Semin Musculoskelet Radiol 2008; 12(3): 238-252
DOI: 10.1055/s-0028-1083107
© Thieme Medical Publishers

Magnetic Resonance Imaging of the Spine at 3 Tesla

Peter Fries1 , Val M. Runge2 , Miles A. Kirchin3 , David M. Watkins2 , Arno Buecker1 , Guenther Schneider1
  • 1Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg/Saar, Germany
  • 2Department of Radiology, Scott and White Clinic and Hospital, Texas A & M University, Temple, Texas
  • 3World Wide Medical and Regulatory Affairs, Bracco Imaging SpA, Milan, Italy
Further Information

Publication History

Publication Date:
10 October 2008 (online)

ABSTRACT

Magnetic resonance imaging (MRI) has developed dramatically in the 25 years since its clinical introduction. Advances in hardware design have included the development of high field magnets and more sophisticated and sensitive coils. Improvements in sequences, data sampling, and postprocessing software have benefited the attainable spatial and temporal resolution to the point at which the fine depiction of anatomical structure and pathological processes is now routine. As in other radiological areas, the most recent advances in MRI have proven highly valuable in the field of musculoskeletal radiology where the lack of radiation, high soft tissue contrast, and capacity for multiplanar or three-dimensional imaging have made MRI the imaging modality of choice. Particular benefits are seen in diagnostic imaging of the spine where MRI is clearly superior to both conventional radiography and computed tomography. In this article, we discuss the impact of the most recent technological advance in MRI, namely the advent of 3 Tesla (3-T) imaging, on diagnostic imaging of the spine. Comparisons are drawn with imaging at 1.5 T, and emphasis is placed on MR physics and on the benefits and principal difficulties associated with spine imaging at high field strength.

REFERENCES

  • 1 Frayne R, Goodyear B G, Dickhoff P, Lauzon M L, Sevick R J. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging.  Invest Radiol. 2003;  38(7) 385-402
  • 2 Phalke V V, Gujar S, Quint D J. Comparison of 3.0 T versus 1.5 T MR: imaging of the spine.  Neuroimaging Clin N Am. 2006;  16(2) 241-248 ix
  • 3 Shapiro M D. MR imaging of the spine at 3T.  Magn Reson Imaging Clin N Am. 2006;  14(1) 97-108
  • 4 Lichy M P, Wietek B M, Mugler III J P et al.. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences.  Invest Radiol. 2005;  40(12) 754-760
  • 5 Wetzel S G, Johnson G, Tan A G et al.. Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination.  AJNR Am J Neuroradiol. 2002;  23(6) 995-1002
  • 6 Rofsky N M, Lee V S, Laub G et al.. Abdominal MR imaging with a volumetric interpolated breath-hold examination.  Radiology. 1999;  212(3) 876-884
  • 7 Mugler III J P, Bao S, Mulkern R V et al.. Optimized single-slab three-dimensional spin-echo MR imaging of the brain.  Radiology. 2000;  216(3) 891-899
  • 8 Mugler III J P, Kiefer B, Brookeman J R. Three-dimensional T2-weighted imaging of the brain using very long spin-echo trains. In: Proceedings of the 8th Annual Meeting of ISMRM, Denver. 2000: 687
  • 9 Rodegerdts E A, Boss A, Riemarzik K et al.. 3D imaging of the whole spine at 3T compared to 1.5T: initial experiences.  Acta Radiol. 2006;  47(5) 488-493
  • 10 Colosimo C, Cianfoni A, Di Lella G M, Gaudino S. Contrast-enhanced MR imaging of the spine: when, why and how? How to optimize contrast protocols in MR imaging of the spine.  Neuroradiology. 2006;  48(suppl 1) 18-33
  • 11 Maravilla K R, Maldjian J A, Schmalfuss I M et al.. Contrast enhancement of central nervous system lesions: multicenter intraindividual crossover comparative study of two MR contrast agents.  Radiology. 2006;  240(2) 389-400
  • 12 Pintaske J, Martirosian P, Graf H et al.. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla.  Invest Radiol. 2006;  41(3) 213-221

Val M RungeM.D. 

Department of Radiology, Scott and White Clinic and Hospital

1312 Daisy Lane, Texas A & M University, Temple, TX 76502

Email: runge@att.net

    >