Rofo 2015; 187(04): 237-247
DOI: 10.1055/s-0034-1385526
Review
© Georg Thieme Verlag KG Stuttgart · New York

Renal Denervation: Unde Venis et Quo Vadis?

Renale Denervation: Unde venis et quo vadis?
C. P. Nähle
1   Department of Radiology, University of Bonn, Germany
,
R. Düsing
2   Hypertoniezentrum Bonn, Schwerpunktpraxis Kardiologie-Angiologie-Rehabilitation, Bonn, Germany
,
H. Schild
1   Department of Radiology, University of Bonn, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

01. September 2014

13. September 2014

Publikationsdatum:
28. Januar 2015 (online)

Abstract

Objective and Methods: Renal denervation is a minimally invasive, catheter-based option for the treatment of refractory hypertension. Indications and contraindications for renal denervation have been defined in an interdisciplinary manner. The efficacy and safety of the procedure were evaluated.

Results: Currently, indication for renal denervation is limited to patients with primary hypertension and a systolic blood pressure of ≥ 160 mm Hg (or ≥ 150 mm Hg in diabetes type 2) despite optimal medical therapy with ≥ 3 different antihypertensive drugs. In this specific patient population, an average blood pressure reduction of 32/14 mmHg was observed in non-randomized/-controlled trials after renal denervation. These results were not confirmed in the first randomized controlled trial with a non-significantly superior blood pressure reduction of 14.1 ± 23.9 mm Hg compared to controls (−11.74 ± 25.94 mm Hg, difference −2.39 mm Hg p = 0.26 for superiority with a margin of 5 mm Hg) who underwent a sham procedure.

Conclusion: The efficacy and long-term effects of renal denervation need to be re-evaluated in light of the HTN3 study results. To date, renal denervation should not be performed outside of clinical trials. Future trials should also assess if renal denervation can be performed with sufficient safety and efficacy in patients with hypertension-associated diseases. The use of renal denervation as an alternative therapy (e. g. in patients with drug intolerance) can currently not be advocated.

Key points:

• The indication for renal denervation should be assessed in an interdisciplinary fashion and according to current guidelines with a special focus on ruling out secondary causes for arterial hypertension.

• 5 – 10 % of patients with hypertension suffer from refractory hypertension, but only about 1 % of patients meet the criteria for a renal denervation.

• Renal denervation leads to a significant decrease in office blood pressure; however, the impact on 24-hour blood pressure measurements remains unclear.

• In the first randomized controlled trial on renal denervation with a control group undergoing a sham procedure, blood pressure reduction failed to reach the anticipated level of superiority over best medical treatment.

• Periprocedural complications are rare, but long-term safety can currently not be appraised due to the limited data available.

Citation Format:

• Naehle CP, Düsing R, Schild H. Renale Denervation: Unde venis et quo vadis?. Fortschr Röntgenstr 2015; 187: 237 – 247

Zusammenfassung

Zielsetzung und Methode: Die renale Denervation ist eine minimal-invasive, katheterbasierte Behandlungsoption zur Behandlung der therapierefraktären Hypertonie. Die Indikationen und Kontraindikationen wurden interdisziplinär erarbeitet und festgestellt. Effektivität und Sicherheit wurden evaluiert.

Ergebnisse: Derzeit ist die Indikation limitiert auf Patienten mit primärer Hypertonie, die trotz einer optimalen medikamentösen Therapie mit ≥ 3 unterschiedlichen Antihypertensiva einen systolischen Blutdruck von ≥ 160 mm Hg (bzw. ≥ 150 mm Hg bei Diabetes Typ 2) aufweisen. Nach renaler Denervation nahm in nicht kontrollierten Studien unter Berücksichtigung dieser Kriterien der Blutdruck um durchschnittlich 32/14 mm Hg ab. Diese Ergebnisse konnten in der ersten randomisierten kontrollierten Studie mit einer im Vergleich zur verblindeten Kontrollgruppe nicht signifikanten Reduktion des systolischen Blutdrucks von 14,1 mmHg nicht bestätigt werden.

Schlussfolgerung: Die Effektivität der renalen Denervation, aber auch die Langzeitsicherheit, müssen unter besonderer Berücksichtigung der HTN-3-Daten neu evaluiert werden. Aktuell sollte die renale Denervation außerhalb klinischer Studien nicht durchgeführt werden. Weitere Studien müssen klären, ob die renale Denervation bei hypertonieassoziierten Erkrankungen mit ausreichender Wirksamkeit und sicher durchgeführt werden kann. Die Anwendung als Alternative zur medikamentösen Therapie z. B. bei Medikamentenunverträglichkeit kann derzeit nicht befürwortet werden.

Deutscher Artikel/German Article

 
  • Literatur

  • 1 Wolf-Maier K, Cooper RS, Kramer H et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004; 43: 10-17
  • 2 Mancia G, Fagard R, Narkiewicz K et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31: 1281-1357
  • 3 Düsing R. Aktuelle Aspekte der Kombinationstherapie bei Hypertonie. Kardiologe 2010; 4: 27-36
  • 4 Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903-1913
  • 5 Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403-1419
  • 6 de la Sierra A, Segura J, Banegas JR et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension 2011; 57: 898-902
  • 7 Tomaszewski M, White C, Patel P et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 2014; DOI: 10.1136/heartjnl-2013-305063.
  • 8 Hayek SS, Abdou MH, Demoss BD et al. Prevalence of resistant hypertension and eligibility for catheter-based renal denervation in hypertensive outpatients. Am J Hypertens 2013; 26: 1452-1458
  • 9 Doumas M, Anyfanti P, Bakris G. Should ambulatory blood pressure monitoring be mandatory for future studies in resistant hypertension: a perspective. J Hypertens 2012; 30: 874-876
  • 10 Dusing R. Therapietreue bei medikamentöser Behandlung. Deutsche medizinische Wochenschrift 2006; 131: H28-30
  • 11 Jung O, Gechter JL, Wunder C et al. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens 2013; 31: 766-774
  • 12 Mahfoud F, Vonend O, Bruck H et al. Expert consensus statement on interventional renal sympathetic denervation for hypertension treatment. Deutsche medizinische Wochenschrift 2011; 136: 2418
  • 13 Nahle CP, Schild H, Wilhelm K. Renal denervation: ready for prime time?. Deutsche medizinische Wochenschrift 2013; 138: 2212-2218
  • 14 Esler M, Jennings G, Korner P et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988; 11: 3-20
  • 15 Grimson KS, Orgain ES, Anderson B et al. Total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy for hypertension. Ann Surg 1953; 138: 532-547
  • 16 Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 1995; 25: 878-882
  • 17 Ye S, Gamburd M, Mozayeni P et al. A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens 1998; 11: 723-728
  • 18 Rump LC, Amann K, Orth S et al. Sympathetic overactivity in renal disease: a window to understand progression and cardiovascular complications of uraemia?. Nephrol Dial Transplant 2000; 15: 1735-1738
  • 19 Hausberg M, Kosch M, Harmelink P et al. Sympathetic nerve activity in end-stage renal disease. Circulation 2002; 106: 1974-1979
  • 20 Barajas L, Liu L, Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 1992; 70: 735-749
  • 21 Bertog SC, Sobotka PA, Sievert H. Renal denervation for hypertension. JACC Cardiovascular interventions 2012; 5: 249-258
  • 22 DiBona GF. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 2005; 289: R633-641
  • 23 Michel MC, Rump LC. alpha-Adrenergic regulation of human renal function. Fundam Clin Pharmacol 1996; 10: 493-503
  • 24 DiBona GF, Kopp UC. Neural control of renal function. Physiological reviews 1997; 77: 75-197
  • 25 Mahfoud F, Bohm M. Interventional renal sympathetic denervation – a new approach for patients with resistant hypertension. Deutsche medizinische Wochenschrift 2010; 135: 2422-2425
  • 26 Ye S, Zhong H, Yanamadala S et al. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 2006; 48: 309-315
  • 27 Vonend O, Rump LC, Ritz E. Sympathetic overactivity – the Cinderella of cardiovascular risk factors in dialysis patients. Semin Dial 2008; 21: 326-330
  • 28 DiBona GF. Neural control of the kidney: past, present, and future. Hypertension 2003; 41: 621-624
  • 29 Krum H, Sobotka P, Mahfoud F et al. Device-based antihypertensive therapy: therapeutic modulation of the autonomic nervous system. Circulation 2011; 123: 209-215
  • 30 Krum H, Schlaich M, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373: 1275-1281
  • 31 Hutchinson BD, Keane D, Dodd JD. Renal sympathetic denervation: MDCT evaluation of the renal arteries. Am J Roentgenol 2013; 201: W342-W346
  • 32 Rosenbaum D, Rigabert J, Villeneuve F et al. An abdominal CT scan in first-line is an efficient investigation of uncontrolled hypertensives suspected to have an adrenal cause. Ann Cardiol Angeiol (Paris) 2012; 61: 209-212
  • 33 Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376: 1903-1909
  • 34 Covidien plc. Covidien to Exit OneShot™ Renal Denervation Program. In. Dublin, Ireland: 2014
  • 35 Schmid A, Ditting T, Sobotka PA et al. Does renal artery supply indicate treatment success of renal denervation?. Cardiovascular and interventional radiology 2013; 36: 987-991
  • 36 Id D, Kaltenbach B, Bertog SC et al. Does the presence of accessory renal arteries affect the efficacy of renal denervation?. JACC Cardiovascular interventions 2013; 6: 1085-1091
  • 37 Van Aken H, Biermann E, Martin J et al. Analgosedierung für diagnostische und therapeutische Maßnahmen bei Erwachsenen. Anästh Intensivmed 2010; 51: S598-S602
  • 38 Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Experimental physiology 2011; 96: 611-622
  • 39 Brinkmann J, Heusser K, Schmidt BM et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 2012; 60: 1485-1490
  • 40 Worthley SG, Tsioufis CP, Worthley MI et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 2013; 34: 2132-2140
  • 41 Mabin T, Sapoval M, Cabane V et al. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention 2012; 8: 57-61
  • 42 Mylotte D, Benamer H, Unterseeh T et al. Percutaneous renal denervation for resistant hypertension: Real world outcomes. In: ACC. Chicago, USA J Am Coll Cardiol 2012; E1708
  • 43 Clement DL, De Buyzere ML, De Bacquer DA et al. Prognostic value of ambulatorytb blood-pressure recordings in patients with treated hypertension. The New England journal of medicine 2003; 348: 2407-2415
  • 44 Luetkens JA, Wilhelm K, Düsing R et al. Renal Denervation: Results of a Single-Center Cohort Study. Fortschr Röntgenst 2014; [Epub ahead of print]
  • 45 Zuern CS, Rizas KD, Eick C et al. Effects of Renal Sympathetic Denervation on 24-hour Blood Pressure Variability. Front Physiol 2012; 3: 134
  • 46 Howard JP, Nowbar AN, Francis DP. Size of blood pressure reduction from renal denervation: insights from meta-analysis of antihypertensive drug trials of 4,121 patients with focus on trial design: the CONVERGE report. Heart 2013; 99: 1579-1587
  • 47 Bhatt DL, Kandzari DE, O'Neill WW et al. A controlled trial of renal denervation for resistant hypertension. The New England journal of medicine 2014; 370: 1393-1401
  • 48 Black HR, Elliott WJ, Grandits G et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA 2003; 289: 2073-2082
  • 49 Kandzari DE, Bhatt DL, Sobotka PA et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clinical cardiology 2012; 35: 528-535
  • 50 Medtronic. Six-Month Analysis of First 1,000 Patients Enrolled in Real-World Patient Registry. In Minneapolis, USA: 2014
  • 51 Schlaich MP, Sobotka PA, Krum H et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. The New England journal of medicine 2009; 361: 932-934
  • 52 Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how to deal with it. International journal of epidemiology 2005; 34: 215-220
  • 53 McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. Journal of clinical epidemiology 2014; 67: 267-277
  • 54 Bakris GL, Lindholm LH, Black HR et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension 2010; 56: 824-830
  • 55 Krum H, Schlaich MP, Bohm M et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 2014; 383: 622-629
  • 56 Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011; 57: 911-917
  • 57 Blondin D, Gao X, Blum K et al. Einfluß der Ablationstemperatur und der Ablationsanzahl auf den Therapieerfolg der renalen Ablation. Deutscher Röntgenkogress 2013; Hamburg
  • 58 Bakris GL, Townsend RR, Liu M et al. Impact of Renal Denervation on 24-hour Ambulatory Blood Pressure: Results from SYMPLICITY HTN-3. J Am Coll Cardiol 2014; 64: 1071-1078
  • 59 Mahfoud F, Schlaich M, Kindermann I et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 2011; 123: 1940-1946
  • 60 Persu A, Renkin J, Asayama K et al. Renal denervation in treatment-resistant hypertension: the need for restraint and more and better evidence. Expert review of cardiovascular therapy 2013; 11: 739-749
  • 61 Schirmer SH, Sayed MM, Reil JC et al. Improvements of left-ventricular hypertrophy and diastolic function following renal denervation – Effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol 2013; DOI: S0735-1097(13)06233-5 [pii] 10.1016/j.jacc.2013.10.073.
  • 62 Bakris G, Nathan S. Renal Denervation and Left Ventricular Mass Regression: A benefit beyond blood pressure reduction?. J Am Coll Cardiol 2013; DOI: S0735-1097(13)06234-7 [pii] 10.1016/j.jacc.2013.11.015.
  • 63 Dorr O, Liebetrau C, Mollmann H et al. Influence of renal sympathetic denervation on quality of life. J Interv Cardiol 2013; 26: 536-541
  • 64 Hering D, Mahfoud F, Walton AS et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol 2012; 23: 1250-1257
  • 65 de Bie MK, van Rees JB, Herzog CA et al. How to reduce the incidence of contrast induced acute kidney injury after cardiac invasive procedures, a review and practical recommendations. Curr Med Res Opin 2011; 27: 1347-1357
  • 66 Scolari F, Ravani P. Atheroembolic renal disease. Lancet 2010; 375: 1650-1660
  • 67 Ukena C, Mahfoud F, Kindermann I et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 2011; 58: 1176-1182
  • 68 Vonend O, Antoch G, Rump LC et al. Secondary rise in blood pressure after renal denervation. Lancet 2012; 380: 778
  • 69 Pucci G, Battista F, Lazzari L et al. Progression of Renal Artery Stenosis After Renal Denervation. Circulation journal: official journal of the Japanese Circulation Society 2014; 78: 767-768
  • 70 Rippy MK, Zarins D, Barman NC et al. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol 2011; 100: 1095-1101
  • 71 Applegate RJ, Sacrinty MT, Kutcher MA et al. Trends in vascular complications after diagnostic cardiac catheterization and percutaneous coronary intervention via the femoral artery, 1998 to 2007. JACC Cardiovascular interventions 2008; 1: 317-326
  • 72 Leung DA, Hoffmann U, Pfammatter T et al. Magnetic resonance angiography versus duplex sonography for diagnosing renovascular disease. Hypertension 1999; 33: 726-731
  • 73 Halpern EJ, Rutter CM, Gardiner GA et al. Comparison of Doppler US and CT angiography for evaluation of renal artery stenosis. Academic radiology 1998; 5: 524-532
  • 74 Whitworth JA, Chalmers J. World health organisation-international society of hypertension (WHO/ISH) hypertension guidelines. Clin Exp Hypertens 2004; 26: 747-752
  • 75 Ott C, Mahfoud F, Schmid A et al. Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol 2013; 62: 1880-1886