-15
  • 74 Aiuti A, Biasco L, Scaramuzza S. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341 (6148): 1233151
  • 75 Magnani A, Semeraro M, Adam F. et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat Med 2022; 28 (01) 71-80
  • 76 Arruda VR, Weber J, Samelson-Jones BJ. Gene therapy for inherited bleeding disorders. Semin Thromb Hemost 2021; 47 (02) 161-173
  • 77 Ferrua F, Cicalese MP, Galimberti S. et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol 2019; 6 (05) e239-e253
  • 78 Morris EC, Fox T, Chakraverty R. et al. Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 2017; 130 (11) 1327-1335
  • 79 Fang J, Hodivala-Dilke K, Johnson BD. et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood 2005; 106 (08) 2671-2679
  • 80 Fang J, Jensen ES, Boudreaux MK. et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A 2011; 108 (23) 9583-9588
  • 81 Philipp CS, Faiz A, Dowling N. et al. Age and the prevalence of bleeding disorders in women with menorrhagia. Obstet Gynecol 2005; 105 (01) 61-66
  • 82 O'Brien B, Mason J, Kimble R. Bleeding disorders in adolescents with heavy menstrual bleeding: the Queensland Statewide Paediatric and Adolescent Gynaecology Service. J Pediatr Adolesc Gynecol 2019; 32 (02) 122-127
  • 83 Zia A, Kouides P, Khodyakov D. et al. Standardizing care to manage bleeding disorders in adolescents with heavy menses - a joint project from the ISTH pediatric/neonatal and women's health SSCs. J Thromb Haemost 2020; 18 (10) 2759-2774
  • 84 Gupta J, Kai J, Middleton L, Pattison H, Gray R, Daniels J. ECLIPSE Trial Collaborative Group. Levonorgestrel intrauterine system versus medical therapy for menorrhagia. N Engl J Med 2013; 368 (02) 128-137
  • 85 Fiore M, Sentilhes L, d'Oiron R. How I manage pregnancy in women with Glanzmann thrombasthenia. Blood 2022; 139 (17) 2632-2641
  • 86 Peitsidis P, Datta T, Pafilis I, Otomewo O, Tuddenham EGD, Kadir RA. Bernard Soulier syndrome in pregnancy: a systematic review. Haemophilia 2010; 16 (04) 584-591
  • 87 Siddiq S, Clark A, Mumford A. A systematic review of the management and outcomes of pregnancy in Glanzmann thrombasthenia. Haemophilia 2011; 17 (05) e858-e869
  • 88 Barg AA, Hauschner H, Luboshitz J. et al. From thrombasthenia to next generation thrombocytopenia: neonatal alloimmune thrombocytopenia induced by maternal Glanzmann thrombasthenia. Pediatr Blood Cancer 2018; 65 (12) e27376
  • 89 Sugimoto N, Kanda J, Nakamura S. et al. iPLAT1: the first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood 2022; 140 (22) 2398-2402
  • 90 Xia L. Engineered platelets for clinical application: a step closer. Blood 2022; 140 (22) 2314-2315
  • 91 Suzuki D, Flahou C, Yoshikawa N. et al. iPSC-derived platelets depleted of HLA Class I are inert to anti-HLA Class I and natural killer cell immunity. Stem Cell Reports 2020; 14 (01) 49-59
  • 92 Farokhzad OC. Nanotechnology: platelet mimicry. Nature 2015; 526 (7571): 47-48
  • 93 Girish A, Jolly K, Alsaadi N. et al. Platelet-inspired intravenous nanomedicine for injury-targeted direct delivery of thrombin to augment hemostasis in coagulopathies. ACS Nano 2022; 16 (10) 16292-16313
  • 94 Raghunathan S, Rayes J, Sen Gupta A. Platelet-inspired nanomedicine in hemostasis thrombosis and thromboinflammation. J Thromb Haemost 2022; 20 (07) 1535-1549
  • 95 Wang S, Yuan J, Yang J. et al. Advancement of platelet-inspired nanomedicine. Platelets 2018; 29 (07) 690-694
  • 96 Zivkovic M, Gandhi P, Ostergaard H, Olsen E, Rea C, Sorensen B, Faber J, Schutgens R, Bjorn S, Urbanus R. The novel bispecific antibody HMB-001 enhances the haemostatic response in models of Glanzmann Thrombasthenia by targeting FVIIa to activated platelets [abstract]. https://abstracts.isth.org/abstract/the-novel-bispecific-antibody-hmb-001-enhances-the-haemostatic-response-in-models-of-glanzmann-thrombasthenia-by-targeting-fviia-to-activated-platelets/ . Accessed June 10, 2023
  • 97 Shapiro AD. Concizumab: a novel anti-TFPI therapeutic for hemophilia. Blood Adv 2021; 5 (01) 279-279
  • 98 Mahlangu J, Luis Lamas J, Cristobal Morales J. et al. Long-term safety and efficacy of the anti-tissue factor pathway inhibitor marstacimab in participants with severe haemophilia: Phase II study results. Br J Haematol 2023; 200 (02) 240-248
  • 99 Mancuso ME, Ingham SJM, Kunze M. Befovacimab, an anti-tissue factor pathway inhibitor antibody: Early termination of the multiple-dose, dose-escalating Phase 2 study due to thrombosis. Haemophilia 2022; 28 (05) 702-712
  • 100 Pasi KJ, Lissitchkov T, Mamonov V. et al. Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran - results of the phase 1 inhibitor cohort. J Thromb Haemost 2021; 19 (06) 1436-1446