Semin Thromb Hemost 2002; 28(2): 215-226
DOI: 10.1055/s-2002-27823
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Recombinant von Willebrand Factor-Insight into Structure and Function through Infusion Studies in Animals with Severe von Willebrand Disease

Hans Peter Schwarz, Uwe Schlokat, Artur Mitterer, Katalin Váradi, Herbert Gritsch, Eva-Maria Muchitsch, Wilfried Auer, Ludwig Pichler, Friedrich Dorner, Peter L. Turecek
  • Baxter BioScience, Vienna, Austria
Further Information

Publication History

Publication Date:
03 May 2002 (online)

ABSTRACT

We used a canine and a murine model of von Willebrand disease (vWD) to study the in vivo effects of recombinant von Willebrand factor (vWF). Two preparations were used: (1) a fully processed mature vWF; this was achieved by coexpression of furin. (2) A preparation containing unprocessed pro-vWF, the propeptide still covalently linked to mature vWF. Both preparations induced an increase in canine and murine factor VIII:C (FVIII), which was sustained even when vWF antigen had been removed from the circulation. vWF multimers were analyzed in the plasma samples after infusion using ultra high-resolution 3% agarose gels to allow the separation of homoforms and heteroforms of the vWF polymers. Administration of pro-vWF to dogs with severe vWD resulted in the removal of the propeptide and maturation of vWF in the circulation, indicating that the propeptide cleavage from unprocessed vWF can occur extracellularly. This suggests that the vWF propeptide, besides being derived from the Weibel-Palade bodies of endothelial cells after stimulation, can also be cleaved by pro-vWF in plasma. Using a murine model of vWD, the involvement of the low-density lipoprotein receptor-related protein (LRP) in the clearance of FVIII was established. The low levels of FVIII observed in the absence of vWF are due to an enhanced clearance of FVIII by binding to LRP and removal from the circulation through endocytosis. Administration of the receptor-associated protein (RAP) as a recombinant fusion protein to vWF knockout mice significantly improved the in vivo recovery of recombinant FVIII and the survival time of otherwise rapidly cleared FVIII.

REFERENCES

  • 1 Sadler J E, Davie E W. Hemophilia A, hemophilia B, and von Willebrand disease. In: Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H, eds. The Molecular Basis of Blood Diseases 2nd ed. Philadelphia: W.B. Saunders 1995: 657-700
  • 2 Sadler J E. von Willebrand factor.  J Biol Chem . 1991;  266 22777-22780
  • 3 Sadler J E, Mannucci P M, Berntorp E. Impact, diagnosis and treatment of von Willebrand disease.  Thromb Haemost . 2000;  84 160-174
  • 4 Siediecki C A, Lestini B J, Kottke-Marchant K K. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor.  Blood . 1996;  88 2939-2950
  • 5 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.  Blood . 1996;  87 4223-4234
  • 6 Ruggeri Z M, Ware J. The structure and function of von Willebrand factor.  Thromb Haemost . 1992;  67 594-599
  • 7 Ruggeri Z M. Developing basic and clinical research on von Willebrand factor and von Willebrand disease.  Thromb Haemost . 2000;  84 147-149
  • 8 Weiss J H, Sussman I I, Hoyer L W. Stabilization of factor VIII in plasma by the von Willebrand factor.  J Clin Invest . 1997;  60 390-404
  • 9 Lenting P J, van Mourik A J, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function.  Blood . 1998;  92 3983-3996
  • 10 Vlot A J, Koppelman S J, Bouma B N, Sixma J J. Factor VIII and von Willebrand factor.  Thromb Haemost . 1998;  79 456-465
  • 11 Koppelman S J, van Hoeij M, Lankhof H. Requirements of von Willebrand factor to protect factor VIII from inactivation by activated protein C.  Blood . 1996;  87 2292-2300
  • 12 Koedam J A, Meijers J CM, Sixma J J, Bouma B N. Inactivation of human factor VIII by activated protein C: cofactor activity of protein S and protective effect of von Willebrand factor.  J Clin Invest . 1988;  82 1236-1243
  • 13 Ginsburg D, Handin R I, Bonthron D T. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization.  Science . 1985;  288 1401-1406
  • 14 Kuwano A, Morimoto Y, Nagai T. Precise chromosomal locations of the genes for dentatorubral-pallidoluysian atrophy (DRPLA), von Willebrand factor (F8vWF) and parathyroid hormone-like hormone (PTHLH) in human chromosome 12p by deletion mapping.  Hum Genet . 1996;  97 95-98
  • 15 Mancuso D J, Tuley E A, Westfield L A. Structure of the gene for human von Willebrand factor.  J Biol Chem . 1989;  264 19514-19527
  • 16 Patracchini P, Calzolari E, Aiello V. Sublocalization of von Willebrand factor pseudogene to 22q11.22-q11.23 by in situ hybridization in a 46,X,t(X;22)(pter ;q1 1.21) translocation.  Hum Genet . 1989;  83 264-266
  • 17 Mancuso D J, Tuley E A, Westfield L A. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction.  Biochemistry . 1991;  30 253-269
  • 18 Sadler J E. Biochemistry and genetics of von Willebrand factor.  Annu Rev Biochem . 1998;  67 395-424
  • 19 Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(0) structures.  J Biol Chem . 1992;  267 8723-8731
  • 20 Matsui T, Shimoyama T, Matsumoto M. ABO blood group antigens on human plasma von Willebrand factor after AB0-mismatched bone marrow transplantation.  Blood . 1999;  94 2895-2900
  • 21 Mayadas T N, Wagner D D. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly.  Proc Natl Acad Sci USA . 1992;  89 3531-3535
  • 22 Wise R J, Barr P J, Wong P A. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site.  Proc Natl Acad Sci USA . 1990;  87 9378-9382
  • 23 van de Ven J M W, Voorberg J, Fontijn R. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes.  Mol Biol Rep . 1990;  14 265-275
  • 24 Vischer U M, Wagner D D. von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies.  Blood . 1994;  83 3536-3544
  • 25 Wagner D D, Fay P J, Sporn L A. Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen II) after secretion from endothelial cells.  Proc Natl Acad Sci USA . 1987;  84 1955-1959
  • 26 Wagner D D, Marder V J. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization.  J Cell Biol . 1984;  99 2123-2130
  • 27 Vischer U M, Ingerslev J, Wollheim C B. Acute von Willebrand factor secretion from the endothelium in vivo: assessment through plasma propeptide (vWF:AgII) levels.  Thromb Haemost . 1997;  77 387-393
  • 28 Borchiellini A, Fijnvandraat K, ten Cate W J. Quantitative analysis of von Willebrand factor propeptide release in vivo: Effect of experimental endotoxemia and administration of 1-deamino-8-d-arginine vasopressin in humans.  Blood . 1996;  88 2951-2958
  • 29 Nichols T C, Samama C M, Bellinger D A. Function of von Willebrand factor after crossed bone marrow transplantation between normal and von Willebrand disease pigs: effect on arterial thrombosis in chimeras.  Proc Natl Acad Sci USA . 1995;  92 2455-2459
  • 30 Denis C V, Wagner D D. Insights from von Willebrand disease animal models.  Cell Mol Life Sci . 1999;  56 977-990
  • 31 Stokol T, Parry B W, Mansell P D. Factor VIII activity in canine von Willebrand disease.  Vet Clin Pathol . 1995;  24 81-90
  • 32 Kraus K H, Johnson G S. Von Willebrand's disease in dogs.  Curr Vet Ther . 1989;  10 446-451
  • 33 Rieger M, Schwarz H P, Turecek P L. Identification of mutation in the canine von Willebrand factor gene causing type III von Willebrand disease.  Thromb Haemost . 1998;  80 332-337
  • 34 Denis C, Methia N, Frenette P S. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis.  Proc Natl Acad Sci USA . 1998;  95 9524-9529
  • 35 Ni H, Denis C V, Subbarao S. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen.  J Clin Invest . 2000;  106 385-392
  • 36 Sweeney J D, Novak E K, Reddington M, Takeuchi K H, Swank R T. The RIIIS/J inbred mouse strain as a model for von Willebrand disease.  Blood . 1990;  76 2258-2265
  • 37 Nichols W C, Cooney K, Mohlke K L. von Willebrand disease in the RIIIS/J mouse is caused by a defect outside of the von Willebrand factor gene.  Blood . 1994;  83 3225-3231
  • 38 Mohlke K A, Purkayastha A A, Westrick R J. MvWF, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase.  Cell . 1999;  96 111-120
  • 39 Fischer B, Schlokat U, Mitterer A, Den Bouwmeester R, Dorner F. Structural analysis of recombinant von Willebrand factor: identification of hetero- and homo-dimers.  FEBS Lett . 1994;  351 345-348
  • 40 Fischer B E, Schlokat U, Mitterer A. Structural analysis of recombinant von Willebrand factor produced at industrial scale fermentation of transformed CHO cells co-expressing recombinant furin.  FEBS Lett . 1995;  375 259-262
  • 41 Schwarz H P, Turecek P L, Pichler L. Recombinant von Willebrand factor.  Thromb Haemost . 1997;  78 571-576
  • 42 Turecek P L, Gritsch H, Pichler L. In vivo characterization of recombinant von Willebrand factor in dogs with von Willebrand disease.  Blood . 1997;  90 3555-3567
  • 43 Cameron C, Notley C, Hoyle S. The canine factor VIII cDNA and 5′ flanking sequence.  Thromb Haemost . 1998;  79 317-322
  • 44 Rosnoblet C, Ribba A-S, Wollheim C B, Kruithof E KO, Vischer U M. Regulated von Willebrand factor (vWF) secretion is restored by pro-vWF expression in a transfectable endothelial cell line.  Biochim Biophys Acta . 2000;  1495 112-119
  • 45 Hop C, Guilliatt A, Daly M. Assembly of multimeric von Willebrand factor directs sorting of P-selectin.  Arterioscler Thromb Vasc Biol . 2000;  20 1763-1768
  • 46 Mourik J A, Boertjes R, Huisveld I A. von Willebrand factor propeptide in vascular disorders: a tool to distinguish between acute and chronic endothelial cell perturbation.  Blood . 1999;  94 179-185
  • 47 Sporn L A, Marder V J, Wagner D D. Inducible secretion of large, biologically potent von Willebrand factor multimers.  Cell . 1986;  46 185-190
  • 48 Turecek P L, Pichler L, Auer W. Evidence for extracellular processing of pro-von Willebrand factor after infusion in animals with and without severe von Willebrand disease.  Blood . 1999;  94 1637-1647
  • 49 Furlan M, Robles R, Affolter D, Meyer D, Baillod P. Triplet structure of von Willebrand factor reflects proteolytic degradation of high molecular weight multimers.  Proc Natl Acad Sci USA . 1993;  90 7503-7507
  • 50 Furlan M, Robles R, Galbusera M. Von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome.  N Engl J Med . 1998;  339 1578-1584
  • 51 Takagi J, Aoyama T, Ueki S. Identification of factor-XIIIa-reactive glutaminyl residues in the propolypeptide of bovine von Willebrand factor.  Eur J Biochem . 1995;  232 773-777
  • 52 Takagi J, Sekija F, Kasahara K, Inada Y, Saito Y. Inhibition of platelet-collagen interaction by propolypeptide of von Willebrand factor.  J Biol Chem . 1989;  264 6017-6020
  • 53 Isobe T, Hisaoka T, Shimizu A. Propolypeptide of von Willebrand factor is a novel ligand for very late antigen-4 integrin.  J Biol Chem . 1997;  272 8447-8453
  • 54 Muchitsch E-M, Turecek P L, Zimmermann K. Phenotypic expression of murine hemophilia.  Thromb Haemost . 1999;  82 1371-1373
  • 55 Vlot A J, Koppelman S J, Meijers J CM. Kinetics of factor VIII von Willebrand factor association.  Blood . 1996;  87 1809-1816
  • 56 Bu G. Receptor-associated protein: a specialized chaperone and antagonist for members of the LDL receptor gene family.  Curr Opin Lipidol . 1998;  9 149-155
  • 57 Neels J G, Horn I R, van den Berg M M B, Pannekoek H, van Zonneveld J A. Ligand-receptor interactions of the low density lipoprotein receptor-related protein, a multi-ligand endocytic receptor.  Fibrinolysis Proteolysis . 1998;  12 219-240
  • 58 Warshawsky I, Bu G, Schwartz A L. 39-kD protein inhibits tissue-type plasminogen activator clearance in vivo.  J Clin Invest . 1993;  92 937-944
  • 59 Narita M, Bu G, Olins G M. Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vitro.  J Biol Chem . 1995;  270 24800-24804
  • 60 Narita M, Rudolph A E, Miletich J P, Schwartz A L. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo.  Blood . 1998;  91 555-560
  • 61 Lenting P J, Neels J G, van den Berg M M B. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein.  J Biol Chem . 1999;  274 23734-23739
  • 62 Turecek P L, Lenting P J, Binder B, Mihaly J, Schwarz H P. Improvement of recovery and prolongation of half-life of factor VIII.  Haemophilia (Abst) . 2000;  6 355
  • 63 Turecek P L, Binder B R, Schwarz H P. In vivo inhibition of low density lipoprotein receptor-related protein (LRP) improves survival of factor VIII in the absence of von Willebrand factor.  Blood . 2000;  95 3637-3638
  • 64 Schwarz H P, Lenting P J, Binder B. Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice.  Blood . 2000;  95 1703-1708
    >