Semin Respir Crit Care Med 2015; 36(01): 017-030
DOI: 10.1055/s-0034-1397040
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Treatment of Methicillin-Resistant Staphylococcus aureus: Vancomycin and Beyond

Natasha E. Holmes
1   Department of Infectious Diseases, Austin Centre for Infection Research, Heidelberg, Victoria, Australia
,
Steven Y. C. Tong
2   Department of Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
,
Joshua S. Davis
2   Department of Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
3   Department of Infectious Diseases, John Hunter Hospital, Newcastle, New South Wales, Australia
,
Sebastiaan J. van Hal
4   Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, Australia
5   University of Western Sydney, Sydney, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

There has been a welcome increase in the number of agents available for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin remains an acceptable treatment option, with moves toward individualized dosing to a pharmacokinetic/pharmacodynamic (PK/PD) target. Numerous practicalities, however, would need to be resolved before implementation. Lipoglycopeptides as a class show excellent in vitro potency. Their long half-lives and complex PKs may preclude these agents being used in critically ill patients. Anti-MRSA cephalosporins provide great promise in the treatment of MRSA. These agents, despite broad-spectrum activity, should be reserved for patients with MRSA infections as it is likely that usage will be associated with increased rates of resistance. Daptomycin is currently the only antibiotic to have shown noninferiority to vancomycin in the treatment of MRSA bacteremia. The results of an open-labeled trial to address the superiority of daptomycin compared with vancomycin in reduced vancomycin susceptibility infections are eagerly anticipated. No drug to date has shown superiority to vancomycin in the treatment of MRSA infections with the possible exception of linezolid in hospital-acquired pneumonia (HAP), making linezolid an important option in the treatment of MRSA-proven HAP. Whether these strengths and features are agent or class specific are unclear but will likely be answered with the marketing of tedizolid. There are insufficient data to recommend either quinupristin/dalfopristin or tigecycline, as first line in the treatment of severe MRSA infections. These agents however remain options in patients with no other alternatives.

 
  • References

  • 1 Boucher HW, Talbot GH, Bradley JS , et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009; 48 (1) 1-12
  • 2 Sievert DM, Ricks P, Edwards JR , et al; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34 (1) 1-14
  • 3 Lodise TP, McKinnon PS. Clinical and economic impact of methicillin resistance in patients with Staphylococcus aureus bacteremia. Diagn Microbiol Infect Dis 2005; 52 (2) 113-122
  • 4 Dantes R, Mu Y, Belflower R , et al; Emerging Infections Program–Active Bacterial Core Surveillance MRSA Surveillance Investigators. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 2013; 173 (21) 1970-1978
  • 5 Barna JC, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 1984; 38: 339-357
  • 6 Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 23 (1) 99-139
  • 7 Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17 (3) 479-501
  • 8 Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 2006; 42 (Suppl. 01) S35-S39
  • 9 Rybak M, Lomaestro B, Rotschafer JC , et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009; 66 (1) 82-98
  • 10 Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am J Health Syst Pharm 2000; 57 (Suppl. 02) S4-S9
  • 11 Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004; 43 (13) 925-942
  • 12 Avent ML, Vaska VL, Rogers BA , et al. Vancomycin therapeutics and monitoring: a contemporary approach. Intern Med J 2013; 43 (2) 110-119
  • 13 Neely MN, Youn G, Jones B , et al. Are vancomycin trough concentrations adequate for optimal dosing?. Antimicrob Agents Chemother 2014; 58 (1) 309-316
  • 14 Leu WJ, Liu YC, Wang HW, Chien HY, Liu HP, Lin YM. Evaluation of a vancomycin dosing nomogram in achieving high target trough concentrations in Taiwanese patients. Int J Infect Dis 2012; 16 (11) e804-e810
  • 15 Kullar R, Davis SL, Taylor TN, Kaye KS, Rybak MJ. Effects of targeting higher vancomycin trough levels on clinical outcomes and costs in a matched patient cohort. Pharmacotherapy 2012; 32 (3) 195-201
  • 16 Liu C, Bayer A, Cosgrove SE , et al; Infectious Diseases Society of America. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011; 52 (3) e18-e55
  • 17 Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get there from here. Clin Infect Dis 2011; 52 (8) 969-974
  • 18 Nunn MO, Corallo CE, Aubron C, Poole S, Dooley MJ, Cheng AC. Vancomycin dosing: assessment of time to therapeutic concentration and predictive accuracy of pharmacokinetic modeling software. Ann Pharmacother 2011; 45 (6) 757-763
  • 19 Wang JT, Fang CT, Chen YC, Chang SC. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother 2001; 47 (2) 246
  • 20 Mohammedi I, Descloux E, Argaud L, Le Scanff J, Robert D. Loading dose of vancomycin in critically ill patients: 15 mg/kg is a better choice than 500 mg. Int J Antimicrob Agents 2006; 27 (3) 259-262
  • 21 Thomson AH, Staatz CE, Tobin CM, Gall M, Lovering AM. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J Antimicrob Chemother 2009; 63 (5) 1050-1057
  • 22 James JK, Palmer SM, Levine DP, Rybak MJ. Comparison of conventional dosing versus continuous-infusion vancomycin therapy for patients with suspected or documented gram-positive infections. Antimicrob Agents Chemother 1996; 40 (3) 696-700
  • 23 Wysocki M, Delatour F, Faurisson F , et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 2001; 45 (9) 2460-2467
  • 24 Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (1) 17-24
  • 25 Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Fisher DA. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother 2008; 62 (1) 168-171
  • 26 Prakash V, Lewis II JS, Jorgensen JH. Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used. Antimicrob Agents Chemother 2008; 52 (12) 4528
  • 27 van Hal SJ, Barbagiannakos T, Jones M , et al. Methicillin-resistant Staphylococcus aureus vancomycin susceptibility testing: methodology correlations, temporal trends and clonal patterns. J Antimicrob Chemother 2011; 66 (10) 2284-2287
  • 28 Holmes NE, Turnidge JD, Munckhof WJ , et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2013; 57 (4) 1654-1663
  • 29 Rybak MJ, Vidaillac C, Sader HS , et al. Evaluation of vancomycin susceptibility testing for methicillin-resistant Staphylococcus aureus: comparison of Etest and three automated testing methods. J Clin Microbiol 2013; 51 (7) 2077-2081
  • 30 Neuner EA, Casabar E, Reichley R, McKinnon PS. Clinical, microbiologic, and genetic determinants of persistent methicillin-resistant Staphylococcus aureus bacteremia. Diagn Microbiol Infect Dis 2010; 67 (3) 228-233
  • 31 Ghosh N, Chavada R, Maley M, van Hal SJ. Impact of source of infection and vancomycin AUC0-24 /MICBMD targets on treatment failure in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin Microbiol Infect 2014;
  • 32 Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 2011; 52 (8) 975-981
  • 33 Zelenitsky S, Rubinstein E, Ariano R , et al; Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 2013; 41 (3) 255-260
  • 34 Brown J, Brown K, Forrest A. Vancomycin AUC24/MIC ratio in patients with complicated bacteremia and infective endocarditis due to methicillin-resistant Staphylococcus aureus and its association with attributable mortality during hospitalization. Antimicrob Agents Chemother 2012; 56 (2) 634-638
  • 35 Gawronski KM, Goff DA, Brown J, Khadem TM, Bauer KA. A stewardship program's retrospective evaluation of vancomycin AUC24/MIC and time to microbiological clearance in patients with methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. Clin Ther 2013; 35 (6) 772-779
  • 36 Jung Y, Song KH, Cho Je , et al. Area under the concentration-time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 2014; 43 (2) 179-183
  • 37 Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard. CLSI document M07–A7. 7th ed. Wayne, PA: CLSI; 2006
  • 38 van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 2012; 54 (6) 755-771
  • 39 Holmes NE, Turnidge JD, Munckhof WJ , et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J Infect Dis 2011; 204 (3) 340-347
  • 40 Aguado JM, San-Juan R, Lalueza A , et al. High vancomycin MIC and complicated methicillin-susceptible Staphylococcus aureus bacteremia. Emerg Infect Dis 2011; 17 (6) 1099-1102
  • 41 van Hal SJ, Jones M, Gosbell IB, Paterson DL. Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections. PLoS ONE 2011; 6 (6) e21217
  • 42 van Hal SJ, Paterson DL. Systematic review and meta-analysis of the significance of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. Antimicrob Agents Chemother 2011; 55 (1) 405-410
  • 43 Horne KC, Howden BP, Grabsch EA , et al. Prospective comparison of the clinical impacts of heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-susceptible MRSA. Antimicrob Agents Chemother 2009; 53 (8) 3447-3452
  • 44 Peleg AY, Monga D, Pillai S, Mylonakis E, Moellering Jr RC, Eliopoulos GM. Reduced susceptibility to vancomycin influences pathogenicity in Staphylococcus aureus infection. J Infect Dis 2009; 199 (4) 532-536
  • 45 Soriano A, Marco F, Martínez JA , et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008; 46 (2) 193-200
  • 46 Thwaites GE, Edgeworth JD, Gkrania-Klotsas E , et al; UK Clinical Infection Research Group. Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect Dis 2011; 11 (3) 208-222
  • 47 Bailey EM, Rybak MJ, Kaatz GW. Comparative effect of protein binding on the killing activities of teicoplanin and vancomycin. Antimicrob Agents Chemother 1991; 35 (6) 1089-1092
  • 48 Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 2009; 53 (10) 4069-4079
  • 49 Yoon YK, Park DW, Sohn JW , et al. Multicenter prospective observational study of the comparative efficacy and safety of vancomycin versus teicoplanin in patients with health care-associated methicillin-resistant Staphylococcus aureus bacteremia.. Antimicrob Agents Chemother 2014; 58: 317-324
  • 50 Chang HJ, Hsu PC, Yang CC , et al. Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant Staphylococcus aureus bacteraemia: a hospital-based retrospective study. J Antimicrob Chemother 2012; 67 (3) 736-741
  • 51 Chen KY, Chang HJ, Hsu PC , et al. Relationship of teicoplanin MICs to treatment failure in teicoplanin-treated patients with methicillin-resistant Staphylococcus aureus pneumonia. J Microbiol Immunol Infect 2013; 46 (3) 210-216
  • 52 Higgins DL, Chang R, Debabov DV , et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49 (3) 1127-1134
  • 53 Saravolatz LD, Stein GE, Johnson LB. Telavancin: a novel lipoglycopeptide. Clin Infect Dis 2009; 49 (12) 1908-1914
  • 54 Belley A, McKay GA, Arhin FF , et al. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother 2010; 54 (12) 5369-5371
  • 55 McKay GA, Beaulieu S, Arhin FF , et al. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 2009; 63 (6) 1191-1199
  • 56 Bozdogan B, Esel D, Whitener C, Browne FA, Appelbaum PC. Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 2003; 52 (5) 864-868
  • 57 Leuthner KD, Cheung CM, Rybak MJ. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 2006; 58 (2) 338-343
  • 58 Rybak JM, Barber KE, Rybak MJ. Current and prospective treatments for multidrug-resistant gram-positive infections. Expert Opin Pharmacother 2013; 14 (14) 1919-1932
  • 59 Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin Infect Dis 2014; 58 (Suppl. 01) S20-S27
  • 60 Leonard SN, Szeto YG, Zolotarev M, Grigoryan IV. Comparative in vitro activity of telavancin, vancomycin and linezolid against heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA). Int J Antimicrob Agents 2011; 37 (6) 558-561
  • 61 Moellering Jr RC. Tedizolid: a novel oxazolidinone for Gram-positive infections. Clin Infect Dis 2014; 58 (Suppl. 01) S1-S3
  • 62 Rubinstein E, Lalani T, Corey GR , et al; ATTAIN Study Group. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis 2011; 52 (1) 31-40
  • 63 Corey GR, Kollef MH, Shorr AF , et al. Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival. Antimicrob Agents Chemother 2014; 58 (4) 2030-2037
  • 64 Stryjewski ME, Lentnek A, O'Riordan W , et al. A randomized Phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: the ASSURE study. BMC Infect Dis 2014; 14: 289
  • 65 Stryjewski ME, O'Riordan WD, Lau WK , et al; FAST Investigator Group. Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin Infect Dis 2005; 40 (11) 1601-1607
  • 66 Stryjewski ME, Graham DR, Wilson SE , et al; Assessment of Telavancin in Complicated Skin and Skin-Structure Infections Study. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis 2008; 46 (11) 1683-1693
  • 67 Zhanel GG, Calic D, Schweizer F , et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 2010; 70 (7) 859-886
  • 68 Burke SL, Rose WE. New pharmacological treatments for methicillin-resistant Staphylococcus aureus infections. Expert Opin Pharmacother 2014; 15 (4) 483-491
  • 69 Jones RN, Sader HS, Flamm RK. Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn Microbiol Infect Dis 2013; 75 (3) 304-307
  • 70 Citron DM, Tyrrell KL, Goldstein EJ. Comparative in vitro activities of dalbavancin and seven comparator agents against 41 Staphylococcus species cultured from osteomyelitis infections and 18 VISA and hVISA strains. Diagn Microbiol Infect Dis 2014; 79 (4) 438-440
  • 71 Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 2014; 370 (23) 2169-2179
  • 72 Food and Drug Administration. Center for Drug Evaluation and Research. Guidance for industry acute bacterial skin and skin structure infections: developing drugs for treatment, 2013. Available at: http://www.fda.gov/downloads/Drugs/.../Guidances/ucm071185.pdf. Accessed August 15, 2014
  • 73 Ambrose PG, Drusano GL, Craig WA. In vivo activity of oritavancin in animal infection models and rationale for a new dosing regimen in humans. Clin Infect Dis 2012; 54 (Suppl. 03) S220-S228
  • 74 Tice A. Oritavancin: a new opportunity for outpatient therapy of serious infections. Clin Infect Dis 2012; 54 (Suppl. 03) S239-S243
  • 75 Arhin FF, Sarmiento I, Belley A , et al. Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother 2008; 52 (5) 1597-1603
  • 76 Karaoui LR, El-Lababidi R, Chahine EB. Oritavancin: an investigational lipoglycopeptide antibiotic. Am J Health Syst Pharm 2013; 70 (1) 23-33
  • 77 Lin G, Pankuch G, Appelbaum PC, Kosowska-Shick K. Antistaphylococcal activity of oritavancin and its synergistic effect in combination with other antimicrobial agents. Antimicrob Agents Chemother 2014; 58 (10) 6251-6254
  • 78 Arhin FF, Sarmiento I, Moeck G. In vitro activities of oritavancin and comparators against meticillin-resistant Staphylococcus aureus (MRSA) isolates harbouring the novel mecC gene. Int J Antimicrob Agents 2014; 44 (1) 65-68
  • 79 Mendes RE, Sader HS, Flamm RK, Farrell DJ, Jones RN. Oritavancin activity against Staphylococcus aureus causing invasive infections in U.S. and European hospitals: a 5-year international surveillance program. Antimicrob Agents Chemother 2014; 58 (5) 2921-2924
  • 80 Corey GR, Kabler H, Mehra P , et al; SOLO I Investigators. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med 2014; 370 (23) 2180-2190
  • 81 Chambers HF. Pharmacology and the treatment of complicated skin and skin-structure infections. N Engl J Med 2014; 370 (23) 2238-2239
  • 82 Chang FY, Peacock Jr JE, Musher DM , et al. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore) 2003; 82 (5) 333-339
  • 83 Stryjewski ME, Szczech LA, Benjamin Jr DK , et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 2007; 44 (2) 190-196
  • 84 Kim SH, Kim KH, Kim HB , et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2008; 52 (1) 192-197
  • 85 Schweizer ML, Furuno JP, Harris AD , et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis 2011; 11: 279
  • 86 Chan KE, Warren HS, Thadhani RI , et al. Prevalence and outcomes of antimicrobial treatment for Staphylococcus aureus bacteremia in outpatients with ESRD. J Am Soc Nephrol 2012; 23 (9) 1551-1559
  • 87 Chambers HF. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin Microbiol Infect 2006; 12 (Suppl. 02) 17-22
  • 88 Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 2010; 54 (5) 1670-1677
  • 89 Steed ME, Rybak MJ. Ceftaroline: a new cephalosporin with activity against resistant gram-positive pathogens. Pharmacotherapy 2010; 30 (4) 375-389
  • 90 Richter SS, Heilmann KP, Dohrn CL , et al. Activity of ceftaroline and epidemiologic trends in Staphylococcus aureus isolates collected from 43 medical centers in the United States in 2009. Antimicrob Agents Chemother 2011; 55 (9) 4154-4160
  • 91 Pfaller MA, Flamm RK, Sader HS, Jones RN. Ceftaroline activity against bacterial organisms isolated from acute bacterial skin and skin structure infections in United States medical centers (2009-2011). Diagn Microbiol Infect Dis 2014; 78 (4) 422-428
  • 92 Flamm RK, Sader HS, Jones RN. Ceftaroline activity against organisms isolated from respiratory tract infections in USA hospitals: results from the AWARE Program, 2009-2011. Diagn Microbiol Infect Dis 2014; 78 (4) 437-442
  • 93 Werth BJ, Steed ME, Kaatz GW, Rybak MJ. Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect”. Antimicrob Agents Chemother 2013; 57 (6) 2664-2668
  • 94 Werth BJ, Barber KE, Ireland CE, Rybak MJ. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother 2014; 58 (6) 3177-3181
  • 95 Werth BJ, Sakoulas G, Rose WE, Pogliano J, Tewhey R, Rybak MJ. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2013; 57 (1) 66-73
  • 96 File Jr TM, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis 2012; 55 (Suppl. 03) S173-S180
  • 97 Arshad S, Hartman P, Zervos MJ. A novel treatment option for MRSA pneumonia: ceftaroline fosamil-yielding new hope in the fight against a persistent infection. Expert Rev Anti Infect Ther 2014; 12 (7) 727-729
  • 98 Pasquale TR, Tan MJ, Trienski TL, File Jr TM. Methicillin-resistant Staphylococcus aureus nosocomial pneumonia patients treated with ceftaroline: retrospective case series of 10 patients. J Chemother 2013; Y0000000156
  • 99 Lin JC, Aung G, Thomas A, Jahng M, Johns S, Fierer J. The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients. J Infect Chemother 2013; 19 (1) 42-49
  • 100 Casapao AM, Davis SL, Barr VO , et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother 2014; 58 (5) 2541-2546
  • 101 Tattevin P, Boutoille D, Vitrat V , et al. Salvage treatment of methicillin-resistant staphylococcal endocarditis with ceftaroline: a multicenter observational study. J Antimicrob Chemother 2014; 69 (7) 2010-2013
  • 102 Polenakovik HM, Pleiman CM. Ceftaroline for meticillin-resistant Staphylococcus aureus bacteraemia: case series and review of the literature. Int J Antimicrob Agents 2013; 42 (5) 450-455
  • 103 Sakoulas G, Moise PA, Casapao AM , et al. Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clin Ther 2014;
  • 104 Jain R, Chan JD, Rogers L, Dellit TH, Lynch JB, Pottinger PS. High incidence of discontinuations due to adverse events in patients treated with ceftaroline. Pharmacotherapy 2014; 34 (7) 758-763
  • 105 Griffiths CL, Gutierrez KC, Pitt RD, Lovell RD. Eosinophilic pneumonia induced by ceftaroline. Am J Health Syst Pharm 2014; 71 (5) 403-406
  • 106 Desai KR, Burdette SD, Polenakovik HM, Hagaman J, Pleiman CM. Ceftaroline-induced eosinophilic pneumonia. Pharmacotherapy 2013; 33 (7) e166-e169
  • 107 Espedido BA, Jensen SO, van Hal SJ. Ceftaroline fosamil salvage therapy: an option for reduced-vancomycin-susceptible MRSA bacteraemia. J Antimicrob Chemother 2014; ; November 17 epub ahead of print
  • 108 Saravolatz SN, Martin H, Pawlak J, Johnson LB, Saravolatz LD. Ceftaroline-heteroresistant Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58 (6) 3133-3136
  • 109 Mendes RE, Tsakris A, Sader HS , et al. Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. J Antimicrob Chemother 2012; 67 (6) 1321-1324
  • 110 Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP, Lahiri SD. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. J Antimicrob Chemother 2014; 69 (8) 2065-2075
  • 111 Chong YP, Park SJ, Kim HS , et al. In vitro activities of ceftobiprole, dalbavancin, daptomycin, linezolid, and tigecycline against methicillin-resistant Staphylococcus aureus blood isolates: stratified analysis by vancomycin MIC. Diagn Microbiol Infect Dis 2012; 73 (3) 264-266
  • 112 Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 2008; 46 (5) 647-655
  • 113 Johnson and Johnson Pharmaceutical Research and Development. FDA Issues Complete Response Letter for Ceftobiprole. 2009. Available at: http://www.investor.jnj.com/releasedetail.cfm?ReleaseID=433517.Accessed 17 November, 2013
  • 114 Nicholson SC, Welte T, File Jr TM , et al. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int J Antimicrob Agents 2012; 39 (3) 240-246
  • 115 Awad SS, Rodriguez AH, Chuang YC , et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014;
  • 116 Muller AE, Punt N, Mouton JW. Exposure to ceftobiprole is associated with microbiological eradication and clinical cure in patients with nosocomial pneumonia. Antimicrob Agents Chemother 2014; 58 (5) 2512-2519
  • 117 Pharmaceutica B. Basilea's antibiotic ceftobiprole obtains regulatory approval in Europe for pneumonia 2013. Available at: http://www.basilea.com/chameleon/public/584f9d1e-4298-e47c-0475-a5e5e5288ded/582542 . Accessed December 17, 2014
  • 118 Pharmaceutica B. Basilea to launch Zevtera/Mabelio (ceftobiprole medocaril) in Europe through a commercial services provider 2014. Available at: http://www.basilea.com/chameleon/public/87dd1a16-2523-e4d7-1ee6-1d7fe10b7b29/635582 . Accessed December 17, 2014
  • 119 Pharmaceutica B. Basilea provides update on ceftobiprole's U.S. regulatory status 2014. Available at: http://www.basilea.com/chameleon/public/de7cde4b-8150-0816-4ebb-77bfe8cb1ef5/620981 A. Accessed December 17, 2014
  • 120 Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 2005; 55 (3) 283-288
  • 121 Boucher HW, Sakoulas G. Perspectives on Daptomycin resistance, with emphasis on resistance in Staphylococcus aureus. Clin Infect Dis 2007; 45 (5) 601-608
  • 122 Gerber P, Stucki A, Acosta F, Cottagnoud M, Cottagnoud P. Daptomycin is more efficacious than vancomycin against a methicillin-susceptible Staphylococcus aureus in experimental meningitis. J Antimicrob Chemother 2006; 57 (4) 720-723
  • 123 Fowler Jr VG, Boucher HW, Corey GR , et al; S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006; 355 (7) 653-665
  • 124 Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis 2012; 54 (1) 51-58
  • 125 Murray KP, Zhao JJ, Davis SL , et al. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin . minimum inhibitory concentration >1 mg/L: a matched cohort study. Clin Infect Dis 2013; 56: 1562-1569
  • 126 Mangili A, Bica I, Snydman DR, Hamer DH. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2005; 40 (7) 1058-1060
  • 127 Moise PA, Smyth DS, El-Fawal N , et al. Microbiological effects of prior vancomycin use in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 2008; 61 (1) 85-90
  • 128 Gould IM, Miró JM, Rybak MJ. Daptomycin: the role of high-dose and combination therapy for Gram-positive infections. Int J Antimicrob Agents 2013; 42 (3) 202-210
  • 129 Gasch O, Camoez M, Domínguez MA , et al; REIPI/GEIH study groups. Emergence of resistance to daptomycin in a cohort of patients with methicillin-resistant Staphylococcus aureus persistent bacteraemia treated with daptomycin. J Antimicrob Chemother 2014; 69 (2) 568-571
  • 130 Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev 2013; 26 (4) 759-780
  • 131 Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 2013; 1277: 139-158
  • 132 Howden BP, McEvoy CR, Allen DL , et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 2011; 7 (11) e1002359
  • 133 Bertsche U, Yang SJ, Kuehner D , et al. Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS ONE 2013; 8 (6) e67398
  • 134 Kelley PG, Gao W, Ward PB, Howden BP. Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother 2011; 66 (5) 1057-1060
  • 135 van Hal SJ, Paterson DL, Gosbell IB. Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient—a review of the literature. Eur J Clin Microbiol Infect Dis 2011; 30 (5) 603-610
  • 136 Kollef MH, Rello J, Cammarata SK, Croos-Dabrera RV, Wunderink RG. Clinical cure and survival in Gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 2004; 30 (3) 388-394
  • 137 Wunderink RG, Niederman MS, Kollef MH , et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54 (5) 621-629
  • 138 Jiang H, Tang RN, Wang J. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: meta-analysis of randomised controlled trials. Eur J Clin Microbiol Infect Dis 2013; 32 (9) 1121-1128
  • 139 Kalil AC, Klompas M, Haynatzki G, Rupp ME. Treatment of hospital-acquired pneumonia with linezolid or vancomycin: a systematic review and meta-analysis. BMJ Open 2013; 3 (10) e003912
  • 140 Kalil AC, Murthy MH, Hermsen ED, Neto FK, Sun J, Rupp ME. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis. Crit Care Med 2010; 38 (9) 1802-1808
  • 141 Walkey AJ, O'Donnell MR, Wiener RS. Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest 2011; 139 (5) 1148-1155
  • 142 Falagas ME, Manta KG, Ntziora F, Vardakas KZ. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother 2006; 58 (2) 273-280
  • 143 Schwalm JD, El-Helou P, Lee CH. Clinical outcome with oral linezolid and rifampin following recurrent methicillin-resistant Staphylococcus aureus bacteremia despite prolonged vancomycin treatment. Can J Infect Dis Med Microbiol 2004; 15 (2) 97-100
  • 144 Jang HC, Kim SH, Kim KH , et al. Salvage treatment for persistent methicillin-resistant Staphylococcus aureus bacteremia: efficacy of linezolid with or without carbapenem. Clin Infect Dis 2009; 49 (3) 395-401
  • 145 Park HJ, Kim SH, Kim MJ , et al. Efficacy of linezolid-based salvage therapy compared with glycopeptide-based therapy in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. J Infect 2012; 65 (6) 505-512
  • 146 Fu J, Ye X, Chen C, Chen S. The efficacy and safety of linezolid and glycopeptides in the treatment of Staphylococcus aureus infections. PLoS ONE 2013; 8 (3) e58240
  • 147 Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother 2005; 56 (5) 923-929
  • 148 Locke JB, Zurenko GE, Shaw KJ, Bartizal K. Tedizolid for the management of human infections: in vitro characteristics. Clin Infect Dis 2014; 58 (Suppl. 01) S35-S42
  • 149 Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann N Y Acad Sci 2011; 1241: 48-70
  • 150 Rodríguez-Avial I, Culebras E, Betriu C, Morales G, Pena I, Picazo JJ. In vitro activity of tedizolid (TR-700) against linezolid-resistant staphylococci. J Antimicrob Chemother 2012; 67 (1) 167-169
  • 151 Thomson KS, Goering RV. Activity of tedizolid (TR-700) against well-characterized methicillin-resistant Staphylococcus aureus strains of diverse epidemiological origins. Antimicrob Agents Chemother 2013; 57 (6) 2892-2895
  • 152 Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA 2013; 309 (6) 559-569
  • 153 Das D, Tulkens PM, Mehra P, Fang E, Prokocimer P. Tedizolid phosphate for the management of acute bacterial skin and skin structure infections: safety summary. Clin Infect Dis 2014; 58 (Suppl. 01) S51-S57
  • 154 Fuchs PC, Barry AL, Brown SD. Bactericidal activity of quinupristin-dalfopristin against Staphylococcus aureus: clindamycin susceptibility as a surrogate indicator. Antimicrob Agents Chemother 2000; 44 (10) 2880-2882
  • 155 Jones RN, Ballow CH, Biedenbach DJ, Deinhart JA, Schentag JJ. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, Synercid) tested against over 28,000 recent clinical isolates from 200 medical centers in the United States and Canada. Diagn Microbiol Infect Dis 1998; 31 (3) 437-451
  • 156 Dowzicky M, Nadler HL, Feger C, Talbot G, Bompart F, Pease M. Evaluation of in vitro activity of quinupristin/dalfopristin and comparator antimicrobial agents against worldwide clinical trial and other laboratory isolates. Am J Med 1998; 104 (5A): 34S-42S
  • 157 Drew RH, Perfect JR, Srinath L, Kurkimilis E, Dowzicky M, Talbot GH. For the Synercid Emergency-Use Study Group. Treatment of methicillin-resistant staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. J Antimicrob Chemother 2000; 46 (5) 775-784
  • 158 Fagon J, Patrick H, Haas DW , et al; Nosocomial Pneumonia Group. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Am J Respir Crit Care Med 2000; 161 (3 Pt 1) 753-762
  • 159 Berthaud N, Montay G, Conard BJ, Desnottes JF. Bactericidal activity and kinetics of RP 59500 in a mouse model of Staphylococcus aureus septicaemia. J Antimicrob Chemother 1995; 36 (2) 365-373
  • 160 Hamel A, Caillon J, Jacqueline C, Batard E, Potel G. Efficacy of quinupristin/dalfopristin versus vancomycin, alone or in combination with rifampicin, against methicillin-resistant Staphylococcus aureus in a rabbit arthritis model. Int J Antimicrob Agents 2008; 31 (2) 158-160
  • 161 Chambers HF. Studies of RP 59500 in vitro and in a rabbit model of aortic valve endocarditis caused by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1992; 30 (Suppl A): 117-122
  • 162 Nichols RL, Graham DR, Barriere SL , et al; Synercid Skin and Skin Structure Infection Group. Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicenter studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. J Antimicrob Chemother 1999; 44 (2) 263-273
  • 163 Wood MJ. The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother 1996; 37 (2) 209-222
  • 164 Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 2011; 66 (9) 1963-1971
  • 165 Florescu I, Beuran M, Dimov R , et al; 307 Study Group. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a Phase 3, multicenter, double-blind, randomized study. J Antimicrob Chemother 2008; 62 (Suppl. 01) i17-i28
  • 166 Mendes RE, Sader HS, Deshpande L, Jones RN. Antimicrobial activity of tigecycline against community-acquired methicillin-resistant Staphylococcus aureus isolates recovered from North American medical centers. Diagn Microbiol Infect Dis 2008; 60 (4) 433-436
  • 167 Goff DA, Dowzicky MJ. Prevalence and regional variation in meticillin-resistant Staphylococcus aureus (MRSA) in the USA and comparative in vitro activity of tigecycline, a glycylcycline antimicrobial. J Med Microbiol 2007; 56 (Pt 9) 1189-1193
  • 168 Kaya O, Akcam FZ, Temel EN. In vitro activities of linezolid and tigecycline against methicillin-resistant Staphylococcus aureus strains. Microb Drug Resist 2008; 14 (2) 151-153
  • 169 Denis O, Deplano A, Nonhoff C , et al. In vitro activities of ceftobiprole, tigecycline, daptomycin, and 19 other antimicrobials against methicillin-resistant Staphylococcus aureus strains from a national survey of Belgian hospitals. Antimicrob Agents Chemother 2006; 50 (8) 2680-2685
  • 170 Antonopoulou A, Tsaganos T, Tzepi IM, Giamarellou H, Giamarellos-Bourboulis EJ. Comparative efficacy of tigecycline VERSUS vancomycin in an experimental model of soft tissue infection by methicillin-resistant Staphylococcus aureus producing Panton-Valentine leukocidin. J Chemother 2014; Y0000000171
  • 171 Kandemir O, Oztuna V, Colak M, Akdag A, Camdeviren H. Comparison of the efficacy of tigecycline and teicoplanin in an experimental methicillin-resistant Staphylococcus aureus osteomyelitis model. J Chemother 2008; 20 (1) 53-57
  • 172 Matthews P, Alpert M, Rahav G , et al; Tigecycline 900 cSSSI Study Group. A randomized trial of tigecycline versus ampicillin-sulbactam or amoxicillin-clavulanate for the treatment of complicated skin and skin structure infections. BMC Infect Dis 2012; 12: 297
  • 173 Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57 (4) 1756-1762
  • 174 Tasina E, Haidich AB, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis 2011; 11 (11) 834-844
  • 175 Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012; 54 (12) 1699-1709
  • 176 Cai Y, Wang R, Liang B, Bai N, Liu Y. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother 2011; 55 (3) 1162-1172
  • 177 McGovern PC, Wible M, El-Tahtawy A, Biswas P, Meyer RD. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int J Antimicrob Agents 2013; 41 (5) 463-467
  • 178 Canut A, Isla A, Betriu C, Gascón AR. Pharmacokinetic-pharmacodynamic evaluation of daptomycin, tigecycline, and linezolid versus vancomycin for the treatment of MRSA infections in four western European countries. Eur J Clin Microbiol Infect Dis 2012; 31 (9) 2227-2235
  • 179 Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol 2011; 7 (11) 1459-1470
  • 180 Bhavnani SM, Rubino CM, Hammel JP , et al. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob Agents Chemother 2012; 56 (2) 1065-1072