Hamostaseologie 2004; 24(02): 108-115
DOI: 10.1055/s-0037-1619616
In eigener Sache
Schattauer GmbH

Molekularbiologie der Gerinnung: Fibrinogen, Faktor XIII

Molecular biology of haemostasis: fibrinogen, factor XIII
M. Meyer
1   Fachhochschule Jena, Fachbereich Medizintechnik
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung

Genetische Defekte des Fibrinogens werden durch ein breites Spektrum an Mutationen in einem der drei beteiligten Strukturgene (FGA, FGB, FGG) verursacht. Sie führen zu einem kompletten oder partiellen Fibrinogenmangel im Plasma (A- bzw. Hypofibrinogenämie) oder zu strukturellen Veränderungen, die das Protein funktionell beeinträchtigen (Dysfibrinogenämien). Während bei den autosomal rezessiv vererbten Afibrinogenämien Nonsense-, Frameshift- und Splice-site-Mutationen im Vordergrund stehen, die zu deutlich verkürzten Polypeptidketten (vor allem Aα) führen, werden die meist heterozygoten Dys- und Hypofibrinogenämien überwiegend durch Missense-Mutationen verursacht, die den Austausch einzelner Aminosäureren zur Folge haben. Bei den quantitativen Fibrinogendefekten wird eine unterschiedlich stark erhöhte Blutungsbereitschaft beobachtet. Die Dysfibrinogenämien treten klinisch sowohl als Blutungs- wie auch als Thromboseneigung in Erscheinung. Einige Defekte sind mit einer Kombination von Blutungs- und thromboembolischen Symptomen assoziiert. Etwa die Hälfte der Fälle von Dysfibrinogenämie sind klinisch asymptomatisch.

Der plasmatische Faktor XIII (FXIII) stellt ein Heterotetramer aus je zwei A- und B-Untereinheiten dar, die von unterschiedlichen Genen kodiert werden. Die häufigste Form des mit Blutungen, Wundheilungsstörungen und einer Neigung zu Spontanaborten einhergehenden genetisch bedingten FXIII-Mangels geht auf Defekte der A-Untereinheit zurück, die wiederum durch ein sehr breites Spektrum von Mutationen verursacht werden. Defekte der B-Untereinheit sind sehr selten und bisher nur in wenigen Fällen molekular aufgeklärt.

Summary

Genetic defects of fibrinogen are caused by a broad spectrum of mutations in one of the three structural genes FGA, FGB and FGG. They result in complete or partial lack of plasma fibrinogen (a- or hypofibrinogenaemia) or in structural abnormalities affecting protein function (dysfibrinogenaemia). In contrast to afibrinogenaemia mainly caused by nonsense, frameshift, and splice site mutations resulting in substantially truncated polypeptide chains (mainly Aα), in hypo- and dysfibrinogenaemias missense mutations lead to the exchange of single amino acids as dominating underlying defect. In the cases with quantitative disorders, bleeding with various degrees of severity is generally observed. Dysfibrinogenaemia is associated with both bleeding or thrombosis or even a combination of haemorrhagic and thromboembolic symptoms. About one half of the dysfibrinogenaemic cases is clinically asymptomatic. The plasmatic factor XIII (FXIII) is a heterotetramer composed of two A and two B subunits encoded by two different genes. FXIII deficiency is associated with bleeding, wound dehiscence and recurrent spontaneous abortions. The most frequent form is caused by defects in the A subunit with a broad spectrum of underlying mutations. Defects of the B subunit are very rare and were molecularly elucidated in only a few cases.

 
  • Literatur

  • 1 Anwar R, Miloszewski KJ. Factor XIII deficiency. Br J Haematol 1999; 107: 468-84.
  • 2 Ariens RAS, Philippou H, Nagaswami C. et al. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96: 988-95.
  • 3 Asl LH, Liepnieks JJ, Uemichi T. et al. Renal amyloidosis with a frame shift mutation in fibrinogen Aα-chain gene producing a novel amyloid protein. Blood 1997; 90: 4799-805.
  • 4 Beck EA. Congenital abnormalities of fibrinogen. Clin Haematol 1979; 8: 169-81.
  • 5 Benson MD, Liepnieks J, Uemichi T. et al. Hereditary renal amyloidosis associated with a mutant fibrinogen α-chain. Nature Genet 1993; 3: 252-5.
  • 6 Blombäck M, Blombäck B, Mammen EF. et al. Fibrinogen Detroit – a molecular defect in the N-terminal disulphide knot of human fibrinogen. Nature 1968; 218: 134-7.
  • 7 Board PG, Losowsky MS, Miloszewski JA. Factor XIII: Inherited and acquired deficiency. Blood Rev 1993; 7: 229-42.
  • 8 Brennan SO, Fellowes AP, George PM. Molecular mechanisms of hypo- and afibrinogenemia. Ann NY Acad Sci 2001; 936: 91-100.
  • 9 Catto AJ, Kohler HP, Bannan S. et al. Factor XIII Val34Leu: a novel association with primary intracerebral hemorrhage. Stroke 1998; 29: 813-6.
  • 10 Chung DW, Harris JE, Davie EW. Nucleotide sequences of the three genes coding for human fibrinogen. In: Fibrinogen, thrombosis, coagulation, and fibrinolysis. Liu CY, Chien S. (Hrsg). New York: Plenum Press; 1990: 39-47.
  • 11 Cunnigham MT, Brandt JT, Laposata M. et al. Laboratory diagnosis of dysfibrinogenemia. Arch Pathol Lab Med 2002; 126: 499-505.
  • 12 Doolittle RF. Fibrinogen and fibrin. Ann Rev Biochem 1984; 53: 195-229.
  • 13 Duckert F, Jung E, Shmerling DH. A hitherto undescribed congenital hemorrhagic diathesis probably due to fibrin stabilizing factor deficiency. Thromb Diathes Haemorrh 1960; 5: 179-86.
  • 14 Dufner GS, Marbet GA. Der Faktor XIII des Menschen: eine Übersicht. Hämostaseologie 2002; 22: 1-7.
  • 15 Duga S, Asselta R, Santagostino E. et al. Missense mutations in the human beta fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood 2000; 95: 1336-41.
  • 16 Ebert RF. Index of variant human fibrinogen. Boca Raton: CRC Press; 1994
  • 17 Ernst E, Koenig W. Fibrinogen and cardiovascular risk. Vasc Med 1997; 2: 115-25.
  • 18 Fibrinogen variants database. www.geht.org
  • 19 Franco RF, Reitsma PH, Lourenco D. et al. Factor XIII Val34Leu is a genetic factor involved in the aetiology of venous thrombosis. Thromb Haemost 1999; 81: 676-9.
  • 20 Green F. Fibrinogen polymorphisms and atherothrombotic disease. Ann NY Acad Sci 2001; 936: 549-59.
  • 21 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC subcommittee on fibrinogen. Thromb Haemost 1995; 73: 151-61.
  • 22 Henschen A, Kehl M, Lottspeich F. et al. Genetically abnormal fibrinogens – some current characterisation strategies. In: Haverkate F, Henschen A, Nieuwenhuizen W. et al. (Hrsg). Fibrinogen. Structure, Functional Aspects, Metabolism. Berlin: Walter de Gruyter; 1983. Vol. 2 125-44.
  • 23 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Zwaal RFA, Hemker HC. (Hrsg). Blood Coagulation. Amsterdam: Elsevier Science; 1986: 171-241.
  • 24 Ichinose A. Physiopathology and regulation of factor XIII. Thromb Haemost 2001; 86: 57-65.
  • 25 Kant JA, Fornace Jr AJ, Saxe D. et al. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA 1985; 80: 3953-7.
  • 26 Kohler HP, Schröder V. Die Rolle von Faktor XIII bei kardio- und zerebrovaskulären Erkrankungen. Hämostaseologie 2002; 22: 39-44.
  • 27 Kohler HP, Stickland MH, Ossei-Gerning N. et al. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998; 79: 8-13.
  • 28 Koopman J, Haverkate F, Grimbergen J. et al. Fibrinogen Marburg: A homozygous case of dysfibrinogenemia, lacking amino acids Aα 461-610 (Lys 461 AAA → stop TAA). Blood 1992; 80: 1972-9.
  • 29 Koopman J, Haverkate F, Grimbergen J. et al. The molecular basis for fibrinogen Dusart (Aα554Arg→Cys) and its association with abnormal polymerization and thrombophilia. J Clin Invest 1993; 91: 1637-43.
  • 30 Koseki S, Souri M, Koga S. et al. Truncated mutant B subunit for factor XIII causes its deficiency due to impaired intracellular transportation. Blood 2001; 97: 2667-72.
  • 31 Lorand L, Jeong JM, Radek JT. et al. Human plasma factor XIII: Subunit interactions and activation of zymogen. Meth Enzymol 1993; 222: 22-35.
  • 32 Matsuda M, Sugo T. Hereditary disorders of fibrinogen. Ann NY Acad Sci 2001; 936: 65-88.
  • 33 Meyer M, Kutscher G, Binnewies T. et al. Fibrinogen Hannover II: Characterization of a new case of dysfibrinogenemia associated with thromboembolic disease. Thromb Haemost 1999; (suppl) 780.
  • 34 Mosesson MW. Fibrinogen structure and fibrin clot assembly. Semin Thromb Hemost 1998; 24: 169-74.
  • 35 Neerman-Arbez M, Honsberger A, Antonarakis SE. et al. Deletion of the fibrinogen alpha-chain gene (FGA) causes congenital afibrinogenemia. J Clin Invest 1999; 103: 215-8.
  • 36 Neerman-Arbez M. Fibrinogen gene mutations accounting for congenital afibrinogenemia. Ann NY Acad Sci 2001; 936: 496-508.
  • 37 Okumura N, Terasawa F, Yonekawa O. et al. Hypofibrinogenemia associated with a heterozygous C>T nucleotide substitution at position -1138 BP of the 5’-flanking region of the fibrinogen A alpha-chain gene. Ann NY Acad Sci 2001; 936: 526-30.
  • 38 Rupp C, Beck EA. Congenital dysfibrinogenemia. Curr Probl Clin Biochem 1984; 14: 65-130.
  • 39 Sicker T, Hilgenfeld R. Blutgerinnungsfaktor XIII:Aktivierung, Substrate und Struktur einer Transglutaminase. Hämostaseologie 2002; 22: 21-7.
  • 40 Souri M, Izumi T, Higashi Y. et al. A founder effect is proposed for factor XIII B subunit deficiency caused by the insertion of triplet AAC in exon III encoding the second Sushi domain. Thromb Haemost 1998; 80: 211-3.
  • 41 Terasawa F, Okumura N, Kitano K. et al. Hypofibrinogenemia associated with a heterozygous missense mutation γ153Cys to Arg (Matsumoto IV): In vitro expression demonstrates defective secretion of the variant fibrinogen. Blood 1999; 94: 4122-31.
  • 42 Trumbo TA, Maurer MC. Examining thrombin hydrolysis of the factor XIII activation peptide segment leads to a proposal for explaining the cardioprotective effects observed with the factor XIIIVal34Leu mutation. J Biol Chem 2000; 275: 20627-31.
  • 43 Wada Y, Lord ST. A correlation between thrombotic disease and a specific fibrinogen abnormality (Aα 554 Arg→Cys) in two unrelated kindred: Dusart and Chapel Hill III. Blood 1994; 84: 3709-14.
  • 44 Weisel JW, Cederholm-Williams SA. Fibrinogen and fibrin: Characterization, processing and medical applications. In: Domb AJ, Kast J, Wiseman DM. (Hrsg). Handbook of Biodegradable Polymers. Amsterdam: Warwood; 1999: 347-65.