Hamostaseologie 2023; 43(05): 325-337
DOI: 10.1055/a-2101-5936
Review Article

Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy

Das Potential von endothelialen koloniebildenden Zellen: Anwendungen bei hämostatischen und thrombotischen Störungen, von der Aufklärung der Pathophysiologie von Krankheiten bis zur Zelltherapie
Nadine Schwarz
1   Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
Hamideh Yadegari
1   Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
› Author Affiliations

Abstract

Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.

Zusammenfassung

Endotheliale koloniebildene Zellen (endothelial colony forming cells, ECFCs) sind endotheliale Vorläuferzellen, die in begrenzter Zahl im peripheren Blut zirkulieren. Sie unterstützen das Wachstum adulter Endothelzellen (ECs), haben ein hohes intrinsisches Proliferationspotential und tragen zur Neubildung von Blutgefäßen und Reparatur von Geweben in vivo bei. ECFCs können aus peripherem oder Nabelschnurblut isoliert werden und können in vitro in großen Mengen als autologe ECs kultiviert werden. Nach Differenzierung in Kultur liefern ECFCs einen exzellenten Ersatz für adulte Endothelzellen, da sie dieselben phenotypischen, genotypischen, und funktionellen Eigenschaften besitzen. In den letzten zwanzig Jahren wurden ECFCs von Patienten mit verschiedenen vaskulären Erkrankungen ex vivo verwendet, um die Pathophysiologie von Krankheiten zu studieren und Zell-basierte therapeutische Ansätze wie vaskuläre regenerative Therapie, tissue engineering, oder Gentherapie zu entwickeln. In diesem Review geben wir eine Übersicht über vergangene Studien, in denen ECFCs zur Aufklärung molekularer Mechanismen, die der Pathogenese hämostaseologischer Erkrankungen unterliegen, in der Grundlagenforschung verwendet wurden. Außerdem zeigen wir eine Zusammenfassung vorangehender Studien, die den Nutzen von ECFCs als zelluläres Werkzeug für Diagnose oder Therapie im klinischen Feld von Thrombose und Hämostase demonstrieren.



Publication History

Received: 06 April 2023

Accepted: 25 May 2023

Article published online:
19 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kutikhin AG, Tupikin AE, Matveeva VG. et al. Human peripheral blood-derived endothelial colony-forming cells are highly similar to mature vascular endothelial cells yet demonstrate a transitional transcriptomic signature. Cells 2020; 9 (04) 876
  • 2 Hebbel RP. Blood endothelial cells: utility from ambiguity. J Clin Invest 2017; 127 (05) 1613-1615
  • 3 Yoder MC, Mead LE, Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109 (05) 1801-1809
  • 4 de Boer S, Bowman M, Notley C. et al. Endothelial characteristics in healthy endothelial colony forming cells; generating a robust and valid ex vivo model for vascular disease. J Thromb Haemost 2020; 18 (10) 2721-2731
  • 5 Smadja DM, Melero-Martin JM, Eikenboom J, Bowman M, Sabatier F, Randi AM. Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: position paper from the International Society on Thrombosis and Haemostasis SSC. J Thromb Haemost 2019; 17 (07) 1190-1194
  • 6 Ingram DA, Mead LE, Tanaka H. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104 (09) 2752-2760
  • 7 Timmermans F, Van Hauwermeiren F, De Smedt M. et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 2007; 27 (07) 1572-1579
  • 8 Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005; 105 (07) 2783-2786
  • 9 Medina RJ, O'Neill CL, Sweeney M. et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 2010; 3: 18
  • 10 Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109 (11) 4761-4768
  • 11 Au P, Daheron LM, Duda DG. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008; 111 (03) 1302-1305
  • 12 Bompais H, Chagraoui J, Canron X. et al. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 2004; 103 (07) 2577-2584
  • 13 Medina RJ, Barber CL, Sabatier F. et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med 2017; 6 (05) 1316-1320
  • 14 Selvam SN, Bowman M, Inglis M. et al. Patients with aortic stenosis have von Willebrand factor abnormalities and increased proliferation of endothelial colony forming cells. J Thromb Haemost 2020; 18 (03) 593-603
  • 15 Ferreras C, Cole CL, Urban K, Jayson GC, Avizienyte E. Segregation of late outgrowth endothelial cells into functional endothelial CD34- and progenitor-like CD34+ cell populations. Angiogenesis 2015; 18 (01) 47-68
  • 16 Tura O, Skinner EM, Barclay GR. et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 2013; 31 (02) 338-348
  • 17 Moubarik C, Guillet B, Youssef B. et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev Rep 2011; 7 (01) 208-220
  • 18 Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 2002; 99 (02) 457-462
  • 19 Bodempudi V, Ohlfest JR, Terai K. et al. Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors. Cancer Gene Ther 2010; 17 (12) 855-863
  • 20 Selvam SN, Casey LJ, Bowman ML. et al. Abnormal angiogenesis in blood outgrowth endothelial cells derived from von Willebrand disease patients. Blood Coagul Fibrinolysis 2017; 28 (07) 521-533
  • 21 Starke RD, Paschalaki KE, Dyer C. et al. Cellular and molecular basis of Von Willebrand disease: studies on blood outgrowth endothelial cells. Atherosclerosis 2012; 225: e5-e6
  • 22 Wang J-W, Bouwens EAM, Pintao MC. et al. Analysis of the storage and secretion of von Willebrand factor in blood outgrowth endothelial cells derived from patients with von Willebrand disease. Blood 2013; 121 (14) 2762-2772
  • 23 Asahara T, Murohara T, Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275 (5302) 964-967
  • 24 Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105 (01) 71-77
  • 25 Fuchs S, Ghanaati S, Orth C. et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 2009; 30 (04) 526-534
  • 26 de Meyer SF, Vanhoorelbeke K, Chuah MK. et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006; 107 (12) 4728-4736
  • 27 Martin-Ramirez J, Hofman M, van den Biggelaar M, Hebbel RP, Voorberg J. Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 2012; 7 (09) 1709-1715
  • 28 Ormiston ML, Toshner MR, Kiskin FN. et al. Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood. J Vis Exp 2015; (106) e53384
  • 29 Lin R-Z, Hatch A, Antontsev VG, Murthy SK, Melero-Martin JM. Microfluidic capture of endothelial colony-forming cells from human adult peripheral blood: phenotypic and functional validation in vivo. Tissue Eng Part C Methods 2015; 21 (03) 274-283
  • 30 Holnthoner W, Hohenegger K, Husa A-M. et al. Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix. J Tissue Eng Regen Med 2015; 9 (02) 127-136
  • 31 Sakimoto S, Marchetti V, Aguilar E. et al. CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect. JCI Insight 2017; 2 (02) e89906
  • 32 Poyatos P, Luque N, Eizaguirre S. et al. Post-COVID-19 patients show an increased endothelial progenitor cell production. Transl Res 2022; 243: 14-20
  • 33 Fujisawa T, Tura-Ceide O, Hunter A. et al. Endothelial Progenitor Cells Do Not Originate From the Bone Marrow. Circulation 2019; 140 (18) 1524-1526
  • 34 Vasa M, Fichtlscherer S, Aicher A. et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001; 89 (01) E1-E7
  • 35 Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 2004; 8 (04) 498-508
  • 36 Kalka C, Masuda H, Takahashi T. et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000; 86 (12) 1198-1202
  • 37 Ferratge S, Ha G, Carpentier G. et al. Initial clonogenic potential of human endothelial progenitor cells is predictive of their further properties and establishes a functional hierarchy related to immaturity. Stem Cell Res (Amst) 2017; 21: 148-159
  • 38 Pagliari MT, Rosendaal FR, Ahmadinejad M. et al. von Willebrand factor propeptide and pathophysiological mechanisms in European and Iranian patients with type 3 von Willebrand disease enrolled in the 3WINTERS-IPS study. J Thromb Haemost 2022; 20 (05) 1106-1114
  • 39 Leebeek FWG, Eikenboom JCJ. Von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
  • 40 Schneppenheim R, Budde U. von Willebrand factor: the complex molecular genetics of a multidomain and multifunctional protein. J Thromb Haemost 2011; 9 (Suppl 1): 209-215
  • 41 Schillemans M, Karampini E, Kat M, Bierings R. Exocytosis of Weibel-Palade bodies: how to unpack a vascular emergency kit. J Thromb Haemost 2019; 17 (01) 6-18
  • 42 Starke RD, Ferraro F, Paschalaki KE. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood 2011; 117 (03) 1071-1080
  • 43 Groeneveld DJ, van Bekkum T, Dirven RJ. et al. Angiogenic characteristics of blood outgrowth endothelial cells from patients with von Willebrand disease. J Thromb Haemost 2015; 13 (10) 1854-1866
  • 44 Yadegari H, Biswas A, Akhter MS. et al. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5′ splice site. Blood 2016; 128 (17) 2144-2152
  • 45 Yadegari H, Jamil MA, Marquardt N, Oldenburg J. A homozygous deep intronic variant causes von Willebrand factor deficiency and lack of endothelial-specific secretory organelles, Weibel-Palade bodies. Int J Mol Sci 2022; 23 (06) 23
  • 46 Yadegari H, Jamil MA, Müller J. et al. Multifaceted pathomolecular mechanism of a VWF large deletion involved in the pathogenesis of severe VWD. Blood Adv 2022; 6 (03) 1038-1053
  • 47 Hawke L, Bowman ML, Poon M-C, Scully M-F, Rivard G-E, James PD. Characterization of aberrant splicing of von Willebrand factor in von Willebrand disease: an underrecognized mechanism. Blood 2016; 128 (04) 584-593
  • 48 Bowman ML, Pluthero FG, Tuttle A. et al. Discrepant platelet and plasma von Willebrand factor in von Willebrand disease patients with p.Pro2808Leufs*24. J Thromb Haemost 2017; 15 (07) 1403-1411
  • 49 Bowman M, Casey L, Selvam SN. et al. von Willebrand factor propeptide variants lead to impaired storage and ER retention in patient-derived endothelial colony-forming cells. J Thromb Haemost 2022; 20 (07) 1599-1609
  • 50 Okamoto S, Tamura S, Sanda N. et al. VWF-Gly2752Ser, a novel non-cysteine substitution variant in the CK domain, exhibits severe secretory impairment by hampering C-terminal dimer formation. J Thromb Haemost 2022; 20 (08) 1784-1796
  • 51 Berber E, James PD, Hough C, Lillicrap D. An assessment of the pathogenic significance of the R924Q von Willebrand factor substitution. J Thromb Haemost 2009; 7 (10) 1672-1679
  • 52 Schillemans M, Kat M, Westeneng J. et al. Alternative trafficking of Weibel-Palade body proteins in CRISPR/Cas9-engineered von Willebrand factor-deficient blood outgrowth endothelial cells. Res Pract Thromb Haemost 2019; 3 (04) 718-732
  • 53 Kloosterman R, Zago-Schmitt M, Grabell J. et al. A transcriptome analysis of basal and stimulated VWF release from endothelial cells derived from type 1 VWD patients. Blood Adv 2023; 7 (08) 1477-1487
  • 54 Smadja DM, Basire A, Amelot A. et al. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J Cell Mol Med 2008; 12 (03) 975-986
  • 55 Schwarz N, Müller J, Yadegari H. et al. Ex vivo modeling of the PC (protein C) pathway using endothelial cells and plasma: a personalized approach. Arterioscler Thromb Vasc Biol 2023; 43 (01) 109-119
  • 56 Guan Z-Y, Yu C-W, Song T, Gao Y. The relationship between the levels and function of endothelial progenitor cells and factor V Leiden and protein C deficiency in patients with primary Budd-Chiari syndrome. Eur Rev Med Pharmacol Sci 2018; 22 (09) 2742-2750
  • 57 Westerweel PE, Verhaar MC. Endothelial progenitor cell dysfunction in rheumatic disease. Nat Rev Rheumatol 2009; 5 (06) 332-340
  • 58 Kaplan MJ. Premature vascular damage in systemic lupus erythematosus. Autoimmunity 2009; 42 (07) 580-586
  • 59 Papadaki HA, Boumpas DT, Gibson FM. et al. Increased apoptosis of bone marrow CD34(+) cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus. Br J Haematol 2001; 115 (01) 167-174
  • 60 Denny MF, Thacker S, Mehta H. et al. Interferon-alpha promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 2007; 110 (08) 2907-2915
  • 61 Westerweel PE, Luijten RKMAC, Hoefer IE, Koomans HA, Derksen RHWM, Verhaar MC. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann Rheum Dis 2007; 66 (07) 865-870
  • 62 Egan CG, Caporali F, Garcia-Gonzalez E, Galeazzi M, Sorrentino V. Endothelial progenitor cells and colony-forming units in rheumatoid arthritis: association with clinical characteristics. Rheumatology (Oxford) 2008; 47 (10) 1484-1488
  • 63 Thacker SG, Berthier CC, Mattinzoli D, Rastaldi MP, Kretzler M, Kaplan MJ. The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J Immunol 2010; 185 (07) 4457-4469
  • 64 Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 2011; 187 (11) 6143-6156
  • 65 Mohan S, Barsalou J, Bradley TJ. et al. Endothelial progenitor cell phenotype and function are impaired in childhood-onset systemic lupus erythematosus. Arthritis Rheumatol 2015; 67 (08) 2257-2262
  • 66 Gresele P, Migliacci R, Vedovati MC. et al. Patients with primary antiphospholipid antibody syndrome and without associated vascular risk factors present a normal endothelial function. Thromb Res 2009; 123 (03) 444-451
  • 67 Grenn RC, Yalavarthi S, Gandhi AA. et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis 2017; 76 (02) 450-457
  • 68 Ataga KI. Hypercoagulability and thrombotic complications in hemolytic anemias. Haematologica 2009; 94 (11) 1481-1484
  • 69 Chang Milbauer L, Wei P, Enenstein J. et al. Genetic endothelial systems biology of sickle stroke risk. Blood 2008; 111 (07) 3872-3879
  • 70 Sakamoto TM, Lanaro C, Ozelo MC. et al. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients. Microvasc Res 2013; 90: 173-179
  • 71 Ito MT, Da Silva Costa SM, Baptista LC. et al. Angiogenesis-Related Genes in Endothelial Progenitor Cells May Be Involved in Sickle Cell Stroke. J Am Heart Assoc 2020; 9 (03) e014143
  • 72 Di Minno A, Ambrosino P, Calcaterra I, Di Minno MND. COVID-19 and venous thromboembolism: a meta-analysis of literature studies. Semin Thromb Hemost 2020; 46 (07) 763-771
  • 73 Hasan SS, Radford S, Kow CS, Zaidi STR. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: a systematic review and meta-analysis. J Thromb Thrombolysis 2020; 50 (04) 814-821
  • 74 Zuin M, Engelen MM, Bilato C. et al. Prevalence of acute pulmonary embolism at autopsy in patients with COVID-19. Am J Cardiol 2022; 171: 159-164
  • 75 Alvarado-Moreno JA, Davila-Moreno J, Dominguez-Reyes V. et al. Morphological and functional alterations in endothelial colony-forming cells from recovered COVID-19 patients. Thromb Res 2021; 206: 55-59
  • 76 Basire A, Sabatier F, Ravet S. et al. High urokinase expression contributes to the angiogenic properties of endothelial cells derived from circulating progenitors. Thromb Haemost 2006; 95 (04) 678-688
  • 77 Margheri F, Chillà A, Laurenzana A. et al. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood 2011; 118 (13) 3743-3755
  • 78 Bacha NC, Blandinieres A, Rossi E. et al. Endothelial microparticles are associated to pathogenesis of idiopathic pulmonary fibrosis. Stem Cell Rev Rep 2018; 14 (02) 223-235
  • 79 Brodsky S, Chen J, Lee A, Akassoglou K, Norman J, Goligorsky MS. Plasmin-dependent and -independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol Heart Circ Physiol 2001; 281 (04) H1784-H1792
  • 80 Oh C-W, Hoover-Plow J, Plow EF. The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 2003; 1 (08) 1683-1687
  • 81 Lacroix R, Sabatier F, Mialhe A. et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007; 110 (07) 2432-2439
  • 82 Mühleder S, Pill K, Schaupper M. et al. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Res Ther 2018; 9 (01) 35
  • 83 Liu P, Zhang H, Liu J, Sheng C, Zhang L, Zeng Y. Changes of number and function of late endothelial progenitor cells in peripheral blood of COPD patients combined with pulmonary hypertension. Thorac Cardiovasc Surg 2016; 64 (04) 323-329
  • 84 Liu X, Xie C. Human endothelial progenitor cells isolated from COPD patients are dysfunctional. Mol Cell Biochem 2012; 363 (1-2): 53-63
  • 85 Blandinières A, Gendron N, Bacha N. et al. Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis 2019; 22 (02) 325-339
  • 86 Smadja DM. Vasculogenic stem and progenitor cells in human: future cell therapy product or liquid biopsy for vascular disease. Adv Exp Med Biol 2019; 1201: 215-237
  • 87 Alvarado-Moreno JA, Hernandez-Lopez R, Chavez-Gonzalez A. et al. Endothelial colony-forming cells: biological and functional abnormalities in patients with recurrent, unprovoked venous thromboembolic disease. Thromb Res 2016; 137: 157-168
  • 88 Rosti V, Bonetti E, Bergamaschi G. et al; AGIMM Investigators. High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. PLoS One 2010; 5 (12) e15277
  • 89 Bradbury C, Buckley T, Sun YZ, Rose P, Fitzmaurice D. Patients with high levels of circulating endothelial progenitor cells (EPC) following at least three months of anticoagulation for unprovoked venous thromboembolism (VTE) are at low risk of recurrent VTE-Results from the ExACT randomised controlled trial. EClinicalMedicine 2019; 17: 100218
  • 90 Tasev D, Koolwijk P, van Hinsbergh VWM. Therapeutic potential of human-derived endothelial colony-forming cells in animal models. Tissue Eng Part B Rev 2016; 22 (05) 371-382
  • 91 Paschalaki KE, Randi AM. Recent advances in endothelial colony forming cells toward their use in clinical translation. Front Med (Lausanne) 2018; 5: 295
  • 92 de Jong A, Dirven RJ, Boender J. et al. Ex vivo improvement of a von Willebrand disease type 2A phenotype using an allele-specific small-interfering RNA. Thromb Haemost 2020; 120 (11) 1569-1579
  • 93 Gao K, Kumar P, Cortez-Toledo E. et al. Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Res Ther 2019; 10 (01) 34
  • 94 Matsui H, Shibata M, Brown B. et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 2007; 25 (10) 2660-2669
  • 95 Ozelo MC, Vidal B, Brown C. et al. Omental implantation of BOECs in hemophilia dogs results in circulating FVIII antigen and a complex immune response. Blood 2014; 123 (26) 4045-4053
  • 96 Stem C, Rodman C, Ramamurthy RM. et al. Investigating optimal autologous cellular platforms for prenatal or perinatal factor VIII delivery to treat hemophilia A. Front Cell Dev Biol 2021; 9: 678117
  • 97 Gori T, Polimeni A, Indolfi C, Räber L, Adriaenssens T, Münzel T. Predictors of stent thrombosis and their implications for clinical practice. Nat Rev Cardiol 2019; 16 (04) 243-256
  • 98 Biondi-Zoccai GGL, Agostoni P, Sangiorgi GM. et al; Real-World Eluting-Stent Comparative Italian Retrospective Evaluation Study Investigators. Incidence, predictors, and outcomes of coronary dissections left untreated after drug-eluting stent implantation. Eur Heart J 2006; 27 (05) 540-546
  • 99 Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 2003; 24 (13) 2295-2302
  • 100 Aoki J, Serruys PW, van Beusekom H. et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 2005; 45 (10) 1574-1579
  • 101 Co M, Tay E, Lee CH. et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate- to long-term clinical follow-up. Am Heart J 2008; 155 (01) 128-132
  • 102 Lim W-H, Seo W-W, Choe W. et al. Stent coated with antibody against vascular endothelial-cadherin captures endothelial progenitor cells, accelerates re-endothelialization, and reduces neointimal formation. Arterioscler Thromb Vasc Biol 2011; 31 (12) 2798-2805
  • 103 Huang Y-H, Xu Q, Shen T, Li J-K, Sheng J-Y, Shi H-J. Prevention of in-stent restenosis with endothelial progenitor cell (EPC) capture stent placement combined with regional EPC transplantation: an atherosclerotic rabbit model. Cardiol J 2019; 26 (03) 283-291
  • 104 Klomp M, Beijk MAM, de Winter RJ. Genous endothelial progenitor cell-capturing stent system: a novel stent technology. Expert Rev Med Devices 2009; 6 (04) 365-375
  • 105 Kalka C, Masuda H, Takahashi T. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97 (07) 3422-3427
  • 106 Schwarz TM, Leicht SF, Radic T. et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler Thromb Vasc Biol 2012; 32 (02) e13-e21
  • 107 Kawamoto A, Gwon HC, Iwaguro H. et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103 (05) 634-637
  • 108 Ott I, Keller U, Knoedler M. et al. Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. FASEB J 2005; 19 (08) 992-994
  • 109 Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation 2005; 111 (20) 2645-2653