Semin Musculoskelet Radiol 2003; 7(4): 307-316
DOI: 10.1055/s-2004-815678
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

BOLD Magnetic Resonance Imaging of Skeletal Muscle

Michael D. Noseworthy1,2,3 , Daniel  P. Bulte2 , Jeff Alfonsi4
  • 1Department of Radiology, , McMaster University
  • 2Department of Medical Physics and Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
  • 3The University of Toronto, Department of Medical Imaging, Toronto, Ontario, Canada
  • 4The Hospital for Sick Children, Department of Diagnostic Imaging, Imaging Physics, Toronto, ON Canada
Further Information

Publication History

Publication Date:
21 January 2004 (online)

ABSTRACT

Blood-oxygen-level-dependent (BOLD) imaging was a concept introduced in 1990 for evaluating brain activation. The method relies on magnetic resonance imaging (MRI) contrast resulting from changes in the microvascular ratio of oxyhaemoglobin (oxyHb) to deoxyhaemoglobin (deoxyHb). OxyHb is diamagnetic, whereas deoxyHb is paramagnetic, which produces a local bulk magnetic susceptibility effect and subsequent MRI signal change. The changes are typically observed in T 2*-weighted functional MRI scans. However, there has recently been interest in BOLD as a way to evaluate microcirculation of any normal or diseased tissue. This review focuses on the application of BOLD imaging in the understanding of normal and diseased skeletal muscle. In addition we present new findings showing the possible application of BOLD imaging with hyperoxia for evaluating skeletal muscle physiology.

REFERENCES

  • 1 Ogawa S, Lee T M, Kay A R, Tank D W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.  Proc Natl Acad Sci USA . 1990;  87 9868-9872
  • 2 Niemi P, Poncelet B P, Kwong K K. et al . Myocardial intensity changes associated with flow stimulation in blood oxygenation sensitive magnetic resonance imaging.  Magn Reson Med . 1996;  36 78-82
  • 3 Li D, Dhawale P, Rubin P J, Haacke E M, Gropler R J. Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD effect using a double-echo gradient-echo sequence.  Magn Reson Med . 1996;  36 16-20
  • 4 Herzka D A, Boxerman J L, Post W S. et al . Heterogeneity of BOLD-indexed myocardial perfusion reserve.  Proc Int Soc Mag Reson Med . 1999;  7 1277
  • 5 Powell-Braxton L, Veniant M, Latvala R D. et al . A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet.  Nat Med . 1998;  4 934-938
  • 6 Greve J, Bernstein L, Williams S P, Powell-Braxton L, Peale F, Bunting S, Van Bruggen N. Age and atherosclerosis adversely affect skeletal muscle functional recovery following femoral artery ligation in the mouse: MRI assessment of functional hyperemia.  Proc Int Soc Mag Reson Med (ISMRM) . 2000;  8 134.
  • 7 Groshar D, McEwan A J, Parliament M B. et al . Imaging tumor hypoxia and tumor perfusion.  J Nucl Med . 1993;  34 885-888
  • 8 Mark F C, Bock C, Pörtner H O. Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS.  Am J Physiol Regul Integr Comp Physiol . 2002;  283 R1254-R1262
  • 9 Abramovitch R, Dafni H, Smouha E, Benjamin L E, Neeman M. In vivo prediction of vascular susceptibility to vascular endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice.  Cancer Res . 1999;  59 5012-5016
  • 10 Ogawa S, Menon R S, Kim S G, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain.  Annu Rev Biophys Biomol Struct . 1998;  27 447-474
  • 11 Ogawa S, Menon R S, Tank D W. et al . Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model.  Biophys J . 1993;  64 803-812
  • 12 Ogawa S, Lee T M, Nayak A S, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.  Magn Reson Med . 1990;  14 68-78
  • 13 Dietz V. Gait disorder in spasticity and Parkinson's disease.  Adv Neurol . 2001;  87 143-154
  • 14 Kim S G, Rostrup E, Larsson H B, Ogawa S, Paulson O B. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation.  Magn Reson Med . 1999;  41 1152-1161
  • 15 Abramovitch R, Frenkiel D, Neeman M. Analysis of subcutaneous angiogenesis by gradient echo magnetic resonance imaging.  Magn Reson Med . 1998;  39 813-824
  • 16 Mazurchuk R, Zhou R, Straubinger R M, Chau R I, Grossman Z. Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response.  Magn Reson Imaging . 1999;  17 537-548
  • 17 Robinson S P, Howe F A, Griffiths J R. Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging.  Int J Radiat Oncol Biol Physiol. 1995;  33 855-859
  • 18 Al-Hallaq H A, Zamora M, Fish B L, Farrell A, Moulder J E, Karczmar G S. MRI measurements correctly predict the relative effects of tumor oxygenating agents on hypoxic fraction in rodent BA1112 tumors.  {{ERR}}Int J Radiat Oncol Biol Physiol . 2000;  47 481-488
  • 19 Robinson S P, Howe F A, Rodrigues L M, Stubbs M, Griffiths J R. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow.  Semin Radiat Oncol . 1998;  8 197-207
  • 20 Stainsby J A, Wright G A. Monitoring blood oxygen state in muscle microcirculation with transverse relaxation.  Magn Reson Med . 2001;  45 662-672
  • 21 Noseworthy M D, Kim J K, Stainsby J A, Stanisz G J, Wright G A. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure.  J Magn Reson Imaging . 1999;  9 814-820
  • 22 Saab G, Thompson R T, Marsh G D. Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry.  J Appl Physiol . 2000;  88 226-233
  • 23 Ludeke K M, Roschmann P, Tischler R. Susceptibility artifacts in NMR imaging.  Magn Reson Imaging . 1985;  3 329-343
  • 24 Villringer A, Rosen B R, Belliveau J W. et al . Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects.  Magn Reson Med . 1988;  6 164-174
  • 25 Chu S C, Xu Y, Balschi J A, Springer Jr S C. Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents.  Magn Reson Med . 1990;  13 239-262
  • 26 Springer C S. Physicochemical principles influencing magnetopharmaceuticals. In: Gillies RJ, editor NMR in Physiology and Biomedicine. New York: Academic Press 1994: 75-99.
  • 27 Springer C S, Patlak C S, Pályka I, Huang W. Principles of susceptibility contrast based functional MRI: the sign of the functional MRI response. In: Moonen CTW Bandettini PA, editors Functional MRI. New York: Springer; 2000: 91-102.
  • 28 Lebon V, Carlier P G, Brillault-Salvat C, Bloch G, Leroy-Willig A. Anisotropy of the BOLD Effect in the Skeletal Muscle.  Proc Int Soc Mag Reson Med . 1998;  6 1421
  • 29 Ogawa S, Lee T-M, Nayak A, Glynn P. Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.  Magn Reson Med . 1990;  14 68-78
  • 30 Hajnal J, Oatridge A, Wilson J. et al . A study of the MR signal produced by ischemia in human subjects.  Proc Int Soc Mag Reson Med . 1996;  4 1773
  • 31 Donahue K, Kylen J, Guven S. et al . Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle.  J Magn Reson Imaging . 1998;  8 1106-1113
  • 32 Whittal K P, MacKay A L. Quantitative interpretation of NMR relaxation data.  J Mag Reson . 1989;  84 134-152
  • 33 Thulborn K R, Waterton J C, Matthews P M, Radda G K. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.  Biochim Biophys Acta . 1982;  714 265-270
  • 34 Gomori J M, Grossman R I, Yu-Ip C, Asakura T. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity.  J Comput Assist Tomogr . 1987;  11 684-690
  • 35 Bryant R G, Marill K, Blackmore C, Francis C. Magnetic relaxation in blood and blood clots.  Magn Reson Med . 1990;  13 133-144
  • 36  L uz, Meiboom S. Chemical exchange and NMR-T2 relaxation, J Chem Physiol .  1963;  39 366-372
  • 37 Bowen C, Rutt B K. Measuring blood oxygenation using variable echo spacing CPMG: use of the Luz-Meiboom Equation.  Proc Int Soc Mag Reson Med (ISMRM) . 2001;  9 1223
  • 38 Noseworthy M D, Qi X, Stainsby J A, Wright G A. Examination of vx2 tumors using a 2-pool model with proton exchange and dynamic Gd-DTPA enhanced MRI.  Proc Int Soc Mag Reson Med . 2000;  8 1059
  • 39 Hazlewood C, Chang D, Nichols B, Woessner D. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle.  Biophys J . 1974;  14 583-606
  • 40 English A, Joy M, Henkelman R. Pulsed NMR relaxometry of striated muscle fibers.  Magn Reson Med . 1991;  21 264-281
  • 41 Rumeur E L, Certaines J D, Toulouse P, Rochcongar P. Water phases in rat striated muscles as determined by T2 proton NMR relaxation times.  Magn Reson Imaging . 1987;  5 267-272
  • 42 Adzamli I, Jolesz F, Bleier A, Mulkern R, Sandor T. The effect of gadolinium DTPA on tissue water compartments in slow- and fasttwitch rabbit muscles.  Magn Reson Med . 1989;  11 172-181
  • 43 Belton P S, Jackson R R, Packer K J. Pulsed NMR studies of water in striated muscle: transverse nuclear spin relaxation times and freezing effects.  Biochim Biophys Acta . 1972;  286 16-25
  • 44 Saab G, Thompson R T, Marsh G D. Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry.  J Appl Physiol . 2000;  88 226-233
  • 45 Saab G, Marsh G D, Casselman M A, Thompson R T. Changes in human muscle transverse relaxation following short-term creatine supplementation.  Exp Physiol . 2002;  87 383-389
  • 46 Saab G, Thompson R T. Marsh GD Multicomponent T2 relaxation of in vivo skeletal muscle.  Magn Reson Med . 1999;  42 150-157
  • 47 Frank L R, Wong E C, Haseler L J, Buxton R B. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling.  Magn Reson Med . 1999;  42 258-267
  • 48 Hennig J, Scheffler K, Schreiber A. Time resolved observation of BOLD effect in muscle during isometric exercise.  Proc Intl Soc Mag Reson Med . 2000;  8 122
  • 49 Meyer R, Mccully K, Reid R W, Prior B. BOLD MRI and NIRS detection of transient hyperemia after single skeletal muscle contractions.  Proc Intl Soc Mag Reson Med . 2001;  9 135
  • 50 Brock R W, Tschakovsky M E, Shoemaker J K, Halliwill J R, Joyner M J, Hughson R L. Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction.  J Appl Physiol . 1998;  85 2249-2254
  • 51 Meyer R A, Prior B M. Functional magnetic resonance imaging of muscle.  Exerc Sport Sci Rev . 2000;  28 89-92
  • 52 Büchert M, Bilecen D, Winterer J, Schulte A, Langer M, Hennig J. Time resolved BOLD response in the muscle of patients with peripheral vascular occlusive disease.  Proc Int Soc Mag Reson Med . 2002;  10 0291
  • 53 Tadamura E, Hatabu H, Li W, Prasad P V, Edelman R R. Effect of oxygen inhalation on relaxation times in various tissues.  J Magn Reson Imaging . 1997;  7 220-225
  • 54 Brooks R A, Brunetti A, Alger J R, DiChiro G. On the origin of paramagnetic inhomogeneity effects in blood.  Magn Reson Med . 1989;  12 241-248
  • 55 Thulborn K R, Waterton J C, Mathews P M, Radda G K. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.  Biochim Biophys Acta . 1982;  714 265-270
  • 56 Wright G A, Hu B S, Macovski A. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5T.  J Magn Reson Imaging . 1991;  1 275-283
  • 57 Losert C, Peller M, Schneider P, Reiser M. Oxygen-enhanced MRI of the brain.  Magn Reson Med . 2002;  48 271-277
  • 58 Bauer W R, Nadler W, Bock M. et al . The relationship between the BOLD-induced T(2) and T(2)(*): a theoretical approach for the vasculature of myocardium.  Magn Reson Med . 1999;  42 1004-1010
  • 59 Buchert M, Bileen D, Winterer J, Schulte A, Langer M, Hennig J. Time resolved BOLD response in the muscle of patients with peripheral vascular occlusive disease.  Proc Int Soc Mag Reson Med . 2002;  10 0291
  • 60 Noll D C, Cohen J D, Meyer C H, Schneider W. Spiral K-space MR imaging of cortical activation.  J Magn Reson Imaging . 1995;  5 49-56
  • 61 Cox R W. Software for analysis and visualization of functional magnetic resonance neuroimages.  Comput Biomed Res . 1996;  29 162-173
  • 62 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol . 1996;  81 1642-1650
  • 63 Morikawa S, Inubushi T, Kito K. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging.  Cardiovasc Surg . 1993;  1 337-342
  • 64 Hu L, Fleckenstein J L, Babcock E. Perfusion MRI of post-exercise muscle.  Proc Int Soc Mag Reson Med . 2002;  10 290
  • 65 Carusone L M, Srinivasan J, Gitelman D R, Mesulam M M, Parrish T B. Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging.  Am J Neuroradiol . 2002;  23 1222-1228
  • 66 Suwa M, Nakano H, Higaki Y, Nakamura T, Katsuta S, Kumagai S. Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats.  J Appl Physiol . 2003;  94 185-192
    >