Ultraschall Med 2014; 35(2): 129-136
DOI: 10.1055/s-0033-1355576
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Prenatal Demonstration of Normal Variants of the Pericallosal Artery by 3D Ultrasound

Pränatale Darstellung der Normvarianten der A. pericallosa mittels 3D-Ultraschall
S. Pashaj
1   Ultrasound Department, Maternity Hospital “Koco Gliozheni”, Tirana
2   Centre for Prenatal Diagnosis and Therapy, Krankenhaus Nordwest, Frankfurt am Main
,
E. Merz
2   Centre for Prenatal Diagnosis and Therapy, Krankenhaus Nordwest, Frankfurt am Main
› Author Affiliations
Further Information

Publication History

08 October 2012

22 July 2013

Publication Date:
20 December 2013 (online)

Abstract

Purpose: To demonstrate the different normal variants of the fetal pericallosal artery (PCA) with the different branching forms of callosomarginal artery (CMA) by three-dimensional glass body-rendering.

Materials and Methods: With the use of the glass body mode (grey scale ultrasound and color or power Doppler), 3-D ultrasound permits precise imaging of the fetal pericallosal artery, an important anatomic landmark of the corpus callosum. This rendering mode enabled us for the first time to demonstrate sonographically the origin, course and branching pattern of the pericallosal artery with the callosomarginal artery.

Results: In 452 fetus between 18 and 41 weeks of gestation 5 variants of branching of the fetal A. callosomarginalis from the pericallosal artery were found using three-dimensional ultrasonography. The CMA was absent in 36.06 % of the 452 fetal brains studied. In 63.94 % the CMA was present and arose from four different segments of the anterior cerebral artery (ACA) from the A3 segment in 59.17 %, from the A2 segment in 20.7 %, from the A4 segment in 13.15 % and from the A1 segment in 7.61 % of the cases.

Conclusions: The use of 3-D power Doppler sonoangiography enables the precise demonstration of the normal variants of the fetal pericallosal artery with different origins of the callosomarginal artery. The knowledge of normal variants helps to detect pathological forms of the pericallosal artery.

Zusammenfassung

Ziel: Darstellung der unterschiedlichen normalen Varianten der fetalen A. pericallosa (PCA) mit den unterschiedlichen Abgängen der A. callosomarginalis (CMA) mittels 3D-Glass body-Rendering.

Material und Methode: 3D-Ultraschall gestattet mit Hilfe des Glass body-Modus (Kombination aus Grauwert- und Color-Doppler oder Power-Doppler) eine präzise Darstellung der fetalen A. pericallosa, die eine wichtige Orientierungshilfe für das Corpus callosum darstellt. Dieser Render-Modus gestattet erstmals, den Ursprung, den Verlauf und das Verzweigungsmuster der A. pericallosa und der A. callosomarginalis darzustellen.

Ergebnisse: Im Zeitraum zwischen 18 und 41 Schwangerschaftswochen konnten bei 452 Feten 5 Varianten des Abgangs der fetalen A. callosomarginalis von der A. pericallosa mittels 3D-Sonographie nachgewiesen werden. In 36,06 % der Fälle fehlte die CMA. In 63,94 % war die CMA darstellbar, wobei ihr Ursprung von 4 unterschiedlichen Segmenten der A. cerebri anterior (ACA) ausging: vom A3-Segment in 59,17 %, vom A2-Segment in 20,07 %, vom A4-Segment in 13,15 % und vom A1-Segment in 7,61 % der Fälle.

Zusammenfassung: Der Einsatz der 3D-Power Doppler-Sonoangiographie gestattet die präzise Darstellung der normalen Varianten der fetalen A. pericallosa mit den unterschiedlichen Abgängen der A. callosomarginalis. Die Kenntnis der normalen Varianten hilft, pathologische Formen der A. pericallosa zu erkennen.

 
  • References

  • 1 Lin J, Kircheff I. Normal anterior cerebral artery complex. In: Newton TH, Potts DG, , (eds): Radiology of the skull and brain. Volume II. Book 2 St Louis: CV Mosby; 1974: 1319-1410
  • 2 Snyckers FD, Drake CG. Aneurysms of the distal anterior cerebral artery. A report on 24 verified cases. S Afr Med J 1973; 47: 1787-1791
  • 3 Perlmutter D, Rhoton Jr AL . Microsurgical anatomy of the distal anterior cerebral artery. J Neurosurg 1978; 49: 204-228
  • 4 Cavalcanti D, Albuquerque FC, Silva BF et al. The anatomy of the callosomarginal artery: Application to the microsurgery and endovascular surgery. Neurosurgery 2010; 66: 602-610
  • 5 Kakou M, Destrieux C, Velut S. Microanatomy of the pericallosal arterial complex. J Neurosurg 2000; 93: 667-675
  • 6 Fischer E. Die Lageabweichungen der vorderen Hirnarterie im Gefässbild. Zentralbl Neurochir 1938; 3: 300-312
  • 7 Krayenbühl HA, Yasargil MG. Cerebral angiography. ed 2. Philadelphia: JB Lippincott; 1968
  • 8 Miric-Tesanic D, Merz E, Wellek S. Fetal lung volume measurements using 3D ultrasonography. Ultraschall in Med 2011; 32: 373-380
  • 9 Merz E, Abramowicz JS. 3D/4D ultrasound in prenatal diagnosis: is it time for routine use?. Clin Obstet Gynecol 2012; 55: 336-351
  • 10 Merz E, Abramovicz J, Baba K et al. 3D imaging of the fetal face – recommendations from the International 3D Focus Group. Ultraschall in Med 2012; 33: 175-182
  • 11 Downey DB, Fenster A. Vascular imaging with a three-dimensional power Doppler system. Am J Roentgenol Am J Roentgenol 1995; 165: 665-668
  • 12 Bailao LA. Technologies converge in 3-D power Doppler. Diagn Imag 1996; 3: 19-21
  • 13 Ritchie CJ, Edwards WS, Mack LA et al. Three-dimensional ultrasonic angiography using power-mode Doppler. Ultrasound Med Biol 1996; 22: 277-286
  • 14 Fenster A, Lee D, Sherebrin S et al. Three-dimensionalultrasound imaging of the vasculature. Ultrasonics 1998; 36: 629-633
  • 15 Merz E. Target depiction of the fetal corpus callosum with 3D-Ultrasound. Ultraschall in Med (European Journal of Ultrasound) 2010; 5: 441
  • 16 Volpe P, Campobasso G, De Robertis V et al. Disorders of the prosencephalic development. Prenat Diagn 2009; 29: 340-354
  • 17 Pashaj S, Merz E, Wellek S. Biometric measurements of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2013; DOI: 10.1002/uog.12501. Epub ahead of print
  • 18 Monteagudo A, Timor-Tritsch IE. Normal sonographic development of the central nervous system from the second trimester onwards using 2-D, 3-D and transvaginal sonography. Prenat Diag 2009; 29: 326-339
  • 19 Pooh RK, Aono T. Transvaginal power Doppler angiography of the fetal brain. Ultrasound Obstet Gynecol 1996; 8: 417-421
  • 20 Chaoui R. Colour Doppler sonography in the diagnosis of fetal abnormalities. In: Nicolaides KH, Rizoo G, Hecher K, eds Placental and Fetal Doppler. Carnforth: Parthenon Publishing; 2000: 187-203
  • 21 Malobabic S, Puskas L, Bogdanovic D et al. Anatomy of the pericallosal pia plexus in man. Anat Anz 1989; 169: 125-130
  • 22 Padget DH. The development of the cranial arteries in the human embryo. Contribution embryology. Carnegie Instit 1948; 32: 205-261
  • 23 Ring BA, Waddington MM. Roentgenographic anatomy of the pericallosal arteries. Am J Roentgenol Radium Ther Nucl Med 1968; 104 : 109-118
  • 24 Baptista A. Studies on the arteries of the brain. II. The anterior cerebral artery: some anatomic features and their clinical implications. Neurology 1963; 13: 825-835
  • 25 Sepulveda W, Platt CC, Fsik NM. Prenatal diagnosis of cerebral arteriovenous malformation using color Doppler ultrasonography: case report and review of the literature. Ultrasound Obstet Gynecol 1995; 6: 282-286
  • 26 Chaoui R, Kalache KD, Hartung J. Application of three-dimensional power Doppler ultrasound in prenatal diagnosis. Ultrasound Obstet Gynecol 2001; 17: 22-29