Thorac Cardiovasc Surg 2021; 69(S 01): S1-S85
DOI: 10.1055/s-0041-1725689
Oral Presentations
Sunday, February 28
Innovative Herzchirurgie

Transcatheter Mitral Valve Replacement (TMVR): A Novel Anchor Technology

Y. Liu
1   Kiel, Deutschland
,
K. Huenges
1   Kiel, Deutschland
,
P. Knüppel
1   Kiel, Deutschland
,
D. Frank
1   Kiel, Deutschland
,
R. Berndt
1   Kiel, Deutschland
,
J. Cremer
1   Kiel, Deutschland
,
T. Puehler
1   Kiel, Deutschland
,
G. Lutter
1   Kiel, Deutschland
› Author Affiliations

Objectives: Mitral valved stents tend to migrate or to develop paravalvular leakage due to high left ventricular pressure in the cavity. Thus, this study describes a newly developed mitral valved stent anchoring technology.

Methods: Based on an existing mitral valved stent, four anchoring units with curved surgical needles were designed and fabricated using 3D-software and print technology. Mitral nitinol stents assembled with four anchoring units were successively fixed on 10 porcine annuli. Mechanical tests were performed with a tensile force test system and recorded the tension forces of the 10 nitinol stents on the annulus.

Result: The average maximum force was 28.3 ± 5.21 N, the lowest was 21.7 N, the highest was 38.6 N until the stent lost contact with the annulus; for the break force (zero movement of stent from annulus), the average value was 18.5 ± 6.7 N with a maximum value of 26.9 N and a minimum value of 6.07 N. It was additionally observed that the puncture needles of the anchoring units passed into the mitral annulus in all 10 hearts and further penetrated the myocardium in only one additional heart. The anchoring units enhanced the tightness of the mitral valved stent and did not destroy the circumflex coronary artery, coronary sinus, right atrium, aortic root, or the left ventricular outflow tract.

Conclusion: The new anchoring units for mitral nitinol stents were produced with 3D software and printing technology: with this new type of anchoring technology, the mitral-valved stent can be tightly fixed toward the mitral annulus.



Publication History

Article published online:
19 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany