Rofo 2015; 187(12): 1084-1092
DOI: 10.1055/s-0035-1553505
Review
© Georg Thieme Verlag KG Stuttgart · New York

Multimodal Imaging in Neurofibromatosis Type 1-associated Nerve Sheath Tumors

Multimodale Bildgebung bei Neurofibromatose-Typ-1-assoziierten Nervenscheidentumoren
J. Salamon
1   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
V. F. Mautner
2   Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
G. Adam
1   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
T. Derlin
3   Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
› Author Affiliations
Further Information

Publication History

12 March 2015

25 June 2015

Publication Date:
02 September 2015 (online)

Abstract

Neurofibromatosis type 1 (NF1) is a neurogenetic disorder. Individuals with NF1 may develop a variety of benign and malignant tumors of which peripheral nerve sheath tumors represent the most frequent entity. Plexiform neurofibromas may demonstrate a locally destructive growth pattern, may cause severe symptoms and may undergo malignant transformation into malignant peripheral nerve sheath tumors (MPNSTs). Whole-body magnetic resonance imaging (MRI) represents the reference standard for detection of soft tissue tumors in NF1. It allows for identification of individuals with plexiform neurofibromas, for assessment of local tumor extent, and for evaluation of whole-body tumor burden on T2-weighted imaging. Multiparametric MRI may provide a comprehensive characterization of different tissue properties of peripheral nerve sheath tumors, and may identify parameters associated with malignant transformation. Due to the absence of any radiation exposure, whole-body MRI may be used for serial follow-up of individuals with plexiform neurofibromas. 18F-fluorodeoxyglucose positron-emission-tomography (FDG PET/CT) allows a highly sensitive and specific detection of MPNST, and should be used in case of potential malignant transformation of a peripheral nerve sheath tumor. PET/CT provides a sensitive whole-body tumor staging. The use of contrast-enhanced CT for diagnosis of peripheral nerve sheath tumors is limited to special indications. To obtain the most precise readings, optimized examination protocols and dedicated radiologists and nuclear medicine physicians familiar with the complex and variable morphologies of peripheral nerve sheath tumors are required.

Key points:

• Individuals with NF1 may develop benign and malignant nerve sheath tumors.

• Whole-body MRI is the reference standard to identify nerve sheath tumors in NF1.

• MRI provides a comprehensive characterization of the growth pattern, growth dynamics and extent of nerve sheath tumors.

• 18F-FDG PET/CT provides a sensitivity of 100 % and a specificity of 77 – 95 % for detection of malignant transformation.

Citation Format:

• Salamon J, Mautner VF, Adam G et al. Multimodal Imaging in Neurofibromatosis Type 1-associated Nerve Sheath Tumors. Fortschr Röntgenstr 2015; 187: 1084 – 1092

Zusammenfassung

Die Neurofibromatose Typ 1 (NF1) ist eine neurogenetische Erkrankung, die mit der Entwicklung unterschiedlicher benigner und maligner Tumoren einhergeht, wobei periphere Nervenscheidentumoren die häufigste Entität darstellen. Plexiforme Neurofibrome können lokal destruktiv wachsen, eine ausgeprägte Symptomatik verursachen und unterliegen dem Risiko einer malignen Transformation in maligne periphere Nervenscheidentumoren (MPNST). Die Ganzkörper-Magnetresonanztomografie (MRT) stellt den Referenzstandard zur Detektion von Weichteiltumoren bei NF1 dar und erlaubt die Identifikation von Individuen mit plexiformen Neurofibromen, eine Erfassung der lokalen Tumorausbreitung und die Bestimmung der Ganzkörpertumorlast in T2-gewichteten Sequenzen. In der multiparametrischen MRT kann eine umfassende Charakterisierung der Gewebeeigenschaften von peripheren Nervenscheidentumoren erfolgen; zudem können auf MPNST hinweisende Parameter sensitiv erfasst werden. Aufgrund der fehlenden Strahlenexposition eignet sich die Ganzkörper-MRT für serielle Verlaufskontrollen bei Patienten mit plexiformen Neurofibromen. Die 18F-Fluordesoxyglukose-Positronen-Emissions-Tomografie (FDG PET/CT) erlaubt eine hochsensitive und spezifische Detektion von MPNST und sollte beim Verdacht auf eine maligne Transformation eines Nervenscheidentumors eingesetzt werden. Dadurch erfolgt gleichzeitig ein sensitives Ganzkörperstaging. Die alleinige kontrastmittelgestützte CT ist heutzutage in der Diagnostik peripherer Nervenscheidentumoren nur noch in Sondersituationen indiziert. Für eine optimale Diagnostik bei Individuen mit NF1 sollten spezifische Untersuchungsprotokolle eingesetzt werden, und Radiologen und Nuklearmediziner sollten mit der komplexen und variablen Morphologie peripherer Nervenscheidentumoren vertraut sein.

Deutscher Artikel/German Article

 
  • References

  • 1 Lammert M, Friedman JM, Kluwe L et al. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol 2005; 141: 71-74
  • 2 Huson SM, Harper PS, Compston DA. Von Recklinghausen neurofibromatosis: a clinical and population study in south-east Wales. Brain 1988; 111: 1355-1381
  • 3 Reynolds RM, Browning GG, Nawroz I et al. Von Recklinghausen's neurofibromatosis: neurofibromatosis type 1. Lancet 2003; 361: 1552-1554
  • 4 National Institutes of Health Consensus Development Conference Statement: neurofibromatosis. Bethesda, Md., USA, July 13-15, 1987. Neurofibromatosis 1988; 1: 172-178
  • 5 Ferner RE, Huson SM, Thomas N et al. Guidelines for the diagnosis and management of individuals with Neurofibromatosis 1 (NF1). J Med Genet 2007; 44: 81-88
  • 6 Williams VC, Lucas J, Babcock MA et al. Neurofibromatosis type 1 revisited. Pediatrics 2009; 123: 124-133
  • 7 Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol 2014; 13: 834-843
  • 8 De Schepper S, Boucneau J, Vander Haeghen Y et al. Café-au-lait spots in neurofibromatosis type 1 and in healthy control individuals: hyperpigmentation of a different kind?. Arch Dermatol Res 2006; 297: 439-449
  • 9 Duong TA, Bastuji-Garin S, Valeyrie-Allanore L et al. Evolving pattern with age of cutaneous signs in neurofibromatosis type 1: a cross-sectional study of 728 patients. Dermatology 2011; 222: 269-273
  • 10 Boley S, Sloan JL, Pemov A et al. A quantitative assessment of the burden and distribution of Lisch nodules in adults with neurofibromatosis type 1. Invest Ophthalmol Vis Sci 2009; 50: 5035-5043
  • 11 Jaremko JL, MacMahon PJ, Torriani M et al. Whole-body MRI in neurofibromatosis: incidental findings and prevalence of scoliosis. Skeletal Radiol 2012; 41: 917-923
  • 12 Elefteriou F, Kolanczyk M, Schindeler A et al. Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A 2009; 149A: 2327-2338
  • 13 Friedman JM, Arbiser J, Epstein JA et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet Med 2002; 4: 105-111
  • 14 Nguyen R, Mir TS, Kluwe L et al. Cardiac characterization of 16 patients with large NF1 gene deletions. Clin Genet 2013; 84: 344-349
  • 15 Ferner RE, Hughes RA, Hall SM et al. Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med Genet 2004; 41: 837-841
  • 16 Lehtonen A, Howie E, Trump D et al. Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Dev Med Child Neurol 2013; 55: 111-125
  • 17 Gutmann DH, Parada LF, Silva AJ et al. Neurofibromatosis type 1: modeling CNS dysfunction. J Neurosci 2012; 32: 14087-14093
  • 18 Ducatman BS, Scheithauer BW, Piepgras DG et al. Malignant peripheral nerve sheath tumors: a clinicopathologic study of 120 cases. Cancer 1986; 57: 2006-2021
  • 19 Brems H, Beert E, de Ravel T et al. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009; 10: 508-515
  • 20 Laycock-van Spyk S, Thomas N, Cooper DN et al. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2011; 5: 623-690
  • 21 Poyhonen M, Leisti EL, Kytola S et al. Hereditary spinal neurofibromatosis: a rare form of NF1?. J Med Genet 1997; 34: 184-187
  • 22 Korf BR. Plexiform neurofibromas. Am J Med Genet 1999; 89: 31-37
  • 23 Mautner VF, Hartmann M, Kluwe L et al. MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology 2006; 48: 160-165
  • 24 Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 2002; 62: 1573-1577
  • 25 Evans DG, Baser ME, McGaughran J et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002; 39: 311-314
  • 26 Cai W, Kassarjian A, Bredella MA et al. Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology 2009; 250: 665-673
  • 27 Plotkin SR, Bredella MA, Cai W et al. Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS One 2012; 7: e35711
  • 28 Kluwe L, Nguyen R, Vogt J et al. Internal tumor burden in neurofibromatosis Type I patients with large NF1 deletions. Genes Chromosomes Cancer 2012; 51: 447-451
  • 29 Tucker T, Friedman JM, Friedrich RE et al. Longitudinal study of neurofibromatosis 1 associated plexiform neurofibromas. J Med Genet 2009; 46: 81-85
  • 30 Nguyen R, Jett K, Harris GJ et al. Benign whole body tumor volume is a risk factor for malignant peripheral nerve sheath tumors in neurofibromatosis type 1. J Neurooncol 2014; 116: 307-313
  • 31 Matsumine A, Kusuzaki K, Nakamura T et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol 2009; 135: 891-900
  • 32 Wasa J, Nishida Y, Tsukushi S et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. Am J Roentgenol 2010; 194: 1568-1574
  • 33 Derlin T, Tornquist K, Münster S et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med 2013; 38: e19-e25
  • 34 van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC et al. Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 2004; 233: 493-502
  • 35 Demehri S, Belzberg A, Blakeley J et al. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol 2014; 35: 1615-1620
  • 36 Wilhelm T, Stieltjes B, Schlemmer HP. Whole-Body-MR-Diffusion Weighted Imaging in Oncology. Fortschr Röntgenstr 2013; 185: 950-958
  • 37 Chhabra A, Thakkar RS, Andreisek G et al. Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 2013; 34: 802-807
  • 38 Warbey VS, Ferner RE, Dunn JT et al. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging 2009; 36: 751-757
  • 39 Salamon J, Derlin T, Bannas P et al. Evaluation of intratumoural heterogeneity on ¹⁸F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 2013; 40: 685-692
  • 40 Ferner RE, Golding JF, Smith M et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 2008; 19: 390-394
  • 41 Benz MR, Czernin J, Dry SM et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer 2010; 116: 451-458
  • 42 Moharir M, London K, Howman-Giles R et al. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 2010; 37: 1309-1317
  • 43 Brenner W, Friedrich RE, Gawad KA et al. Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 2006; 33: 428-432
  • 44 Derlin T, Hagel C, Mautner VF. Syndromic abdominal ganglioneuroma: a rare cause of false-positive findings in the F-18 FDG PET / CT in neurofibromatosis type 1. Fortschr Röntgenstr 2014; 186: 706-707
  • 45 Salamon J, Veldhoen S, Apostolova I et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol 2014; 24: 405-412
  • 46 Combemale P, Valeyrie-Allanore L, Giammarile F et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One 2014; 9: e85954
  • 47 Chirindel A, Chaudhry M, Blakeley J et al. 18F-FDG PET/CT qualitative and quantitative evaluation in NF1 patients for Detection of Malignant Transformation – comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med 2015;
  • 48 Kumar AJ, Kuhajda FP, Martinez CR et al. Computed tomography of extracranial nerve sheath tumors with pathological correlation. J Comput Assist Tomogr 1983; 7: 857-865
  • 49 Cohen LM, Schwartz AM, Rockoff SD. Benign schwannomas: pathologic basis for CT inhomogeneities. Am J Roentgenol 1986; 147: 141-143
  • 50 Fortman BJ, Kuszyk BS, Urban BA et al. Neurofibromatosis type 1: a diagnostic mimicker at CT. Radiographics 2001; 21: 601-612