Minim Invasive Neurosurg 2004; 47(3): 136-139
DOI: 10.1055/s-2004-818493
Original Article
© Georg Thieme Verlag Stuttgart · New York

Use of Intraoperative Dynamic Infrared Imaging with Detection Wavelength of 7 - 14 µm in the Surgical Obliteration of Spinal Arteriovenous Fistula: Case Report and Technical Considerations

A.  Nakagawa1 , T.  Hirano1 , H.  Uenohara2 , H.  Utsunomiya2 , S.  Suzuki2 , K.  Takayama3 , R.  Shirane1 , T.  Tominaga1
  • 1Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
  • 2Department of Neurosurgery, Sendai National Hospital, Sendai, Japan
  • 3Institute of Fluid Science, Tohoku University, Sendai, Japan
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. September 2004 (online)

Abstract

Background and Objective: Although improvements of spatial and temporal resolution in infrared (IR) imaging have enabled intraoperative real-time acquisition of physiological and pathological information on living organs, the imaging qualities of anatomical delineation of blood vessels and functional delineation of blood flow were insufficient to serve as visual monitoring. The main reason was partly due to the lack of an appropriate IR detection IR band (formerly 3 - 5 µm), and the broad dynamic range in previous modalities.

Methods: To make a good contrast between blood vessels and surrounding tissues, the detection wavelength was shifted to the long-wave (7 - 14 µm) part of IR spectrum, which includes the peak IR wave from living tissue (9 - 10 µm), and the dynamic range was confined to ± 10 °C around 35 °C. The novel camera system (IRIS IV infrared imaging system) was used for the visual monitoring of blood flow during the obliteration of a spinal perimedullary arteriovenous fistula at Th 7 in 71-year-old male patient. The temperature resolution of camera was 0.15 °C, with its intensity resolution of 16 bit (320 × 240 pixels), and data were stored at a rate of 30 frames/second. High-quality delineation of blood vessels and blood flow was obtained all through the procedure without use of cold saline, which was an inevitable procedure to make contrast in the previously used thermography. However, the occasional use of an air blower was helpful to achieve adequate images in the deep and narrow area of the surgical field. The amount of shunt flow reduction was visualized by the intensity in the acquired imaging, which was also confirmed later by digital subtraction angiography.

Conclusion: From the present experience, it is considered that this type of imaging may be able to substitute intraoperative blood vessel and blood flow monitoring in spinal and other neurosurgical disorders.

References

  • 1 Schievink W I, Vishteh A G, McDougall C O, Spetzler F E. Intraoperative spinal angiography.  J Neurosurg. 1999;  90 (1 suppl) 48-51
  • 2 Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V. Near-infrared indocyanine green video angiography: A new method for intraoperative assessment of vascular flow.  Neurosurgery. 2003;  52 132-139
  • 3 Tani S, Ikeuchi S, Hata Y, Abe T. Vascular orientation by intra-arterial dye injection during spinal arteriovenous malformation surgery: Technical note.  Neurosurgery. 2001;  48 240-242
  • 4 Wrobel C J, Meltzer H, Lamond R, Alksne J F. Intraoperative assessment of aneurysm clip placement by intravenous fluorescein angiography.  Neurosurgery. 1994;  35 970-973
  • 5 Maiuri F, laconctta G, Gallicchio B, Stella L. Intraoperative sonography for spinal tumors. Correlations with MR findings and surgery.  J Neurosurg Sci. 2000;  44 115-122
  • 6 lacopino D G, Conti A, Giusa M, Cardali S, Tomasello F. Assistance of intraoperative microvascular Doppler in the surgical obliteration of spinal dural arteriovenous fistula: cases description and technical considerations.  Acta Neurochir (Wien). 2003;  145 133-137
  • 7 Kataoka H, Miyamoto S, Nagata I, Deno Y, Hashimoto N. Intraoperative microdoppler monitoring for spinal dural arteriovenous fistulae.  Surg Neurol. 1999;  52 466-472
  • 8 Pochaczevsky R, Wexler C E, Meyer P H, Epstein J A, Marc J A. Liquid crystal thermography of the spine and extremities. Its values in the diagnosis of spinal root syndrome.  J Neurosurg. 1982;  56 386-395
  • 9 Shevelev l A, Tsicalov E N, Budko K P, Gorbach A M, Sharaev G A. Thermoencephaloscopy.  Hum Physiol. 1986;  12 1-8
  • 10 Shevelev l A, Tsicalov E N. Fast thermal waves spreading over the cerebral cortex.  Neuroscience. 1997;  76 531-540
  • 11 Ecker R D, Goerss S J, Meyer F B, Cohen-Gadol A A, Britton J W, Levine J A. Vision of the future: initial experience with intraoperative real-time high-resolution dynamic infrared imaging.  J Neurosurg. 2002;  97 1460-1471
  • 12 Falk V, Walther T, Kitzinger H, Rauch T, Diegeler A, Autschbach R, Mohr F W. An experimental approach to quantitative thermal coronal angiography.  Thorac Cardiovasc Surg. 1998;  46 25-27
  • 13 Senyk J, MaIm A, Bommyr S. Intraoperative cardiothermography.  Eur Surg Res. 1971;  3 1-12
  • 14 Watson J C, Gorbach M, Pluta R M, Rak R, Heiss J D, Oldfield E H. Real-time detection of vascular occlusion and reperfusion of the brain during surgery by using infrared imaging.  J Neurosurg. 2002;  96 918-923
  • 15 Okudera H, Kobayashi S, Toriyama T. Intraoperative regional and functional thermography during resction of cerebral arteriovenous malformation.  Neurosurgery. 1994;  34 1065-1967
  • 16 Falk V, Walther T, Philippi A, Autschbach R, Krieger H, Dalichau H, Mohr F W. Thermal coronary angiography for intraoperative patency control of arterial and saphenous vein coronary artery bypass graft: results in 370 patients.  J Card Surg. 1995;  10 147-160
  • 17 Suma H, Isomura T, Horii T, Sato T. Intraoperative coronary artery imaging with infrared camera in off-pump CABG.  Ann Thorac Surg. 2000;  70 1741-1742
  • 18 Nakagawa A, Hirano T, Uenohara H, Sato M, Kusaka Y, Shirane R, Takayama K, Yoshimoto T. Intraoperative thermal artery imaging of an EC-IC bypass in beagles with infrared camera with detectable wave-length band of 7 - 14 µm: Possibilities as novel blood flow monitoring system.  Min Invas Neurosurg. 2003;  46 231-234

Atsuhiro Nakagawa, M. D., Ph. D.

Department of Neurosurgery · Tohoku University Graduate School of Medicine

1-1, Seiryo-machi

Aoba-ku

Sendai 980-8574

Japan

Telefon: +81-22-717-7230

Fax: +81-22-717-7233

eMail: nakg@nsg.med.tohoku.ac.jp

    >