Klin Monbl Augenheilkd 2009; 226(10): 829-838
DOI: 10.1055/s-0028-1109529
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Kataraktextraktion und Blaulicht – Wirkung auf die Netzhaut

Cataract Extraction and Blue Light – Impact on the RetinaK. Engelmann1 , R. H. Funk2, 3
  • 1Augenklinik, Klinikum Chemnitz gGmbH
  • 2Anatomie, TU Dresden
  • 3DFG-Center for Regenerative Therapies Dresden
Further Information

Publication History

Eingegangen: 31.3.2009

Angenommen: 25.5.2009

Publication Date:
14 July 2009 (online)

Zusammenfassung

Dieser Artikel soll die Hintergründe der inzwischen häufigen Verwendung von „gelben Kunstlinsen” beleuchten – insbesondere die paradoxe Situation, dass zahlreiche grundlagenwissenschaftliche Untersuchungen unmissverständlich auf einen Sinn dieser Maßnahme hinweisen, es jedoch bei klinischen epidemiologischen Studien schwerer fällt, hier eindeutige Wirkbeziehungen herzustellen. So soll zunächst gezeigt werden, dass Anteile des sichtbaren Lichtes, insbesondere die kurzwelligen Anteile (vor allem das Blaulicht), für die Netzhaut des Auges und Sehnervs und damit für das Sehen in einem vielfältigen Sinne schädlich sein können. Aus der inzwischen ungeheuer stark angewachsenen Literatur zu „Blaulichtschaden” und oxidativem Stress der Retina, insbesondere der Makula, sollen die Hauptquellen für Radikalentstehung nach Lichteinwirkung herausgefiltert werden. Darüber hinaus soll von den nun vorliegenden zahlreichen Zell- und molekularbiologischen Studien, von den Tierversuchen und von den ersten klinischen Befunden abgeleitet werden, dass es sich aus Vor- und Fürsorge gerade für ältere und AMD-Patienten empfiehlt, nach kataraktbedingter Entfernung der Linse getönte Kunstlinsen einzusetzen.

Abstract

This review focuses on the scientific background for the use of ”yellow artificial lenses”. We will address the fact that numerous basic scientific publications point to a rationale for this practice although it is often difficult to derive clear-cut evidence from clinical epidemiological studies for the preventive use of yellow artificial lenses. In the first part we refer to studies showing that especially the shortwave part of the visible spectrum of light can be harmful for the retina and optic nerve. For this, we have screened the literature for the major sources of radical production and for the targets of oxidative stress after impingement of ”blue light” on the retina. Furthermore, we can show that many studies in cell and molecular biology, animal experiments and first clinical trials point to a preferential use of yellow-tinted lenses especially in the elderly and AMD patients.

Literatur

  • 1 Barker F, Brainard G. The direct spectral transmittance of excised human lens as a function of age.  US Food and Drug Administration Report. 1991;  FDA 7853 450090 RA
  • 2 Boettner E A, Wolter J R. Transmission of the ocular media.  Invest Ophthalmol. 1962;  1 776-783
  • 3 Bron A J, Vrensen G F, Koretz J. et al . The ageing lens.  Ophthalmologica. 2000;  214 86-104
  • 4 Norren van D, Kraats van de J. Spectral transmission of intraocular lenses expressed as a virtual age.  Br J Ophthalmol. 2007;  91 1374-1375
  • 5 Algvere P V, Seregard S. Age-related maculopathy: pathogenetic features and new treatment modalities.  Acta Ophthalmol Scand. 2002;  80 136-143
  • 6 Wu J, Seregard S, Algvere P V. Photochemical damage of the retina.  Surv Ophthalmol. 2006;  51 461-481
  • 7 Grimm C, Wenzel A, Hafezi F. et al . Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration.  Nat Genet. 2000;  25 63-66
  • 8 Grimm C, Reme C E, Rol P O. et al . Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes.  Invest Ophthalmol Vis Sci. 2000;  41 3984-3990
  • 9 Grimm C, Wenzel A, Williams T. et al . Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.  Invest Ophthalmol Vis Sci. 2001;  42 497-505
  • 10 Organisciak D T, Jiang Y L, Wang H M. et al . The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light.  Invest Ophthalmol Vis Sci. 1990;  31 1195-1202
  • 11 Wu J, Chen E, Soderberg P G. Failure of ascorbate to protect against broadband blue light-induced retinal damage in rat.  Graefes Arch Clin Exp Ophthalmol. 1999;  237 855-860
  • 12 Delmelle M. Retinal sensitized photodynamic damage to liposomes.  Photochem Photobiol. 1978;  28 357-360
  • 13 Rozanowska M, Wessels J, Boulton M. et al . Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media.  Free Radic Biol Med. 1998;  24 1107-1112
  • 14 Foote C S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems.  Science. 1968;  162 963-970
  • 15 Witting L A. Lipid peroxidation in vivo.  J Am Oil Chem Soc. 1965;  42 908-913
  • 16 Spikes J D, Macknight M L. Photodynamic effects on molecules of biological importance: amino acids, peptides and proteins.  Res Prog Org Biol Med Chem. 1972;  3 (Pt 1) 124-136
  • 17 Sperling H G, Harwerth R S. Red-green cone interactions in the increment-threshold spectral sensitivity of primates.  Science. 1971;  172 180-184
  • 18 Sperling H G, Johnson C, Harwerth R S. Differential spectral photic damage to primate cones.  Vision Res. 1980;  20 1117-1125
  • 19 Katz M L, Christianson J S, Gao C L. et al . Iron-induced fluorescence in the retina: dependence on vitamin A.  Invest Ophthalmol Vis Sci. 1994;  35 3613-3624
  • 20 Katz M L, Gao C L. Vitamin A incorporation into lipofuscin-like inclusions in the retinal pigment epithelium.  Mech Ageing Dev. 1995;  84 29-38
  • 21 Katz M L, Gao C L, Rice L M. Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes.  Mech Ageing Dev. 1996;  92 159-174
  • 22 Wassell J, Boulton M. A role for vitamin A in the formation of ocular lipofuscin.  Br J Ophthalmol. 1997;  81 911-918
  • 23 Birch D G, Berson E L, Sandberg M A. Diurnal rhythm in the human rod ERG.  Invest Ophthalmol Vis Sci. 1984;  25 236-238
  • 24 Young R W. Shedding of discs from rod outer segments in the rhesus monkey.  J Ultrastruct Res. 1971;  34 190-203
  • 25 Marshall J. The ageing retina: physiology or pathology.  Eye. 1987;  1 (Pt 2) 282-295
  • 26 Acharya S, Foletta V C, Lee J W. et al . SPACRCAN, a novel human interphotoreceptor matrix hyaluronan-binding proteoglycan synthesized by photoreceptors and pinealocytes.  J Biol Chem. 2000;  275 6945-6955
  • 27 Hollyfield J G. Hyaluronan and the functional organization of the interphotoreceptor matrix.  Invest Ophthalmol Vis Sci. 1999;  40 2767-2769
  • 28 Hollyfield J G, Rayborn M E, Nishiyama K. et al . Interphotoreceptor matrix in the fovea and peripheral retina of the primate Macaca mulatta: distribution and glycoforms of SPACR and SPACRCAN.  Exp Eye Res. 2001;  72 49-61
  • 29 Funk R H. Blood supply of the retina.  Ophthalmic Res. 1997;  29 320-325
  • 30 Alder V A, Ben-Nun J, Cringle S J. PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation.  Invest Ophthalmol Vis Sci. 1990;  31 1029-1034
  • 31 Linsenmeier R A, Braun R D, McRipley M A. et al . Retinal hypoxia in long-term diabetic cats.  Invest Ophthalmol Vis Sci. 1998;  39 1647-1657
  • 32 Jang Y C, Remmen H V. The mitochondrial theory of aging: Insight from transgenic and knockout mouse models.  Exp Gerontol. 2009;  44 (4) 256-260
  • 33 Lascaratos G, Ji D, Wood J P. et al . Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures.  Vision Res. 2007;  47 1191-1201
  • 34 Yang J H, Basinger S F, Gross R L. et al . Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids requires mitochondrial electron transport.  Invest Ophthalmol Vis Sci. 2003;  44 1312-1319
  • 35 Osborne N N, Li G Y, Ji D. et al . Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies.  J Neurochem. 2008;  105 2013-2028
  • 36 Osborne N N, Lascaratos G, Bron A J. et al . A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies.  Br J Ophthalmol. 2006;  90 237-241
  • 37 Noell W K. Aspects of experimental and hereditary degeneration. C Graymore Biochemistry of the retina London; Academic Press 1965: 51-72
  • 38 Noell W K, Walker V S, Kang B S. et al . Retinal damage by light in rats.  Invest Ophthalmol. 1966;  5 450-473
  • 39 Wenzel A, Grimm C, Samardzija M. et al . Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.  Prog Retin Eye Res. 2005;  24 275-306
  • 40 Wiegand R D, Giusto N M, Rapp L M. et al . Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina.  Invest Ophthalmol Vis Sci. 1983;  24 1433-1435
  • 41 Tanito M, Yoshida Y, Kaidzu S. et al . Detection of lipid peroxidation in light-exposed mouse retina assessed by oxidative stress markers, total hydroxyoctadecadienoic acid and 8-iso-prostaglandin F 2alpha.  Neurosci Lett. 2006;  398 63-68
  • 42 Kuwabara T, Gom R A. Retina damage by visible light. An electron microscopic study.  Arch Ophthalmol. 1968;  79 69-78
  • 43 O’Steen W K, Shear C R, Anderson K V. Retinal damage after prolonged exposure to visible light. A light and electron microscopic study.  Am J Anat. 1972;  134 5-21
  • 44 Sykes S M, Robison W G, Waxler Jr M. et al . Damage to the monkey retina by broad-spectrum fluorescent light.  Invest Ophthalmol Vis Sci. 1981;  20 425-434
  • 45 Ham W T, Ruffolo Jr J J, Mueller H A. et al . Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light.  Invest Ophthalmol Vis Sci. 1978;  17 1029-1035
  • 46 Bok Jr D. The retinal pigment epithelium: a versatile partner in vision.  J Cell Sci Suppl. 1993;  17 189-195
  • 47 Bok D. Processing and transport of retinoids by the retinal pigment epithelium.  Eye. 1990;  4 (Pt 2) 326-332
  • 48 Saari J C, Bredberg D L, Noy N. Control of substrate flow at a branch in the visual cycle.  Biochemistry. 1994;  33 3106-3112
  • 49 Boulton M, Dontsov A, Jarvis-Evans J. et al . Lipofuscin is a photoinducible free radical generator.  J Photochem Photobiol B. 1993;  19 201-204
  • 50 Davies S, Elliott M H, Floor E. et al . Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.  Free Radic Biol Med. 2001;  31 256-265
  • 51 Holz F G, Pauleikhoff D, Klein R. et al . Pathogenesis of lesions in late age-related macular disease.  Am J Ophthalmol. 2004;  137 504-510
  • 52 Wihlmark U, Wrigstad A, Roberg K. et al . Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation.  Free Radic Biol Med. 1997;  22 1229-1234
  • 53 Avalle L B, Wang Z, Dillon J P. et al . Observation of A 2E oxidation products in human retinal lipofuscin.  Exp Eye Res. 2004;  78 895-898
  • 54 Cubeddu R, Taroni P, Hu D N. et al . Photophysical studies of A 2-E, putative precursor of lipofuscin, in human retinal pigment epithelial cells.  Photochem Photobiol. 1999;  70 172-175
  • 55 Liu J, Itagaki Y, Ben-Shabat S. et al . The biosynthesis of A 2E, a fluorophore of aging retina, involves the formation of the precursor, A 2-PE, in the photoreceptor outer segment membrane.  J Biol Chem. 2000;  275 29354-29360
  • 56 Mata N L, Weng J, Travis G H. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration.  Proc Natl Acad Sci U S A. 2000;  97 7154-7159
  • 57 Parish C A, Hashimoto M, Nakanishi K. et al . Isolation and one-step preparation of A 2E and iso-A2E, fluorophores from human retinal pigment epithelium.  Proc Natl Acad Sci U S A. 1998;  95 14 609-14 613
  • 58 Weng J, Mata N L, Azarian S M. et al . Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice.  Cell. 1999;  98 13-23
  • 59 Rezai K A, Gasyna E, Seagle B L. et al . AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 671-676
  • 60 Schutt F, Davies S, Kopitz J. et al . Photodamage to human RPE cells by A 2-E, a retinoid component of lipofuscin.  Invest Ophthalmol Vis Sci. 2000;  41 2303-2308
  • 61 Sparrow J R, Nakanishi K, Parish C A. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells.  Invest Ophthalmol Vis Sci. 2000;  41 1981-1989
  • 62 Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage.  J Photochem Photobiol B. 2001;  64 144-161
  • 63 Sparrow J R, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2.  Invest Ophthalmol Vis Sci. 2001;  42 1356-1362
  • 64 Gaillard E R, Atherton S J, Eldred G. et al . Photophysical studies on human retinal lipofuscin.  Photochem Photobiol. 1995;  61 448-453
  • 65 Sparrow J R, Miller A S, Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro.  J Cataract Refract Surg. 2004;  30 873-878
  • 66 Tanito M, Elliott M H, Kotake Y. et al . Protein modifications by 4-hydroxynonenal and 4-hydroxyhexenal in light-exposed rat retina.  Invest Ophthalmol Vis Sci. 2005;  46 3859-3868
  • 67 Ranchon I, LaVail M M, Kotake Y. et al . Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does not rescue P 23 H and S 334ter rhodopsin transgenic rats from inherited retinal degeneration.  J Neurosci. 2003;  23 6050-6057
  • 68 Shen J, Yang X, Dong A. et al . Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa.  J Cell Physiol. 2005;  203 457-464
  • 69 Crabb J W, Miyagi M, Gu X. et al . Drusen proteome analysis: an approach to the etiology of age-related macular degeneration.  Proc Natl Acad Sci U S A. 2002;  99 14682-14687
  • 70 Gu X, Meer S G, Miyagi M. et al . Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration.  J Biol Chem. 2003;  278 42 027-42 035
  • 71 Dunaief J L, Dentchev T, Ying G S. et al . The role of apoptosis in age-related macular degeneration.  Arch Ophthalmol. 2002;  120 1435-1442
  • 72 Glenn J V, Mahaffy H, Wu K. et al . Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related RPE dysfunction.  Invest Ophthalmol Vis Sci. 2009;  50 441-451
  • 73 Howes K A, Liu Y, Dunaief J L. et al . Receptor for advanced glycation end products and age-related macular degeneration.  Invest Ophthalmol Vis Sci. 2004;  45 3713-3720
  • 74 Schmidt K G, Bergert H, Funk R HW. Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery.  Current Neuropharmacology. 2008;  6 164-178
  • 75 Wu J, Seregard S, Spangberg B. et al . Blue light induced apoptosis in rat retina.  Eye. 1999;  13 (Pt 4) 577-583
  • 76 Shaban H, Richter C. A2E and blue light in the retina: the paradigm of age-related macular degeneration.  Biol Chem. 2002;  383 537-545
  • 77 Ham W T, Mueller H A, Ruffolo Jr J J. et al . Sensitivity of the retina to radiation damage as a function of wavelength.  Photochem Photobiol. 1979;  29 735-743
  • 78 Ham Jr W T, Mueller H A, Sliney D H. Retinal sensitivity to damage from short wavelength light.  Nature. 1976;  260 153-155
  • 79 Lawwill Jr T, Crockett S, Currier G. Retinal damage secondary to chronic light exposure, thresholds and mechanisms.  Doc Ophthalmol. 1977;  44 379-402
  • 80 Ts’o M O, Fine B S, Zimmerman L E. Photic maculopathy produced by the indirect ophthalmoscope. 1. Clinical and histopathologic study.  Am J Ophthalmol. 1972;  73 686-699
  • 81 Noell W K. Effects of environmental lighting and dietary vitamin A on the vulnerability of the retina to light damage.  Photochem Photobiol. 1979;  29 717-723
  • 82 Battelle B A, LaVail M M. Rhodopsin content and rod outer segment length in albino rat eyes: modification by dark adaptation.  Exp Eye Res. 1978;  26 487-497
  • 83 Organisciak D T, Noell W K. The rod outer segment phospholipid/opsin ratio of rats maintained in darkness or cyclic light.  Invest Ophthalmol Vis Sci. 1977;  16 188-190
  • 84 Organisciak D T, Wang H M, Li Z Y. et al . The protective effect of ascorbate in retinal light damage of rats.  Invest Ophthalmol Vis Sci. 1985;  26 1580-1588
  • 85 Penn J S, Anderson R E. Effect of light history on rod outer-segment membrane composition in the rat.  Exp Eye Res. 1987;  44 767-778
  • 86 Penn J S, Naash M I, Anderson R E. Effect of light history on retinal antioxidants and light damage susceptibility in the rat.  Exp Eye Res. 1987;  44 779-788
  • 87 Liang H L, Whelan H T, Eells J T. et al . Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.  Neuroscience. 2008;  153 963-974
  • 88 Klein R, Klein B E, Linton K L. Prevalence of age-related maculopathy. The Beaver Dam Eye Study.  Ophthalmology. 1992;  99 933-943
  • 89 Mainster M A, Ham W T, Delori F C. Potential retinal hazards. Instrument and environmental light sources.  Ophthalmology. 1983;  90 927-932
  • 90 Margrain T H, Boulton Jr M, Marshall J. et al . Do blue light filters confer protection against age-related macular degeneration?.  Prog Retin Eye Res. 2004;  23 523-531
  • 91 Schrader W F. Age-related macular degeneration: a socioeconomic time bomb in our aging society.  Ophthalmologe. 2006;  103 742-748
  • 92 Scholl H P, Fleckenstein M, Charbel Issa P. et al . An update on the genetics of age-related macular degeneration.  Mol Vis. 2007;  13 196-205
  • 93 Swaroop A, Branham K E, Chen W. et al . Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits.  Hum Mol Genet. 2007;  16 (Spec No. 2) R174-R182
  • 94 Gu J, Paeur G J, Yue X. et al . Assessing susceptibility to age-related macular degeneration with proteomic and genomic biomarkers.  Mol Cell Proteomics. 2009;  8 (6) 1338-1349
  • 95 Barron M J, Johnson M A, Andrews R M. et al . Mitochondrial abnormalities in ageing macular photoreceptors.  Invest Ophthalmol Vis Sci. 2001;  42 3016-3022
  • 96 Nilsson S E, Textorius O, Andersson B E. et al . Clear PMMA versus yellow intraocular lens material. An electrophysiologic study on pigmented rabbits regarding ”the blue light hazard”.  Prog Clin Biol Res. 1989;  314 539-553
  • 97 Tanito M, Kaidzu S, Anderson R E. Protective effects of soft acrylic yellow filter against blue light-induced retinal damage in rats.  Exp Eye Res. 2006;  83 1493-1504
  • 98 Sperduto R D, Hiller R, Seigel D. Lens opacities and senile maculopathy.  Arch Ophthalmol. 1981;  99 1004-1008
  • 99 West S K, Rosenthal F S, Bressler N M. et al . Exposure to sunlight and other risk factors for age-related macular degeneration.  Arch Ophthalmol. 1989;  107 875-879
  • 100 Mitchell P, Smith W, Attebo K. et al . Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study.  Ophthalmology. 1995;  102 1450-1460
  • 101 Mitchell P, Wang J J, Foran S. et al . Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study.  Ophthalmology. 2002;  109 1092-1097
  • 102 VanNewkirk M R, Nanjan M B, Wang J J. et al . The prevalence of age-related maculopathy: the visual impairment project.  Ophthalmology. 2000;  107 1593-1600
  • 103 Wang J J, Klein R, Smith W. et al . Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains eye studies.  Ophthalmology. 2003;  110 1960-1967
  • 104 Wang J J, Mitchell P G, Cumming R G. et al . Cataract and age-related maculopathy: the Blue Mountains Eye Study.  Ophthalmic Epidemiol. 1999;  6 317-326
  • 105 Werner J S, Steele V G, Pfoff D S. Loss of human photoreceptor sensitivity associated with chronic exposure to ultraviolet radiation.  Ophthalmology. 1989;  96 1552-1558
  • 106 Schaft T L, Mooy C M, Bruijn de W C. et al . Increased prevalence of disciform macular degeneration after cataract extraction with implantation of an intraocular lens.  Br J Ophthalmol. 1994;  78 441-445
  • 107 Pollack van der A, Marcovich A, Bukelman A. et al . Age-related macular degeneration after extracapsular cataract extraction with intraocular lens implantation.  Ophthalmology. 1996;  103 1546-1554
  • 108 Armbrecht A M, Findlay C, Aspinall P A. et al . Cataract surgery in patients with age-related macular degeneration: one-year outcomes.  J Cataract Refract Surg. 2003;  29 686-693
  • 109 Kaiserman I, Kaiserman N, Elhayany A. et al . Cataract surgery is associated with a higher rate of photodynamic therapy for age-related macular degeneration.  Ophthalmology. 2007;  114 278-282
  • 110 Baatz H, Darawsha R, Ackermann H. et al . Phacoemulsification does not induce neovascular age-related macular degeneration.  Invest Ophthalmol Vis Sci. 2008;  49 1079-1083
  • 111 Cugati S, Mitchell P, Rochtchina E. et al . Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye Study.  Ophthalmology. 2006;  113 2020-2025
  • 112 Cugati S, Loryn de T, Pham T. et al . Australian prospective study of cataract surgery and age-related macular degeneration: rationale and methodology.  Ophthalmic Epidemiol. 2007;  14 408-414
  • 113 Armbrecht A M, Findlay C, Kaushal S. et al . Is cataract surgery justified in patients with age related macular degeneration? A visual function and quality of life assessment.  Br J Ophthalmol. 2000;  84 1343-1348
  • 114 Shuttleworth G N, Galloway P H. Analysis of the United Kingdom solar eclipse public health campaign 1999.  Clin Experiment Ophthalmol. 2002;  30 308-310
  • 115 Shuttleworth G N, Luhishi E A, Harrad R A. Do patients with age related maculopathy and cataract benefit from cataract surgery?.  Br J Ophthalmol. 1998;  82 611-616
  • 116 Falkner-Radler C I, Benesch T, Binder S. Blue light-filter intraocular lenses in vitrectomy combined with cataract surgery: results of a randomized controlled clinical trial.  Am J Ophthalmol. 2008;  145 499-503
  • 117 Takahashi H. Free radical development in phacoemulsification cataract surgery.  J Nippon Med Sch. 2005;  72 4-12
  • 118 Riesz P, Kondo T. Free radical formation induced by ultrasound and its biological implications.  Free Radic Biol Med. 1992;  13 247-270
  • 119 Shimmura S, Tsubota K, Oguchi Y. et al . Oxiradical-dependent photoemission induced by a phacoemulsification probe.  Invest Ophthalmol Vis Sci. 1992;  33 2904-2907
  • 120 Nemet A Y, Assia E I, Meyerstein D. et al . Protective effect of free-radical scavengers on corneal endothelial damage in phacoemulsification.  J Cataract Refract Surg. 2007;  33 310-315
  • 121 Rubowitz A, Assia E I, Rosner M. et al . Antioxidant protection against corneal damage by free radicals during phacoemulsification.  Invest Ophthalmol Vis Sci. 2003;  44 1866-1870
  • 122 De Biaggi C P, Barros P SM, Silva V V. et al . Ascorbic acid levels of aqueous humor of dogs after experimental phacoemulsification.  Veterinary Ophthalmology. 2006;  9 299-302
  • 123 Cameron M D, Poyer J F, Aust S D. Identification of free radicals produced during phacoemulsification.  J Cataract Refract Surg. 2001;  27 463-470
  • 124 Dherani M, Murthy G V, Gupta S K. et al . Blood levels of vitamin C, carotenoids and retinol are inversely associated with cataract in a North Indian population.  Invest Ophthalmol Vis Sci. 2008;  49 3328-3335
  • 125 Yagihashi T, Wakabayashi Y, Kezuka J. et al . Changes in vitreous amino acid concentrations in a rabbit model of cataract surgery.  Acta Ophthalmol Scand. 2007;  85 303-308

Prof. Katrin Engelmann

Klinik für Augenheilkunde, Klinikum Chemnitz gGmbH

Flemmingstr. 2

09116 Chemnitz

Phone: ++ 49/3 71/33 33 32 30

Fax: ++ 49/3 71/33 33 32 23

Email: k.engelmann@skc.de

    >