Rofo 2015; 187(12): 1073-1083
DOI: 10.1055/s-0035-1553509
Review
© Georg Thieme Verlag KG Stuttgart · New York

The Whole Spectrum of Alcohol-Related Changes in the CNS: Practical MR and CT Imaging Guidelines for Daily Clinical Use

Alkoholinduzierte ZNS-Veränderungen in der bildgebenden Diagnostik: Ein CT- und MRT-Leitfaden für die klinische Praxis
V. C. Keil
1   Department of Radiology, University Hospital Bonn, Germany
,
S. Greschus
1   Department of Radiology, University Hospital Bonn, Germany
,
C. Schneider
2   Department of Neurology, University Hospital Bonn, Germany
,
D. R. Hadizadeh
1   Department of Radiology, University Hospital Bonn, Germany
,
H. H. Schild
1   Department of Radiology, University Hospital Bonn, Germany
› Author Affiliations
Further Information

Publication History

24 May 2015

24 June 2015

Publication Date:
02 September 2015 (online)

Abstract

Alcohol addiction is the most common drug addiction. Alcohol passes both the placenta as well as the blood-brain barrier and is in multiple ways neurotoxic. Liver diseases and other systemic alcohol-related diseases cause secondary damage to the CNS. Especially in adolescents, even a single episode of severe alcohol intoxication (“binge drinking”) may result in life-threatening neurological consequences. Alcohol-related brain and spinal cord diseases derive from multiple causes including impairment of the cellular metabolism, often aggravated by hypovitaminosis, altered neurotransmission, myelination and synaptogenesis as well as alterations in gene expression. Modern radiological diagnostics, MRI in particular, can detect the resulting alterations in the CNS with a high sensitivity. Morphological aspects often strongly correlate with clinical symptoms of the patient. It is less commonly known that many diseases considered as “typically alcohol-related”, such as Wernicke’s encephalopathy, are to a large extent not alcohol-induced. Visible CNS alterations are thus non-pathognomonic and demand careful evaluation of differential diagnoses. This review article elucidates the pathogenesis, clinical aspects and radiological image features of the most common alcohol-related CNS diseases and their differential diagnoses.

Key Points:

• Alcohol-associated changes in the CNS are common and radiologically assessable.

• They are often subtle and allow multiple differential diagnoses besides alcohol consumption.

• Knowledge of clinical exams and lab results is crucial for diagnostic accuracy.

Citation Format:

• Keil VC, Greschus S, Schneider C et al. The Whole Spectrum of Alcohol-Related Changes in the CNS: Practical MR and CT Imaging Guidelines for Daily Clinical Use. Fortschr Röntgenstr 2015; 187: 1073 – 1083

Zusammenfassung

Alkoholabhängigkeit ist die häufigste Form der Drogenabhängigkeit. Alkohol ist liquor- und plazentagängig und auf komplexe Weise neurotoxisch. Lebererkrankungen und systemische Alkoholfolgeerkrankungen führen zu sekundären ZNS-Schäden. Selbst ein einmaliger Alkoholrausch („binge drinking“) kann, insbesondere für Jugendliche, lebensbedrohliche neurologische Folgen haben. Das Ursachenspektrum alkoholassoziierter Hirn- und Rückenmarkserkrankungen betrifft Störungen des zellulären Energiestoffwechsels durch Alkohol oder alkoholassoziierten Vitaminmangel, die Neurotransmission, die Myelinisierung und Synaptogenese sowie die Genexpression. Im Alltag sind die damit einhergehenden ZNS-Veränderungen mit moderner Schnittbilddiagnostik, insbesondere der MRT, mit hoher Sensitivität nachweisbar und korrelieren oft mit der klinischen Symptomatik des Patienten. Dabei gilt es zu beachten, dass viele als typisch alkoholbedingt bekannte Erkrankungen, wie z. B. die Wernicke-Enzephalopathie und die osmotische Demyelinisierung, zu einem großen Anteil nicht durch Alkoholabusus verursacht werden. Die bildmorphologischen Veränderungen sind demnach nicht pathognomonisch und eine sogfältige klinische Abwägung der Differenzialdiagnosen ist erforderlich. In dieser Übersichtsarbeit werden die Pathogenese, Klinik und Bildmorphologie häufiger alkoholassoziierter ZNS-Erkrankungen und ihrer Differenzialdiagnosen dargelegt.

Deutscher Artikel/German Article

 
  • References

  • 1 Drogen- und Suchtbericht 2014. 2015 http://www.drogenbeauftragte.de/fileadmin/dateien-dba/Presse/Downloads/Drogen-_und_Suchtbericht_2014_Gesamt_WEB_07.pdf
  • 2 Sripathirathan K, Brown 3rd J, Neafsey EJ et al. Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo. Journal of neurotrauma 2009; 26: 261-273
  • 3 Dodd PR, Beckmann AM, Davidson MS et al. Glutamate-mediated transmission, alcohol, and alcoholism. Neurochemistry international 2000; 37: 509-533
  • 4 Adams RD, Victor M, Mancall EL. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA archives of neurology and psychiatry 1959; 81: 154-172
  • 5 Gocht A, Colmant HJ. Central pontine and extrapontine myelinolysis: a report of 58 cases. Clinical neuropathology 1987; 6: 262-270
  • 6 Brown WD. Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Current opinion in neurology 2000; 13: 691-697
  • 7 Gankam Kengne F, Nicaise C, Soupart A et al. Astrocytes are an early target in osmotic demyelination syndrome. Journal of the American Society of Nephrology: JASN 2011; 22: 1834-1845
  • 8 Martin RJ. Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes. Journal of neurology, neurosurgery, and psychiatry 2004; 75 (Suppl. 03) iii22-iii28
  • 9 Vaquero J, Chung C, Cahill ME et al. Pathogenesis of hepatic encephalopathy in acute liver failure. Seminars in liver disease 2003; 23: 259-269
  • 10 Rovira A, Alonso J, Cordoba J. MR imaging findings in hepatic encephalopathy. AJNR American journal of neuroradiology 2008; 29: 1612-1621
  • 11 Butterworth RF. Hepatic encephalopathy--a serious complication of alcoholic liver disease. Alcohol research & health: the journal of the National Institute on Alcohol Abuse and Alcoholism 2003; 27: 143-145
  • 12 Burkhard PR, Delavelle J, Du Pasquier R et al. Chronic parkinsonism associated with cirrhosis: a distinct subset of acquired hepatocerebral degeneration. Archives of neurology 2003; 60: 521-528
  • 13 Pfefferbaum A, Lim KO, Zipursky RB et al. Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcoholism, clinical and experimental research 1992; 16: 1078-1089
  • 14 Niemela O. Distribution of ethanol-induced protein adducts in vivo: relationship to tissue injury. Free radical biology & medicine 2001; 31: 1533-1538
  • 15 Smith KJ, Butler TR, Prendergast MA. Ethanol impairs microtubule formation via interactions at a microtubule associated protein-sensitive site. Alcohol 2013; 47: 539-543
  • 16 Lamarche F, Gonthier B, Signorini N et al. Impact of ethanol and acetaldehyde on DNA and cell viability of cultured neurones. Cell biology and toxicology 2004; 20: 361-374
  • 17 Alfonso-Loeches S, Pascual M, Gomez-Pinedo U et al. Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia 2012; 60: 948-964
  • 18 Blansjaar BA, Vielvoye GJ, van Dijk JG et al. Similar brain lesions in alcoholics and Korsakoff patients: MRI, psychometric and clinical findings. Clinical neurology and neurosurgery 1992; 94: 197-203
  • 19 Sullivan EV, Pfefferbaum A. Neuroimaging of the Wernicke-Korsakoff syndrome. Alcohol and alcoholism 2009; 44: 155-165
  • 20 Harper C, Matsumoto I. Ethanol and brain damage. Current opinion in pharmacology 2005; 5: 73-78
  • 21 Sullivan EV, Deshmukh A, Desmond JE et al. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff's syndrome: relation to ataxia. Neuropsychology 2000; 14: 341-352
  • 22 Lewandowska E, Kujawa M, Jedrzejewska A. Ethanol-induced changes in Purkinje cells of the rat cerebellum. I. The ultrastructural changes following chronic ethanol intoxication (qualitative study). Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences 1994; 32: 51-59
  • 23 Sechi G, Serra A. Wernicke's encephalopathy: new clinical settings and recent advances in diagnosis and management. The Lancet Neurology 2007; 6: 442-455
  • 24 Lough ME. Wernicke's encephalopathy: expanding the diagnostic toolbox. Neuropsychology review 2012; 22: 181-194
  • 25 Scalzo SJ, Bowden SC, Ambrose ML et al. Wernicke-Korsakoff syndrome not related to alcohol use: a systematic review. Journal of neurology, neurosurgery, and psychiatry 2015; DOI: 10.1136/jnnp-2014-309598.
  • 26 Chiotoroiu SM, Noaghi M, Stefaniu GI et al. Tobacco-alcohol optic neuropathy--clinical challenges in diagnosis. Journal of medicine and life 2014; 7: 472-476
  • 27 Langmeier M, Folbergrova J, Haugvicova R et al. Neuronal cell death in hippocampus induced by homocysteic acid in immature rats. Epilepsia 2003; 44: 299-304
  • 28 Zelaya FO, Rose SE, Nixon PF et al. MRI demonstration of impairment of the blood-CSF barrier by glucose administration to the thiamin-deficient rat brain. Magnetic resonance imaging 1995; 13: 555-561
  • 29 Blass JP, Gibson GE. Abnormality of a thiamine-requiring enzyme in patients with Wernicke-Korsakoff syndrome. The New England journal of medicine 1977; 297: 1367-1370
  • 30 Galvin R, Brathen G, Ivashynka A et al. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. European journal of neurology: the official journal of the European Federation of Neurological Societies 2010; 17: 1408-1418
  • 31 Sullivan EV, Marsh L. Hippocampal volume deficits in alcoholic Korsakoff's syndrome. Neurology 2003; 61: 1716-1719
  • 32 Meyer JS, Tanahashi N, Ishikawa Y et al. Cerebral atrophy and hypoperfusion improve during treatment of Wernicke-Korsakoff syndrome. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 1985; 5: 376-385
  • 33 Benson DF, Djenderedjian A, Miller BL et al. Neural basis of confabulation. Neurology 1996; 46: 1239-1243
  • 34 Antunez E, Estruch R, Cardenal C et al. Usefulness of CT and MR imaging in the diagnosis of acute Wernicke's encephalopathy. Am J Roentgenol 1998; 171: 1131-1137
  • 35 Hillbom M, Saloheimo P, Fujioka S et al. Diagnosis and management of Marchiafava-Bignami disease: a review of CT/MRI confirmed cases. Journal of neurology, neurosurgery, and psychiatry 2014; 85: 168-173
  • 36 Hlaihel C, Gonnaud PM, Champin S et al. Diffusion-weighted magnetic resonance imaging in Marchiafava-Bignami disease: follow-up studies. Neuroradiology 2005; 47: 520-524
  • 37 Aggunlu L, Oner Y, Kocer B et al. The value of diffusion-weighted imaging in the diagnosis of Marchiafava-Bignami disease: apropos of a case. Journal of neuroimaging: official journal of the American Society of Neuroimaging 2008; 18: 188-190
  • 38 Namekawa M, Nakamura Y, Nakano I. Cortical involvement in Marchiafava-Bignami disease can be a predictor of a poor prognosis: a case report and review of the literature. Internal medicine 2013; 52: 811-813
  • 39 Sair HI, Mohamed FB, Patel S et al. Diffusion tensor imaging and fiber-tracking in Marchiafava-Bignami disease. Journal of neuroimaging: official journal of the American Society of Neuroimaging 2006; 16: 281-285
  • 40 Kealey SM, Provenzale JM. Tensor diffusion imaging in B12 leukoencephalopathy. Journal of computer assisted tomography 2002; 26: 952-955
  • 41 Kocaoglu C, Akin F, Caksen H et al. Cerebral atrophy in a vitamin B12-deficient infant of a vegetarian mother. Journal of health, population, and nutrition 2014; 32: 367-371
  • 42 Zittel S, Ufer F, Gerloff C et al. Severe myelopathy after denture cream use--is copper deficiency or excess zinc the cause?. Clinical neurology and neurosurgery 2014; 121: 17-18
  • 43 Zipursky RB, Lim KC, Pfefferbaum A. MRI study of brain changes with short-term abstinence from alcohol. Alcoholism, clinical and experimental research 1989; 13: 664-666
  • 44 Meyerhoff DJ, Bode C, Nixon SJ et al. Health risks of chronic moderate and heavy alcohol consumption: how much is too much?. Alcoholism, clinical and experimental research 2005; 29: 1334-1340
  • 45 Paul CA, Au R, Fredman L et al. Association of alcohol consumption with brain volume in the Framingham study. Archives of neurology 2008; 65: 1363-1367
  • 46 Monnig MA, Caprihan A, Yeo RA et al. Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychology of addictive behaviors: journal of the Society of Psychologists in Addictive Behaviors 2013; 27: 455-465
  • 47 Pfefferbaum A, Sullivan EV, Mathalon DH et al. Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics. Alcoholism, clinical and experimental research 1995; 19: 1177-1191
  • 48 Schauss G, Schild H, Urban R et al. 1H-MR spectroscopic imaging: an approach to evaluating alcohol breakdown in the brain. RoFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin 1994; 160: 493-499
  • 49 Zahr NM, Mayer D, Rohlfing T et al. Brain injury and recovery following binge ethanol: evidence from in vivo magnetic resonance spectroscopy. Biological psychiatry 2010; 67: 846-854
  • 50 Schweinsburg BC, Taylor MJ, Alhassoon OM et al. Chemical pathology in brain white matter of recently detoxified alcoholics: a 1H magnetic resonance spectroscopy investigation of alcohol-associated frontal lobe injury. Alcoholism, clinical and experimental research 2001; 25: 924-934
  • 51 Bartsch AJ, Homola G, Biller A et al. Manifestations of early brain recovery associated with abstinence from alcoholism. Brain: a journal of neurology 2007; 130: 36-47
  • 52 Bergmann KE, Bergmann RL, Ellert U et al. Perinatal risk factors for long-term health. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2007; 50: 670-676
  • 53 Lebel C, Rasmussen C, Wyper K et al. Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcoholism, clinical and experimental research 2008; 32: 1732-1740
  • 54 Petit G, Maurage P, Kornreich C et al. Binge drinking in adolescents: a review of neurophysiological and neuroimaging research. Alcohol and alcoholism 2014; 49: 198-206
  • 55 Landgraf MN, Nothacker M, Heinen F. Diagnosis of fetal alcohol syndrome (FAS): German guideline version 2013. European journal of paediatric neurology: EJPN: official journal of the European Paediatric Neurology Society 2013; 17: 437-446
  • 56 Lantz CL, Pulimood NS, Rodrigues-Junior WS et al. Visual defects in a mouse model of fetal alcohol spectrum disorder. Frontiers in pediatrics 2014; 2: 107
  • 57 Bookstein FL, Connor PD, Huggins JE et al. Many infants prenatally exposed to high levels of alcohol show one particular anomaly of the corpus callosum. Alcoholism, clinical and experimental research 2007; 31: 868-879
  • 58 Astley SJ, Aylward EH, Olson HC et al. Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcoholism, clinical and experimental research 2009; 33: 1671-1689
  • 59 Nardelli A, Lebel C, Rasmussen C et al. Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol spectrum disorders. Alcoholism, clinical and experimental research 2011; 35: 1404-1417
  • 60 Coles CD, Goldstein FC, Lynch ME et al. Memory and brain volume in adults prenatally exposed to alcohol. Brain and cognition 2011; 75: 67-77
  • 61 Wozniak JR, Mueller BA, Bell CJ et al. Global functional connectivity abnormalities in children with fetal alcohol spectrum disorders. Alcoholism, clinical and experimental research 2013; 37: 748-756
  • 62 du Plessis L, Jacobson JL, Jacobson SW et al. An in vivo 1H magnetic resonance spectroscopy study of the deep cerebellar nuclei in children with fetal alcohol spectrum disorders. Alcoholism, clinical and experimental research 2014; 38: 1330-1338
  • 63 Fagerlund A, Heikkinen S, Autti-Ramo I et al. Brain metabolic alterations in adolescents and young adults with fetal alcohol spectrum disorders. Alcoholism, clinical and experimental research 2006; 30: 2097-2104
  • 64 Juvela S, Lehto H. Risk factors for all-cause death after diagnosis of unruptured intracranial aneurysms. Neurology 2015; 84: 456-463
  • 65 Feigin VL, Rinkel GJ, Lawes CM et al. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke: a journal of cerebral circulation 2005; 36: 2773-2780
  • 66 Vlak MH, Rinkel GJ, Greebe P et al. Independent risk factors for intracranial aneurysms and their joint effect: a case-control study. Stroke: a journal of cerebral circulation 2013; 44: 984-987
  • 67 You SH, Kong DS, Kim JS et al. Characteristic features of unruptured intracranial aneurysms: predictive risk factors for aneurysm rupture. Journal of neurology, neurosurgery, and psychiatry 2010; 81: 479-484
  • 68 Juvela S, Porras M, Heiskanen O. Natural history of unruptured intracranial aneurysms: a long-term follow-up study. Journal of neurosurgery 1993; 79: 174-182