CC BY-NC-ND 4.0 · Semin Musculoskelet Radiol 2023; 27(06): 661-675
DOI: 10.1055/s-0043-1775745
Review Article

Up-and-coming Radiotracers for Imaging Pain Generators

Rianne A. van der Heijden
1   Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
,
Sandip Biswal
2   Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
› Author Affiliations

Abstract

Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.

Disclosure

The University of Wisconsin-Madison receives research support from Bracco Diagnostics unrelated to this work.




Publication History

Article published online:
07 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rikard SM, Strahan AE, Schmit KM, Guy Jr GP. Chronic pain among adults - United States, 2019-2021. MMWR Morb Mortal Wkly Rep 2023; 72 (15) 379-385
  • 2 Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain 2012; 13 (08) 715-724
  • 3 Brinjikji W, Luetmer PH, Comstock B. et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 2015; 36 (04) 811-816
  • 4 Sheet LBPF. Office of Communications and Public Liaison National Institute of Neurological Disorders and Stroke. National Institutes of Health Department of Health and Human Services. Bethesda, Maryland 20892-2540. NIH Publication No. 20-NS-5161; March 2020. Available at: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet . Accessed September 26, 2023
  • 5 Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017; 389 (10070): 736-747
  • 6 Ashworth J, Green DJ, Dunn KM, Jordan KP. Opioid use among low back pain patients in primary care: Is opioid prescription associated with disability at 6-month follow-up?. Pain 2013; 154 (07) 1038-1044
  • 7 Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 1994; 331 (02) 69-73
  • 8 Lurie JD, Birkmeyer NJ, Weinstein JN. Rates of advanced spinal imaging and spine surgery. Spine Phila Pa 1976 2003; 28 (06) 616-620
  • 9 Chou R, Fu R, Carrino JA, Deyo RA. Imaging strategies for low-back pain: systematic review and meta-analysis. Lancet 2009; 373 (9662): 463-472
  • 10 Mazza DF, Boutin RD, Chaudhari AJ. Assessment of myofascial trigger points via imaging: a systematic review. Am J Phys Med Rehabil 2021; 100 (10) 1003-1014
  • 11 Penna A, Konstantatos AH, Cranwell W, Paul E, Bruscino-Raiola FR. Incidence and associations of painful neuroma in a contemporary cohort of lower-limb amputees. ANZ J Surg 2018; 88 (05) 491-496
  • 12 Fitzcharles MA, Cohen SP, Clauw DJ, Littlejohn G, Usui C, Häuser W. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet 2021; 397 (10289): 2098-2110
  • 13 Littlejohn G. Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome. Nat Rev Rheumatol 2015; 11 (11) 639-648
  • 14 Bennett GJ. Can we distinguish between inflammatory and neuropathic pain?. Pain Res Manag 2006; 11: 11-15
  • 15 Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 150 (3699): 971-979
  • 16 St John Smith E. Advances in understanding nociception and neuropathic pain. J Neurol 2018; 265 (02) 231-238
  • 17 Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain 2008; 137 (03) 473-477
  • 18 Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007; 10 (11) 1361-1368
  • 19 Mustafa S, Bajic JE, Barry B. et al. One immune system plays many parts: the dynamic role of the immune system in chronic pain and opioid pharmacology. Neuropharmacology 2023; 228: 109459
  • 20 Kuner R. Central mechanisms of pathological pain. Nat Med 2010; 16 (11) 1258-1266
  • 21 Tung KW, Behera D, Biswal S. Neuropathic pain mechanisms and imaging. Semin Musculoskelet Radiol 2015; 19 (02) 103-111
  • 22 Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009; 32: 1-32
  • 23 Sweitzer SM, Hickey WF, Rutkowski MD, Pahl JL, DeLeo JA. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 2002; 100 (1–2): 163-170
  • 24 Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003; 2 (12) 973-985
  • 25 Hu P, Bembrick AL, Keay KA, McLachlan EM. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007; 21 (05) 599-616
  • 26 Santoro A, Mattace Raso G, Taliani S. et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci 2016; 88: 124-131
  • 27 Zhang L, Hu K, Shao T. et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11 (02) 373-393
  • 28 Hao C, Ma B, Gao N, Jin T, Liu X. Translocator protein (TSPO) alleviates neuropathic pain by activating spinal autophagy and nuclear SIRT1/PGC-1α signaling in a rat L5 SNL model. J Pain Res 2022; 15: 767-778
  • 29 Papadopoulos V, Lecanu L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. Exp Neurol 2009; 219 (01) 53-57
  • 30 Imamoto N, Momosaki S, Fujita M. et al. [11C]PK11195 PET imaging of spinal glial activation after nerve injury in rats. Neuroimage 2013; 79: 121-128
  • 31 Shimochi S, Keller T, Kujala E. et al. Evaluation of [18F]F-DPA PET for detecting microglial activation in the spinal cord of a rat model of neuropathic pain. Mol Imaging Biol 2022; 24 (04) 641-650
  • 32 Cropper HC, Johnson EM, Haight ES. et al. Longitudinal translocator protein-18 kDa-positron emission tomography imaging of peripheral and central myeloid cells in a mouse model of complex regional pain syndrome. Pain 2019; 160 (09) 2136-2148
  • 33 Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35 (12) 2304-2319
  • 34 Boutin H, Chauveau F, Thominiaux C. et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 2007; 48 (04) 573-581
  • 35 Albrecht DS, Ahmed SU, Kettner NW. et al. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain 2018; 159 (05) 968-977
  • 36 Loggia ML, Chonde DB, Akeju O. et al. Evidence for brain glial activation in chronic pain patients. Brain 2015; 138 (Pt 3): 604-615
  • 37 Alshelh Z, Brusaferri L, Saha A. et al. Neuroimmune signatures in chronic low back pain subtypes. Brain 2022; 145 (03) 1098-1110
  • 38 Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P. Can Studies of Neuroinflammation in a TSPO Genetic Subgroup. Can studies of neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort?. J Nucl Med 2015; 56 (05) 707-713
  • 39 Tan Z, Haider A, Zhang S. et al. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res 2023; 189: 106681
  • 40 Díaz JL, Zamanillo D, Corbera J. et al. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 2009; 9 (03) 172-183
  • 41 Gannon CJ, Malone DL, Napolitano LM. Reduction of IL-10 and nitric oxide synthesis by SR31747A (sigma ligand) in RAW murine macrophages. Surg Infect (Larchmt) 2001; 2 (04) 267-272 , discussion 273
  • 42 Palacios G, Muro A, Verdú E, Pumarola M, Vela JM. Immunohistochemical localization of the sigma1 receptor in Schwann cells of rat sciatic nerve. Brain Res 2004; 1007 (1-2): 65-70
  • 43 Yoon D, Kogan F, Gold GE, Biswal S. Identifying musculoskeletal pain generators using clinical PET. Semin Musculoskelet Radiol 2020; 24 (04) 441-450
  • 44 Shen B, Behera D, James ML. et al. Visualizing nerve injury in a neuropathic pain model with [18F]FTC-146 PET/MRI. Theranostics 2017; 7 (11) 2794-2805
  • 45 Shen B, James ML, Andrews L. et al. Further validation to support clinical translation of [(18)F]FTC-146 for imaging sigma-1 receptors. EJNMMI Res 2015; 5 (01) 49
  • 46 James ML, Shen B, Zavaleta CL. et al. New positron emission tomography (PET) radioligand for imaging σ-1 receptors in living subjects. J Med Chem 2012; 55 (19) 8272-8282
  • 47 Ghanouni P, Behera D, Xie J, Chen X, Moseley M, Biswal S. In vivo USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury. Mol Pain 2012; 8: 49
  • 48 Shen S, Ding W, Ahmed S. et al. Ultrasmall superparamagnetic iron oxide imaging identifies tissue and nerve inflammation in pain conditions. Pain Med 2018; 19 (04) 686-692
  • 49 Nguyen KL, Yoshida T, Kathuria-Prakash N. et al. Multicenter safety and practice for off-label diagnostic use of ferumoxytol in MRI. Radiology 2019; 293 (03) 554-564
  • 50 Chang CT, Jiang BY, Chen CC. Ion channels involved in substance P-mediated nociception and antinociception. Int J Mol Sci 2019; 20 (07) 1596
  • 51 Dirig DM, Yaksh TL. Thermal hyperalgesia in rat evoked by intrathecal substance P at multiple stimulus intensities reflects an increase in the gain of nociceptive processing. Neurosci Lett 1996; 220 (02) 93-96
  • 52 Honor P, Menning PM, Rogers SD. et al. Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. J Neurosci 1999; 19 (17) 7670-7678
  • 53 Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 2002; 22 (02) 478-485
  • 54 Breeman WA, VanHagen MP, Visser-Wisselaar HA. et al. In vitro and in vivo studies of substance P receptor expression in rats with the new analog [indium-111-DTPA-Arg1]substance P. J Nucl Med 1996; 37 (01) 108-117
  • 55 Yasuno F, Sanabria SM, Burns D, Hargreaves RJ, Ghose S, Ichise M. et al. PET imaging of neurokinin-1 receptors with [(18)F]SPA-RQ in human subjects: assessment of reference tissue models and their test-retest reproducibility. Synap N Y N 2007; 61 (04) 242-251
  • 56 Bergström M, Hargreaves RJ, Burns HD. et al. Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol Psychiatry 2004; 55 (10) 1007-1012
  • 57 Majkowska-Pilip A, Halik PK, Gniazdowska E. The significance of NK1 receptor ligands and their application in targeted radionuclide tumour therapy. Pharmaceutics 2019; 11 (09) 443
  • 58 Peciña M, Karp JF, Mathew S, Todtenkopf MS, Ehrich EW, Zubieta JK. Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches. Mol Psychiatry 2019; 24 (04) 576-587
  • 59 Kaur T, Wiesner N, Kilbourn MR, Scott PJH. Classics in neuroimaging: shedding light on opioid receptors with positron emission tomography imaging. ACS Chem Neurosci 2020; 11 (19) 2906-2914
  • 60 El Daibani A, Che T. Spotlight on nociceptin/orphanin FQ receptor in the treatment of pain. Molecules 2022; 27 (03) 595
  • 61 Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288 (5472): 1765-1769
  • 62 Jain NK, Ishikawa TO, Spigelman I, Herschman HR. COX-2 expression and function in the hyperalgesic response to paw inflammation in mice. Prostaglandins Leukot Essent Fatty Acids 2008; 79 (06) 183-190
  • 63 Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET imaging of neuroinflammation targeting COX-2 enzyme. Molecules 2021; 26 (11) 3208
  • 64 de Vries EFJ, van Waarde A, Buursma AR, Vaalburg W. Synthesis and in vivo evaluation of 18F-desbromo-DuP-697 as a PET tracer for cyclooxygenase-2 expression. J Nucl Med 2003; 44 (10) 1700-1706
  • 65 Kaur J, Bhardwaj A, Wuest F. Fluorine-18 labelled radioligands for PET imaging of cyclooxygenase-2. Molecules 2022; 27 (12) 3722
  • 66 Shrestha S, Kim MJ, Eldridge M. et al. PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation 2020; 17 (01) 140
  • 67 Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 2004; 108 (03) 237-247
  • 68 Pertin M, Ji RR, Berta T. et al. Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. J Neurosci 2005; 25 (47) 10970-10980
  • 69 Ekberg J, Adams DJ. Neuronal voltage-gated sodium channel subtypes: key roles in inflammatory and neuropathic pain. Int J Biochem Cell Biol 2006; 38 (12) 2005-2010
  • 70 Strickland IT, Martindale JC, Woodhams PL, Reeve AJ, Chessell IP, McQueen DS. Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain. Eur J Pain 2008; 12 (05) 564-572
  • 71 Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways. J Neurobiol 2004; 61 (01) 55-71
  • 72 Bigsby S, Neapetung J, Campanucci VA. Voltage-gated sodium channels in diabetic sensory neuropathy: function, modulation, and therapeutic potential. Front Cell Neurosci 2022; 16: 994585
  • 73 Hoehne A, Behera D, Parsons WH. et al. A 18F-labeled saxitoxin derivative for in vivo PET-MR imaging of voltage-gated sodium channel expression following nerve injury. J Am Chem Soc 2013; 135 (48) 18012-18015
  • 74 Ouwerkerk R. Sodium magnetic resonance imaging: from research to clinical use. J Am Coll Radiol 2007; 4 (10) 739-741
  • 75 Bartolo ND, Reid SE, Krishnan HS. et al. Radiocaine: an imaging marker of neuropathic injury. ACS Chem Neurosci 2022; 13 (24) 3661-3667
  • 76 Cao YQ. Voltage-gated calcium channels and pain. Pain 2006; 126 (1-3): 5-9
  • 77 Jevtovic-Todorovic V, Todorovic SM. The role of peripheral T-type calcium channels in pain transmission. Cell Calcium 2006; 40 (02) 197-203
  • 78 McGivern JG, McDonough SI. Voltage-gated calcium channels as targets for the treatment of chronic pain. Curr Drug Targets CNS Neurol Disord 2004; 3 (06) 457-478
  • 79 Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 2003; 97 (04) 1108-1116
  • 80 Chen J, Li L, Chen SR. et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 2018; 22 (09) 2307-2321
  • 81 Chen Y, Wu Q, Jin Z, Qin Y, Meng F, Zhao G. Review of voltage-gated calcium channel α2δ subunit ligands for the treatment of chronic neuropathic pain and insight into structure-activity relationship (SAR) by pharmacophore modeling. Curr Med Chem 2022; 29 (30) 5097-5112
  • 82 Zhou YP, Sun Y, Takahashi K. et al. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain. Eur J Med Chem 2022; 242: 114688
  • 83 Behera D, Behera S, Jacobs KE, Biswal S. Bilateral peripheral neural activity observed in vivo following unilateral nerve injury. Am J Nucl Med Mol Imaging 2013; 3 (03) 282-290
  • 84 Lin W, Wilkinson JT, Barrett KE. et al. Excitation function of 54Fe(p,α)51Mn from 9.5 MeV to 18 MeV. Nucl Phys A 2022; 1021: 122424 DOI: 10.1016/j.nuclphysa.2022.122424.
  • 85 Graves SA, Hernandez R, Valdovinos HF. et al. Preparation and in vivo characterization of 51MnCl2 as PET tracer of Ca2+ channel-mediated transport. Sci Rep 2017; 8;7 (01) 3033 DOI: 10.1038/s41598-017-03202-0.
  • 86 Cui Y, Neyama H, Hu D. et al. FDG PET imaging of the pain matrix in neuropathic pain model rats. Biomedicines 2022; 11 (01) 63
  • 87 Behera D, Jacobs KE, Behera S, Rosenberg J, Biswal S. (18)F-FDG PET-MRI can be used to identify injured peripheral nerves in a model of neuropathic pain. J Nucl Med 2011; 52 (08) 1308-1312
  • 88 Nam JW, Lee MJ, Kim HJ. Diagnostic Efficacy of 18F-FDG PET/MRI in Peripheral Nerve Injury Models. Neurochem Res 2019; 44 (09) 2092-2102
  • 89 Cheng G, Chamroonrat W, Bing Z, Huang S, Zhuang H. Elevated FDG activity in the spinal cord and the sciatic nerves due to neuropathy. Clin Nucl Med 2009; 34 (12) 950-951
  • 90 Biswal S, Behera D, Yoon DH. et al. [18F]FDG PET/MRI of patients with chronic pain alters management: early experience. EJNMMI Phys 2015; 2 (1, Suppl 1): A84
  • 91 Cipriano PW, Yoon D, Holley D. et al. Diagnosis and successful management of an unusual presentation of chronic foot pain using positron emission tomography/magnetic resonance imaging and a simple surgical procedure. Clin J Sport Med 2020; 30 (01) e11-e14
  • 92 Cipriano P, Yoon D, Gandhi H. et al. 18F-FDG PET/MRI in chronic sciatica: early results revealing spinal and non-spinal abnormalities. J Nucl Med 2018; 59 (06) 967-972
  • 93 Yoon D, Xu Y, Cipriano PW. et al. Neurovascular, muscle, and skin changes on [18F]FDG PET/MRI in complex regional pain syndrome of the foot: a prospective clinical study. Pain Med 2022; 23 (02) 339-346