Laryngorhinootologie 2013; 92(07): 462-469
DOI: 10.1055/s-0033-1337982
Originalie
© Georg Thieme Verlag KG Stuttgart · New York

Genexpressionsmuster mesenchymaler Stammzellen: ein ungelöster Aspekt in der regenerativen Medizin

Trying to Unravel an Unresolved Issue in Regenerative Medicine: Gene Expression Profiling of MSCs
M. Jakob
1   University Hospital Bonn, ENT, Bonn
,
K. Bruderek
2   University Hospital Essen, ENT, Essen
,
F. Bootz
1   University Hospital Bonn, ENT, Bonn
,
S. Lang
2   University Hospital Essen, ENT, Essen
,
S. Brandau
2   University Hospital Essen, ENT, Essen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht25. September 2012

akzeptiert 20. Februar 2013

Publikationsdatum:
16. April 2013 (online)

Zusammenfassung

Hintergrund:

Aufgrund der antiinflammatorischen und regenerativen Wirkung spielen mesen­chymale Stammzellen (MSCs) bei der Gewebe­regeneration, der Inflammation und bei der Gewebeschädigung eine wichtige Rolle. Gewebeschädigung, wie z. B. bei Bestrahlung oder Infektion, setzt sogenannte Gefahrenstoffe von sterbenden Zellen oder eindringenden patho­genen Keimen im Gewebe frei. Die molekulare Antwort von MSCs in diesem Prozess des Gewebe­stresses bleibt derzeit weitestgehend ­unklar.

Material und Methoden:

MSCs der Glandula Parotidea (pgMSCs) von 3 Spendern wurden isoliert, in Zellkultur vermehrt und in die 3 klassischen plus der myogenen Differenzierungslinien differenziert. Wir haben die zellbiologische Antwort dieser pgMSCs anhand eines Gewebestressmodells durch Stimulation mit dem bakteriellen Endotoxin Lipopolysaccharid (LPS) in vitro ­geprüft. Ausgewertet wurde das Genexpressionsmuster der MSCs mittels eines Gen-Arrays.

Ergebnisse:

Durch Immunfluoreszenz und Immunhistochemie konnten wir stammzelltypisches osteogenes, adipogenes, chondrogenes und myogenes Differenzierungspotenzial nachweisen. PgMSCs zeigten nach LPS Stimulation auf Genexpressionsebene eine signifikante Aktivierung immunologisch wichtiger Signalwege. So werden typische an der Immunregulation beteiligte Rezeptoren und Liganden der MSCs, wie Interleukine, TGF-β, Tumornekrosefaktoren (TNF) und Toll-ähnliche Rezeptoren (TLR), reguliert.

Schlussfolgerung:

Die vorliegende Studie entschlüsselt wichtige Aspekte der molekularen Antwort von gewebeständigen MSCs bei Inflammation und Gewebeschädigung. Das Verständnis dieser zellbiologischen Funktionen ist Vorraussetzung für den zukünftigen Einsatz von MSCs als Therapeutikum.

Abstract

Trying to Unravel an Unresolved Issue in Regenera­tive Medicine: Gene Expression Profiling of MSCs

Background:

Mesenchymal stem cells (MSCs) are adult fibroblastoid progenitor cells. Because of their immunoregulatory properties and their so-called trophic effects, MSCs play an important role in tissue regeneration, inflammation and trauma. Tissue trauma and challenge, for example during radiotherapy or infection, result in the release of so-called “danger molecules”, which may be derived from dying cells or incoming pathogens. The molecular response of MSCs to this tissue stress remains largely elusive.

Material and Methods:

In this study we examined the cell biological response of MSCs derived from human parotid glands (pgMSCs) and used bacterial endotoxin as a model of tissue stress and inflammation. PgMSCs from 3 donors were isolated, expanded and tested for classical tri-lineage plus myogenic differentiation. The cell biological response to the model “stressor” endotoxin was examined by low density gene expression arrays.

Results:

Through immunofluorescence and immunohistochemistry we were able to proof osteogenic, adipogenic, chondrogenic, and myogenic differentiation potential characteristic for stem cells. In vitro, gene expression analysis showed a characteristic modulation of MSCs after stimulation with endotoxin Lipopolysaccharide (LPS). Specifically, receptors and ligands typically involved in immune regulation, such as interleukins, TGF-β, tumor necrosis factors (TNF), and toll-like receptors (TLR), were regulated.

Conclusion:

Our study elucidates some key functions and molecules, which are regulated in MSCs during tissue stress and inflammation. A thorough understanding of their cell biological function will aid future rationale therapeutic application of MSCs.

 
  • Literatur

  • 1 Lin TM, Chang HW, Wang KH, Kao AP, Chang CC, Wen CH, Lai CS, Lin SD. Isolation and identification of mesenchymal stem cells from human lipoma tissue. Biochem Biophys Res Commun 2007; 361: 883-889
  • 2 Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33: 1402-1416
  • 3 Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25: 2739-2749
  • 4 Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 2008; 17: 509-518
  • 5 Jakob M, Hemeda H, Janeschik S, Bootz F, Rotter N, Lang S, Brandau S. Human nasal mucosa contains tissue-resident immunologically responsive mesenchymal stromal cells. Stem Cells Dev 2010; 19: 635-644
  • 6 Bohrnsen F, Rotter N, Lindner U, Meier M, Wollenberg B, Rohwedel J, Kramer J. Human mesenchymal stromal cells from adipose tissue of the neck. Eur Arch Otorhinolaryngol 2012;
  • 7 Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267-274
  • 8 Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579-1586
  • 9 Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, Dionigi P, Perotti C, Locatelli F, Corazza GR. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011; 60: 788-798
  • 10 Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH, Verhaar AP, Fibbe WE, van den Brink GR, Hommes DW. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 2010; 59: 1662-1669
  • 11 Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12: 383-396
  • 12 Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, Lang S. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 2010; 88: 1005-1015
  • 13 Jakob M, Hemeda H, Bruderek K, Gerstner AOH, Bootz F, Lang S, Brandau S. Comparative functional cell biological analysis of mesenchymal stem cells of the head and neck region: Potential impact on wound healing, trauma, and infection. Head Neck 2012; DOI: 10.1002/hed.23196. [doi]
  • 14 Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 2012; 8: 195-202
  • 15 Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 2003; 198: 1043-1055
  • 16 Hemeda H, Jakob M, Ludwig AK, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev 2010; 19: 693-706
  • 17 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
  • 18 Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de HG, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS ONE 2008; 3: e2063
  • 19 Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11: 150-156
  • 20 Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS ONE 2010; 5: e9252
  • 21 Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 2566-2573
  • 22 Carrero R, Cerrada I, Lledo E, Dopazo J, Garcia-Garcia F, Rubio MP, Trigueros C, Dorronsoro A, Ruiz-Sauri A, Montero JA, Sepulveda P. IL1beta induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-kappaB. Stem Cell Rev 2012; 8: 905-916 DOI: 10.1007/s12015-012-9364-9. [doi]
  • 23 Park MJ, Shin JS, Kim YH, Hong SH, Yang SH, Shin JY, Kim SY, Kim B, Kim JS, Park CG. Murine mesenchymal stem cells suppress T lymphocyte activation through IL-2 receptor alpha (CD25) cleavage by producing matrix metalloproteinases. Stem Cell Rev 2011; 7: 381-393 DOI: 10.1007/s12015-010-9203-9. [doi]
  • 24 Voehringer D. Basophil modulation by cytokine instruction. Eur J Immunol 2012; 42: 2544-2550 DOI: 10.1002/eji.201142318. [doi]
  • 25 Levine SJ, Wenzel SE. Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med 2010; 152: 232-237 152/4/232 [pii] DOI: 10.1059/0003-4819-152-4-201002160-00008. [doi]
  • 26 Keller ET, Wanagat J, Ershler WB. Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci 1996; 1: d340-d357
  • 27 Finnerty CC, Herndon DN, Przkora R, Pereira CT, Oliveira HM, Queiroz DM, Rocha AM, Jeschke MG. Cytokine expression profile over time in severely burned pediatric patients. Shock 2006; 26: 13-19
  • 28 Matsushima K, Oppenheim JJ. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Cytokine 1989; 1: 2-13
  • 29 Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van RN, Tanaka M, Merad M, Frenette PS. Bone marrow CD169 +  macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261-271 jem.20101688 [pii] DOI: 10.1084/jem.20101688. [doi]
  • 30 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958-969 nri2448 [pii] DOI: 10.1038/nri2448. [doi]
  • 31 Wakefield LM, Roberts AB, Assoian RK, Fanger BO, Masui T, Lechner JF, Harris CC, Sporn MB. Structure and function of transforming growth factor-beta. Proc West Pharmacol Soc 1986; 29: 475-477
  • 32 Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415-1421
  • 33 Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987-995
  • 34 van den Berk LC, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kogler G, Figdor CC, Adema GJ, Torensma R. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 2009; 13: 3415-3426
  • 35 Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 2008; 26: 279-289
  • 36 Romieu-Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 2009; 182: 7963-7973
  • 37 Lombardo E, DelaRosa O, Mancheno-Corvo P, Menta R, Ramirez C, Buscher D. Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 2009; 15: 1579-1589