Semin Musculoskelet Radiol 2003; 7(4): 317-350
DOI: 10.1055/s-2004-815679
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Molecular Imaging of Musculoskeletal Diseases

Sandip Biswal1, 2
  • 1Department of Radiology, Division of Musculoskeletal Radiology, Stanford University School of Medicine, Stanford, CA
  • 2The Crump Institute for Molecular Imaging, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA
Further Information

Publication History

Publication Date:
21 January 2004 (online)

ABSTRACT

Chronic musculoskeletal diseases such as arthritis, malignancy, chronic injury/ inflammation, and chronic musculoskeletal pain often pose challenges for current clinical imaging modalities. There is hope that a growing field, referred to as “molecular imaging,” will shed new light on these chronic phenomenon as it aims to noninvasively detect special molecular and physiologic effects such as metabolism rate, specific proteins, cell death, and particular gene-related events. Molecular imaging represents recent advances in imaging technology, engineering, chemistry, molecular biology, and genetics that have coalesced into a multidisciplinary and multimodality effort. Molecular probes are currently being developed not only in radionuclide-based techniques but also in magnetic resonance imaging, magnetic resonance spectroscopy, ultrasound, and the emerging field of optical imaging. Furthermore, molecular imagers are fueling the development of novel molecular therapies and gene therapy, as tracking these efforts in living subjects is now possible with molecular imaging protocols.

REFERENCES

  • 1 Jensen M C, Brant-Zawadzki M N, Obuchowski N, Modic M T, Malkasian D, Ross J S. Magnetic resonance imaging of the lumbar spine in people without back pain.  N Engl J Med . 1994;  331(2) 69-73
  • 2 Matsumoto M, Fujimura Y, Suzuki N. et al . MRI of cervical intervertebral discs in asymptomatic subjects.  J Bone Joint Surg Br . 1998;  80(1) 19-24
  • 3 Needell S D, Zlatkin M B, Sher J S, Murphy B J, Uribe J W. MR imaging of the rotator cuff: peritendinous and bone abnormalities in an asymptomatic population.  Am J Roentgenol . 1996;  166(4) 863-867
  • 4 Pope Jr L T. Abnormal findings on magnetic resonance images of asymptomatic shoulders.  J Bone Joint Surg Am . 1996;  78(4) 633-635
  • 5 Goodman R S. Abnormal findings on magnetic resonance images of asymptomatic shoulders.  J Bone Joint Surg Am . 1996;  78(4) 633
  • 6 Bredella M A, Caputo G R, Steinbach L S. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas.  Am J Roentgenol . 2002;  179(5) 1145-1150
  • 7 Massoud T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light.  Genes Dev . 2003;  17(5) 545-580
  • 8 Bogdanov A, Weissleder R. In vivo imaging of gene delivery and expression.  Trends Biotechnol . 2002;  20(8) S11-S18
  • 9 Gambhir S S, Herschman H R, Cherry S R. et al . Imaging transgene expression with radionuclide imaging technologies.  Neoplasia . 2000;  2(1-2) 118-138
  • 10 Tung C H, Bredow S, Mahmood U, Weissleder R. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging.  Bioconjug Chem . 1999;  10(5) 892-896
  • 11 Contag C H, Ross B D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology.  J Magn Reson Imaging . 2002;  16(4) 378-387
  • 12 Bhaumik S, Gambhir S S. Optical imaging of Renilla luciferase reporter gene expression in living mice.  Proc Natl Acad Sci U S A . 2002;  99(1) 377-382
  • 13 Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging of gene expression.  Annu Rev Biomed Eng . 2002;  4 235-260
  • 14 Ntziachristos V, Tung C H, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo.  Nat Med . 2002;  8(7) 757-760
  • 15 Gambhir S S. Molecular imaging of cancer with positron emission tomography.  Nat Rev Cancer . 2002;  2(9) 683-693
  • 16 Cherry S R, Gambhir S S. Use of positron emission tomography in animal research.  ILAR J . 2001;  42(3) 219-232
  • 17 Phelps M E, Hoffman E J, Mullani N A, Ter-Pogossian M M. Application of annihilation coincidence detection to transaxial reconstruction tomography.  J Nucl Med . 1975;  16(3) 210-224
  • 18 Strijckmans K. The isochronous cyclotron: principles and recent developments.  Comput Med Imaging Graph . 2001;  25(2) 69-78
  • 19 Chatziioannou A F. Molecular imaging of small animals with dedicated PET tomographs.  Eur J Nucl Med Mol Imaging . 2002;  29(1) 98-114
  • 20 Chatziioannou A, Tai Y C, Doshi N, Cherry S R. Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging.  Phys Med Biol . 2001;  46(11) 2899-2910
  • 21 Louie A Y, Duimstra J A, Meade T J. Mapping Gene Expression by MRI. In: Toga AW, Mazziotta JC, eds. Brain Mapping: The Methods, 2nd ed Boston: Academic Press; 2002: 819-828
  • 22 Rosenthal M S, Cullom J, Hawkins W, Moore S C, Tsui B M, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council.  J Nucl Med. . 1995;  36(8) 1489-1513
  • 23 Hashemi R H, Bradley W G. MRI: The Basics.  Baltimore: Willians & Wilkins; 1997
  • 24 Allport J R, Weissleder R. In vivo imaging of gene and cell therapies.  Exp Hematol . 2001;  29(11) 1237-1246
  • 25 Massoud T, Gambhir S S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light.  Genes Dev . 2003;  17(5) 545-580
  • 26 Paulus M J, Gleason S S, Kennel S J, Hunsicker P R, Johnson D K. High resolution X-ray computed tomography: an emerging tool for small animal cancer research.  Neoplasia . 2000;  2(1-2) 62-70
  • 27 Alkan-Onyuksel H, Demos S M, Lanza G M. et al . Development of inherently echogenic liposomes as an ultrasonic contrast agent.  J Pharm Sci . 1996;  85(5) 486-490
  • 28 Lindner J R. Evolving applications for contrast ultrasound.  Am J Cardiol 18 . 2002;  90 Suppl 10A 72J-80J
  • 29 Dayton P A, Ferrara K W. Targeted imaging using ultrasound.  J Magn Reson Imaging . 2002;  16(4) 362-377
  • 30 Lindner J R. Detection of inflamed plaques with contrast ultrasound.  Am J Cardiol . 2002;  90(10C) 32L-35L
  • 31 Klibanov A L. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging.  Adv Drug Deliv Rev . 1999;  37(1-3) 139-157
  • 32 Lindner J R, Coggins M P, Kaul S, Klibanov A L, Brandenburger G H, Ley K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes.  Circulation . 2000;  101(6) 668-675
  • 33 Verstraete K L, Van der Woude J H, Hogendoorn P C, De-Deene Y, Kunnen M, Bloem J L. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications.  J Magn Reson Imaging . 1996;  6(2) 311-321
  • 34 Erlemann R, Reiser M F, Peters P E. et al . Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging.  Radiology . 1989;  171(3) 767-773
  • 35 Hawkins D S, Rajendran J G, Conrad 3rd U E, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography.  Cancer . 2002;  94(12) 3277-3284
  • 36 el-Zeftawy H, Heiba S I, Jana S. et al . Role of repeated F-18 fluorodeoxyglucose imaging in management of patients with bone and soft tissue sarcoma.  Cancer Biother Radiopharm . 2001;  16(1) 37-46
  • 37 Garcia R, Kim E E, Wong F C. et al . Comparison of fluorine-18-FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas.  J Nucl Med . 1996;  37(9) 1476-1479
  • 38 Kostakoglu L, Panicek D M, Divgi C R. et al . Correlation of the findings of thallium-201 chloride scans with those of other imaging modalities and histology following therapy in patients with bone and soft tissue sarcomas.  Eur J Nucl Med . 1995;  22(11) 1232-1237
  • 39 Abdel-Dayem H M. The role of nuclear medicine in primary bone and soft tissue tumors.  Semin Nucl Med . 1997;  27(4) 355-363
  • 40 Reuther G, Mutschler W. Detection of local recurrent disease in musculoskeletal tumors: magnetic resonance imaging versus computed tomography.  Skeletal Radiol . 1990;  19(2) 85-90
  • 41 Schulte M, Brecht-Krauss D, Werner M. et al . Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET.  J Nucl Med . 1999;  40(10) 1637-1643
  • 42 Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis.  Clin Nucl Med . 2000;  25(11) 874-881
  • 43 Jones D N, McCowage G B, Sostman H D. et al . Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET.  J Nucl Med . 1996;  37(9) 1438-1444
  • 44 Schulte M, Brecht-Krauss D, Heymer B. et al . Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible?.  Eur J Nucl Med . 1999;  26(6) 599-605
  • 45 Watanabe H, Inoue T, Shinozaki T. et al . PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET.  Eur J Nucl Med . 2000;  27(10) 1509-1517
  • 46 Schwarzbach M H, Dimitrakopoulou-Strauss A, Mechtersheimer G. et al . Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET).  Anticancer Res . 2001;  21(5) 3609-3614
  • 47 Sugawara Y, Zasadny K R, Neuhoff A W, Wahl R L. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction.  Radiology . 1999;  213(2) 521-525
  • 48 Lovqvist A, Humm J L, Sheikh A. et al . PET imaging of (86)Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between (86)Y and (111)In radiolabels.  J Nucl Med . 2001;  42(8) 1281-1287
  • 49 Hu S, Shively L, Raubitschek A. et al . Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts.  Cancer Res . 1996;  56(13) 3055-3061
  • 50 Kim E E. Radioimmunodetection of cancer. In: Kim EE, Yang DJ, eds. Targeted Molecular Imaging in Oncology New York: Springer-Verlag 2001
  • 51 Wu A M, Yazaki P J, Tsai S. et al . High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment.  Proc Natl Acad Sci U S A . 2000;  97(15) 8495-8500
  • 52 Wu A M, Yazaki P J. Designer genes: recombinant antibody fragments for biological imaging.  Q J Nucl Med . 2000;  44(3) 268-283
  • 53 Gouze J N, Ghivizzani S C, Gouze E. et al . Gene therapy for rheumatoid arthritis.  Hand Surg . 2001;  6(2) 211-219
  • 54 Noel D, Djouad F, Jorgense C. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair.  Curr Opin Investig Drugs . 2002;  3(7) 1000-1004
  • 55 van de Loo A F, van den Berg B W. Gene therapy for rheumatoid arthritis. Lessons from animal models, including studies on interleukin-4, interleukin-10, and interleukin-1 receptor antagonist as potential disease modulators.  Rheum Dis Clin North Am . 2002;  28(1) 127-149
  • 56 Scappaticci F A, Marina N. New molecular targets and biological therapies in sarcomas.  Cancer Treat Rev . 2001;  27(6) 317-326
  • 57 Gobalakrishnan S, Gambhir S S. Radionuclide imaging of reporter gene expression. In: Toga AW, Mazziotta JC, eds. Brain Mapping: The Methods, 2nd ed Boston: Academic Press; 2002: 799-818
  • 58 Biswal S, Gambhir S S. Monitoring gene therapy using in vivo molecular imaging techniques. In: Templeton N, Lasic D, eds. Gene Therapy: Therapeutic Mechanisms and Strategies, 2nd ed New York: Marcel Dekker; In press
  • 59 Contag C H, Spilman S D, Contag P R. et al . Visualizing gene expression in living mammals using a bioluminescent reporter.  Photochem Photobiol . 1997;  66(4) 523-531
  • 60 Contag P R, Olomu I N, Stevenson D K, Contag C H. Bioluminescent indicators in living mammals.  Nat Med . 1998;  4(2) 245-247
  • 61 Tsien R Y. The green fluorescent protein.  Annu Rev Biochem . 1998;  67 509-544
  • 62 Welsh S, Kay S A. Reporter gene expression for monitoring gene transfer.  Curr Opin Biotechnol . 1997;  8(5) 617-622
  • 63 Pfeifer A, Kessler T, Yang M. et al . Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging.  Mol Ther . 2001;  3(3) 319-322
  • 64 Cubitt A B, Heim R, Adams S R, Boyd A E, Gross L A, Tsien R Y. Understanding, improving and using green fluorescent proteins.  Trends Biochem Sci . 1995;  20(11) 448-455
  • 65 Prasher D C. Using GFP to see the light.  Trends Genet . 1995;  11(8) 320-323
  • 66 Baird G S, Zacharias D A, Tsien R Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral.  Proc Natl Acad Sci U S A . 2000;  97(22) 11984-11989
  • 67 Bremer C, Bredow S, Mahmood U, Weissleder R, Tung C H. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model.  Radiology . 2001;  221(2) 523-529
  • 68 Sherf B, Wood K. Firefly luciferase engineered for imporved genetic reporting.  Promega Notes . 1994;  49 14-21
  • 69 Yu Y, Annala A J, Barrio J R. et al . Quantification of target gene expression by imaging reporter gene expression in living animals.  Nat Med . 2000;  6(8) 933-937
  • 70 Liang Q, Satyamurthy N, Barrio J R. et al . Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction.  Gene Ther . 2001;  8(19) 1490-1498
  • 71 MacLaren D C, Gambhir S S, Satyamurthy N. et al . Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals.  Gene Ther . 1999;  6(5) 785-791
  • 72 Herschman H R, MacLaren D C, Iyer M. et al . Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography.  J Neurosci Res . 2000;  59(6) 699-705
  • 73 Namavari M, Barrio J R, Toyokuni T. et al . Synthesis of 8-[(18)F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography.  Nucl Med Biol . 2000;  27(2) 157-162
  • 74 Alauddin M M, Conti P S. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET.  Nucl Med Biol . 1998;  25(3) 175-180
  • 75 Alauddin M M, Conti P S, Mazza S M, Hamzeh F M, Lever J R. 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET.  Nucl Med Biol . 1996;  23(6) 787-792
  • 76 Iyer M, Barrio J R, Namavari M. et al . 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET.  J Nucl Med . 2001;  42(1) 96-105
  • 77 Yaghoubi S, Barrio J R, Dahlbom M. et al . Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression.  J Nucl Med . 2001;  42(8) 1225-1234
  • 78 Tjuvajev J G, Finn R, Watanabe K. et al . Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy.  Cancer Res . 1996;  56(18) 4087-4095
  • 79 Tjuvajev J G, Doubrovin M, Akhurst T. et al . Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression.  J Nucl Med . 2002;  43(8) 1072-1083
  • 80 MacLaren D C, Toyokuni T, Cherry S R. et al . PET imaging of transgene expression.  Biol Psychiatry . 2000;  48(5) 337-348
  • 81 Black M E, Newcomb T G, Wilson H M, Loeb L A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy.  Proc Natl Acad Sci U S A . 1996;  93(8) 3525-3529
  • 82 Gambhir S S, Bauer E, Black M E. et al . A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography.  Proc Natl Acad Sci U S A . 2000;  97(6) 2785-2790
  • 83 Riedel C, Dohan O, De la Vieja A, Ginter C S, Carrasco N. Journey of the iodide transporter NIS: from its molecular identification to its clinical role in cancer.  Trends Biochem Sci . 2001;  26(8) 490-496
  • 84 Spitzweg C, Dietz A B, O'Connor M K. et al . In vivo sodium iodide symporter gene therapy of prostate cancer.  Gene Ther . 2001;  8(20) 1524-1531
  • 85 Mandell R B, Mandell L Z, Link Jr J C. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene.  Cancer Res . 1999;  59(3) 661-668
  • 86 Spitzweg C, O'Connor M K, Bergert E R, Tindall D J, Young C Y, Morris J C. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter.  Cancer Res . 2000;  60(22) 6526-6530
  • 87 Groot-Wassink T, Aboagye E O, Glaser M, Lemoine N R, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene.  Hum Gene Ther . 2002;  13(14) 1723-1735
  • 88 Haberkorn U, Oberdorfer F, Gebert J. et al . Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine.  J Nucl Med . 1996;  37(1) 87-94
  • 89 Yazawa K, Fisher W E, Brunicardi F C. Current progress in suicide gene therapy for cancer.  World J Surg . 2002;  26(7) 783-789
  • 90 Yaghoubi S S, Wu L, Liang Q. et al . Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors.  Gene Ther . 2001;  8(14) 1072-1080
  • 91 Reichlin S. Somatostatin.  N Engl J Med . 1983;  309(24) 1495-1501
  • 92 Lamberts S W, de Herder W W, Hofland L J. Somatostatin analogs in the diagnosis and treatment of cancer.  Trends Endocrinol Metab . 2002;  13(10) 451-457
  • 93 Patel Y C. Somatostatin and its receptor family.  Front Neuroendocrinol . 1999;  20(3) 157-198
  • 94 Shojamanesh H, Gibril F, Louie A. et al . Prospective study of the antitumor efficacy of long-term octreotide treatment in patients with progressive metastatic gastrinoma.  Cancer . 2002;  94(2) 331-343.
  • 95 Arnold R, Simon B, Wied M. Treatment of neuroendocrine GEP tumours with somatostatin analogues: a review.  Digestion . 2000;  62(Suppl 1) 84-91
  • 96 Vallabhajosula S, Moyer B R, Lister-James J. et al . Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides.  J Nucl Med . 1996;  37(6) 1016-1022
  • 97 Breeman W A, de Jong M, Kwekkeboom D J. et al . Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives.  Eur J Nucl Med . 2001;  28(9) 1421-1429
  • 98 Zinn K R, Chaudhuri T R, Krasnykh V N. et al . Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice.  Radiology . 2002;  223(2) 417-425
  • 99 Rogers B E, Zinn K R, Lin C Y, Chaudhuri T R, Buchsbaum D J. Targeted radiotherapy with [(90)Y]-SMT 487 in mice bearing human nonsmall cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector.  Cancer . 2002;  94(4 Suppl) 1298-1305.
  • 100 Weissleder R, Moore A, Mahmood U. et al . In vivo magnetic resonance imaging of transgene expression.  Nat Med . 2000;  6(3) 351-355
  • 101 Moore A, Basilion J P, Chiocca E A, Weissleder R. Measuring transferrin receptor gene expression by NMR imaging.  Biochim Biophys Acta . 1998;  1402(3) 239-249
  • 102 Ichikawa T, Hogemann D, Saeki Y. et al . MRI of transgene expression: correlation to therapeutic gene expression.  Neoplasia . 2002;  4(6) 523-530
  • 103 Louie A Y, Huber M M, Ahrens E T. et al . In vivo visualization of gene expression using magnetic resonance imaging.  Nat Biotechnol . 2000;  18(3) 321-325
  • 104 Koretsky A P, Brosnan M J, Chen L H, Chen J D, Van Dyke T. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels.  Proc Natl Acad Sci U S A . 1990;  87(8) 3112-3116
  • 105 Walter G, Barton E R, Sweeney H L. Noninvasive measurement of gene expression in skeletal muscle.  Proc Natl Acad Sci U S A . 2000;  97(10) 5151-5155
  • 106 Stegman L D, Rehemtulla A, Beattie B. et al . Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy.  Proc Natl Acad Sci U S A . 1999;  96(17) 9821-9826
  • 107 Foley-Nolan D, Stack J P, Ryan M. et al . Magnetic resonance imaging in the assessment of rheumatoid arthritis-a comparison with plain film radiographs.  Br J Rheumatol . 1991;  30(2) 101-106
  • 108 Goldbach-Mansky R, Woodburn J, Yao L, Lipsky P E. Magnetic resonance imaging in the evaluation of bone damage in rheumatoid arthritis: a more precise image or just a more expensive one?.  Arthritis Rheum . 2003;  48(3) 585-589
  • 109 Stenger A A, Van Leeuwen A M, Houtman P M. et al . Early effective suppression of inflammation in rheumatoid arthritis reduces radiographic progression.  Br J Rheumatol . 1998;  37(11) 1157-1163
  • 110 Kirwan J R. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group.  N Engl J Med . 1995;  333(3) 142-146
  • 111 Lipsky P E, van der Heijde M D, St Clair W E. et al . Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group.  N Engl J Med . 2000;  343(22) 1594-1602
  • 112 Conaghan P G, O'Connor P, McGonagle D. et al . Elucidation of the relationship between synovitis and bone damage: a randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis.  Arthritis Rheum . 2003;  48(1) 64-71
  • 113 Panayi G S, Corrigall V M, Pitzalis C. Pathogenesis of rheumatoid arthritis. The role of T cells and other beasts.  Rheum Dis Clin North Am . 2001;  27(2) 317-334
  • 114 Peters A M. The use of nuclear medicine in infections.  Br J Radiol . 1998;  71(843) 252-261
  • 115 Nakajima A, Seroogy C M, Sandora M R. et al . Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis.  J Clin Invest . 2001;  107(10) 1293-1301
  • 116 Dodd S J, Williams M, Suhan J P, Williams D S, Koretsky A P, Ho C. Detection of single mammalian cells by high-resolution magnetic resonance imaging.  Biophys J . 1999;  76(1 Pt 1) 103-109
  • 117 Josephson L, Kircher M F, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes.  Bioconjug Chem . 2002;  13(3) 554-560
  • 118 Kanno S, Lee P C, Dodd S J, Williams M, Griffith B P, Ho C. A novel approach with magnetic resonance imaging used for the detection of lung allograft rejection.  J Thorac Cardiovasc Surg . 2000;  120(5) 923-934
  • 119 Kanno S, Wu Y J, Lee P C. et al . Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles.  Circulation . 2001;  104(8) 934-938
  • 120 Zhang Y, Dodd S J, Hendrich K S, Williams M, Ho C. Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration.  Kidney Int . 2000;  58(3) 1300-1310
  • 121 Josephson L, Tung C H, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.  Bioconjug Chem . 1999;  10(2) 186-191
  • 122 Dodd C H, Hsu H C, Chu W J. et al . Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles.  J Immunol Methods . 2001;  256(1-2) 89-105
  • 123 Min J J, Gambhir S S. Noninvasive imaging of gene therapy in living subjects (in press).  Gene Ther.
  • 124 Bogdanov Jr A, Tung C H, Bredow S, Weissleder R. DNA binding chelates for nonviral gene delivery imaging.  Gene Ther . 2001;  8(7) 515-522
  • 125 Harrison Jr H L, Schwarzenberger P O, Byrne P S, Marrogi A J, Kolls J K, McCarthy K E. Gene-modified PA1-STK cells home to tumor sites in patients with malignant pleural mesothelioma.  Ann Thorac Surg . 2000;  70(2) 407-411
  • 126 Colombo F R, Torrente Y, Casati R. et al . Biodistribution studies of 99mTc-labeled myoblasts in a murine model of muscular dystrophy.  Nucl Med Biol . 2001;  28(8) 935-940
  • 127 Weissleder R, Tung C H, Mahmood U, Bogdanov Jr A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.  Nat Biotechnol . 1999;  17(4) 375-378
  • 128 Mountz J D, Zhang H G. Regulation of apoptosis of synovial fibroblasts.  Curr Dir Autoimmun . 2001;  3 216-239
  • 129 D'Lima D D, Hashimoto S, Chen P C, Colwell Jr W C, Lotz M K. Human chondrocyte apoptosis in response to mechanical injury.  Osteoarthritis Cartilage . 2001;  9(8) 712-719
  • 130 D'Lima D D, Hashimoto S, Chen P C, Lotz M K, Colwell Jr W C. Cartilage injury induces chondrocyte apoptosis.  J Bone Joint Surg Am . 2001;  83A(Suppl 2 Pt 1) 19-21
  • 131 Lindner J R, Song J, Christiansen J, Klibanov A L, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin.  Circulation . 2001;  104(17) 2107-2112
  • 132 Demos S M, Onyuksel H, Gilbert J. et al . In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement.  J Pharm Sci . 1997;  86(2) 167-171
  • 133 Demos S M, Alkan-Onyuksel H, Kane B J. et al . In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement.  J Am Coll Cardiol . 1999;  33(3) 867-875
  • 134 Sipkins D A, Gijbels K, Tropper F D, Bednarski M, Li K C, Steinman L. ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging.  J Neuroimmunol . 2000;  104(1) 1-9
  • 135 Kang H W, Josephson L, Petrovsky A, Weissleder R, Bogdanov Jr A. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture.  Bioconjug Chem . 2002;  13(1) 122-127
  • 136 Gratz S, Behe M, Boerman O C. et al . (99m)Tc-E-selectin binding peptide for imaging acute osteomyelitis in a novel rat model.  Nucl Med Commun . 2001;  22(9) 1003-1013
  • 137 Zinn K R, Chaudhuri T R, Smyth C A. et al . Specific targeting of activated endothelium in rat adjuvant arthritis with a 99mTc-radiolabeled E-selectin-binding peptide.  Arthritis Rheum . 1999;  42(4) 641-649
  • 138 Boerman O C, Dams E T, Oyen W J, Corstens F H, Storm G. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation.  Inflamm Res . 2001;  50(2) 55-64
  • 139 De Winter F, Vogelaers D, Gemmel F, Dierckx R A. Promising role of 18-F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious diseases.  Eur J Clin Microbiol Infect Dis . 2002;  21(4) 247-257
  • 140 Reutelingsperger C P, van Heerde L W. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis.  Cell Mol Life Sci . 1997;  53(6) 527-532
  • 141 Blankenberg F G, Strauss H W. Will imaging of apoptosis play a role in clinical care?.  <~>A tale of mice and men. Apoptosis . 2001;  6(1-2) 117-123
  • 142 Reutelingsperger C P. Annexins: key regulators of haemostasis, thrombosis, and apoptosis.  Thromb Haemost . 2001;  86(1) 413-419
  • 143 Blankenberg F G, Katsikis P D, Tait J F. et al . In vivo detection and imaging of phosphatidylserine expression during programmed cell death.  Proc Natl Acad Sci U S A . 1998;  95(11) 6349-6354
  • 144 Glaser M, Collingridge D R, Aboagye E O. et al . Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography.  Appl Radiat Isot . 2003;  58(1) 55-62
  • 145 Russell J, O'Donoghue J A, Finn R. et al . Iodination of annexin V for imaging apoptosis.  J Nucl Med . 2002;  43(5) 671-677
  • 146 Zijlstra S, Gunawan J, Burchert W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET.  Appl Radiat Isot . 2003;  58(2) 201-207
  • 147 Kemerink G J, Boersma H H, Thimister P W. et al . Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans.  Eur J Nucl Med . 2001;  28(9) 1373-1378
  • 148 Reutelingsperger C, Hofstra L. Visualisation of cell death.  Lancet . 2000;  356(9246) 2014
  • 149 Bronckers A L, Goei W, van Heerde L W, Dumont E A, Reutelingsperger C P, van den Eijnde M S. Phagocytosis of dying chondrocytes by osteoclasts in the mouse growth plate as demonstrated by annexin-V labelling.  Cell Tissue Res. . 2000;  301(2) 267-272
  • 150 Vriens P W, Blankenberg F G, Stoot J H. et al . The use of technetium Tc 99m annexin V for in vivo imaging of apoptosis during cardiac allograft rejection.  J Thorac Cardiovasc Surg . 1998;  116(5) 844-853
  • 151 Blankenberg F G, Strauss H W. Non-invasive diagnosis of acute heart- or lung-transplant rejection using radiolabeled annexin V.  Pediatr Radiol . 1999;  29(5) 299-305
  • 152 Blankenberg F G, Robbins R C, Stoot J H. et al . Radionuclide imaging of acute lung transplant rejection with annexin V.  Chest . 2000;  117(3) 834-840
  • 153 Ogura Y, Krams S M, Martinez O M. et al . Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation.  Radiology . 2000;  214(3) 795-800
  • 154 D'Arceuil H, Rhine W, de Crespigny A. et al . 99mTc annexin V imaging of neonatal hypoxic brain injury.  Stroke . 2000;  31(11) 2692-2700
  • 155 Kown M H, Van der Steenhoven T, Blankenberg F G. et al . Zinc-mediated reduction of apoptosis in cardiac allografts.  Circulation . 2000;  102(19 Suppl 3) III228-232
  • 156 Blankenberg F G, Naumovski L, Tait J F, Post A M, Strauss H W. Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V.  J Nucl Med . 2001;  42(2) 309-316
  • 157 Post A M, Katsikis P D, Tait J F, Geaghan S M, Strauss H W, Blankenberg F G. Imaging cell death with radiolabeled annexin V in an experimental model of rheumatoid arthritis.  J Nucl Med . 2002;  43(10) 1359-1365
  • 158 Tokita N, Hasegawa S, Maruyama K. et al . 99mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis.  Eur J Nucl Med Mol Imaging . 2003;  30(2) 232-238
  • 159 Mochizuki T, Kuge Y, Zhao S. et al . Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V.  J Nucl Med . 2003;  44(1) 92-97
  • 160 Thimister P W, Hofstra L, Liem I H. et al . In vivo detection of cell death in the area at risk in acute myocardial infarction.  J Nucl Med . 2003;  44(3) 391-396
  • 161 Hofstra L, Liem I H, Dumont E A. et al . Visualisation of cell death in vivo in patients with acute myocardial infarction.  Lancet . 2000;  356(9225) 209-212
  • 162 Reutelingsperger C P, Dumont E, Thimister P W. et al . Visualization of cell death in vivo with the annexin A5 imaging protocol.  J Immunol Methods . 2002;  265(1-2) 123-132
  • 163 Belhocine T, Steinmetz N, Hustinx R. et al . Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis.  Clin Cancer Res . 2002;  8(9) 2766-2774
  • 164 Blankenberg F. To scan or not to scan, it is a question of timing: technetium-99m-annexin V radionuclide imaging assessment of treatment efficacy after one course of chemotherapy.  Clin Cancer Res . 2002;  8(9) 2757-2758
  • 165 Schwartz Z, Shani J, Soskolne W A, Touma H, Amir D, Sela J. Uptake and biodistribution of technetium-99m-MD32P during rat tibial bone repair.  J Nucl Med . 1993;  34(1) 104-108
  • 166 Berger F, Lee Y P, Loening A M. et al . Whole-body skeletal imaging in mice utilizing microPET: optimization of reproducibility and applications in animal models of bone disease.  Eur J Nucl Med Mol Imaging . 2002;  29(9) 1225-1236
  • 167 Ishiguro K, Nakagaki H, Tsuboi S. et al . Distribution of fluoride in cortical bone of human rib.  Calcif Tissue Int . 1993;  52(4) 278-282
  • 168 Zaheer A, Lenkinski R E, Mahmood A, Jones A G, Cantley L C, Frangioni J V. In vivo near-infrared fluorescence imaging of osteoblastic activity.  Nat Biotechnol . 2001;  19(12) 1148-1154
  • 169 Zhou D, Zhou C, Chen S. Gene regulation studies of aromatase expression in breast cancer and adipose stromal cells.  J Steroid Biochem Mol Biol . 1997;  61(3-6) 273-280
  • 170 Lee J H, Federoff H J, Schoeniger L O. G207, modified herpes simplex virus type 1, kills human pancreatic cancer cells in vitro.  J Gastrointest Surg . 1999;  3(2) 127-132
  • 171 Hirt H. A novel method for in situ screening of yeast colonies with the beta-glucuronidase reporter gene.  Curr Genet . 1991;  20(5) 437-439
  • 172 Zlokarnik G, Negulescu P A, Knapp T E. et al . Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter.  Science . 1998;  279(5347) 84-88
  • 173 Chalfie M, Tu Y, Euskirchen G, Ward W W, Prasher D C. Green fluorescent protein as a marker for gene expression.  Science . 1994;  263(5148) 802-805
  • 174 Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs W S, Bogdanov Jr A. MR imaging and scintigraphy of gene expression through melanin induction.  Radiology . 1997;  204(2) 425-429
  • 175 Yang M, Baranov E, Moossa A R, Penman S, Hoffman R M. Visualizing gene expression by whole-body fluorescence imaging.  Proc Natl Acad Sci U S A . 2000;  97(22) 12278-12282
  • 176 Handler A M, Harrell 2nd A R. Polyubiquitin-regulated DsRed marker for transgenic insects.  Biotechniques . 2001;  31(4) 820-828
  • 177 Gambhir S S, Barrio J R, Herschman H R, Phelps M E. Assays for noninvasive imaging of reporter gene expression.  Nucl Med Biol . 1999;  26(5) 481-490
  • 178 Bankiewicz K S, Eberling J L, Kohutnicka M. et al . Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach.  Exp Neurol . 2000;  164(1) 2-14
  • 179 Bengel F M, Anton M, Avril N. et al . Uptake of radiolabeled 2'-fluoro-2'-deoxy-5-iodo-1-beta-D-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesvirus thymidine kinase gene: the cellular basis for cardiac gene imaging.  Circulation 29 . 2000;  102(9) 948-950
  • 180 Rogers B E, Curiel D T, Mayo M S, Laffoon K K, Bright S J, Buchsbaum D J. Tumor localization of a radiolabeled bombesin analogue in mice bearing human ovarian tumors induced to express the gastrin-releasing peptide receptor by an adenoviral vector.  Cancer . 1997;  80(12 Suppl) 2419-2424
  • 181 Adams J Y, Johnson M, Sato M. et al . Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging.  Nat Med. . 2002;  8(8) 891-897
  • 182 Wu J C, Inubushi M, Sundaresan G, Schelbert H R, Gambhir S S. Optical imaging of cardiac reporter gene expression in living rats.  Circulation . 2002;  105(14) 1631-1634
  • 183 Wu J C, Inubushi M, Sundaresan G, Schelbert H R, Gambhir S S. Positron emission tomography imaging of cardiac reporter gene expression in living rats.  Circulation . 2002;  106(2) 180-183
    >