Semin Thromb Hemost 2004; 30(1): 119-125
DOI: 10.1055/s-2004-822976
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Eicosanoid Regulation of Angiogenesis in Tumors

Daotai Nie1 , Kenneth V. Honn2
  • 1Departments of Radiation Oncology and Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
  • 2Professor, Departments of Radiation Oncology and Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
22. März 2004 (online)

Tumor angiogenesis, the formation of new capillary blood vessels in tumors from pre-existing vasculature, is required for tumor growth and progression. Eicosanoids, the bioactive lipids derived from arachidonic acid, possess potent and diverse biological activities. In response to stimuli, arachidonic acid is mobilized from phospholipid pools and metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and p450 epoxygenases (EOX) to form a variety of eicosanoids. The involvement of eicosanoids in tumor angiogenesis and progression is implicated by the observations that nonsteroidal anti-inflammation drugs (NSAIDs) reduce tumor growth and angiogenesis. Subsequently, it is found that the levels of COX-2 and/or 12-LOX are frequently increased in various cancers. Further studies using molecular and pharmacological approaches have found that COX-2 and 12-LOX, when overexpressed in carcinoma cells, enhance their angiogenic potential and stimulate tumor growth. In this article, we discuss how COX and LOX in cancer cells modulate tumor angiogenesis and present the possibility of using NSAIDs and LOX inhibitors as antiangiogenesis agents.

REFERENCES

  • 1 Folkman J. Incipient angiogenesis.  J Natl Cancer Inst. 2000;  92 94-95
  • 2 Bouck N, Stellmach V, Hsu S C. How tumors become angiogenic.  Adv Cancer Res. 1996;  69 135-174
  • 3 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.  Cell. 1996;  86 353-364
  • 4 Folkman J. Angiogenesis and angiogenesis inhibition: an overview.  EXS. 1997;  79 1-8
  • 5 Volpert O V, Dameron K M, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity.  Oncogene. 1997;  14 1495-1502
  • 6 Dameron K M, Volpert O V, Tainsky M A et al.. Control of angiogenesis in fibroblasts by P53 regulation of thromobspondin-1.  Science. 1994;  265 1582-1584
  • 7 Rak J, Mitsuhashi Y, Bayko L et al.. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction or inhibition of tumor angiogenesis.  Cancer Res. 1995;  55 4575-4580
  • 8 Maxwell P H, Wiesener M S, Chang G W et al.. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.  Nature. 1999;  399 271-275
  • 9 Shweiki D, Itin A, Soffer D et al.. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.  Nature. 1992;  359 843-845
  • 10 Shweiki D, Neeman M, Itin A et al.. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis.  Proc Natl Acad Sci USA. 1995;  92 768-772
  • 11 Plate K H, Breier G, Weich H A et al.. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo.  Nature. 1992;  359 845-848
  • 12 Forsythe J A, Jiang B H, Iyeer N V et al.. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.  Mol Cell Biol. 1996;  16 4604-4613
  • 13 Hartmann A, Kunz M, Kostlin S et al.. Hypoxia-induced up-regulation of angiogenin in human malignant melanoma.  Cancer Res. 1999;  59 1578-1583
  • 14 Sordello S, Bertrand N, Plouet J. Vascular endothelial growth factor is up-regulated in vitro and in vivo by androgens.  Biochem Biophys Res Commun. 1998;  251 287-290
  • 15 Jain R K, Safabakhsh N, Sckell A et al.. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor.  Proc Natl Acad Sci USA. 1998;  95 10820-10825
  • 16 Ruohola J K, Valve E M, Karkkainen M J et al.. Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells.  Mol Cell Endocrinol. 1999;  149 29-40
  • 17 Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology.  Science. 2001;  294 1871-1875
  • 18 Chandrasekharan N V, Dai H, Roos K L et al.. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression.  Proc Natl Acad Sci USA. 2002;  99 13926-13931
  • 19 Smith W L, DeWitt D L, Garavito R M. Cyclooxygenases: structural, cellular and molecular biology.  Annu Rev Biochem. 2000;  69 145-182
  • 20 Molina M A, Sitja-Arnau M, Lemoine M G et al.. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs.  Cancer Res. 1999;  59 4356-4362
  • 21 Tucker O N, Dannenberg A J, Yang E K et al.. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer.  Cancer Res. 1999;  59 987-990
  • 22 Achiwa H, Yatabe Y, Hida T et al.. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas.  Clin Cancer Res. 1999;  5 1001-1005
  • 23 Wolff H, Saukkonen K, Anttila S et al.. Expression of cyclooxygenase-2 in human lung carcinoma.  Cancer Res. 1998;  58 4997-5001
  • 24 Hida T, Yatabe Y, Achiwa H et al.. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas.  Cancer Res. 1998;  58 3761-3764
  • 25 Uefuji K, Ichikura T, Mochizuki H, Shinomiya N. Expression of cyclooxygenase-2 protein in gastric adenocarcinoma.  J Surg Oncol. 1998;  69 168-172
  • 26 Hwang D, Scollard D, Byrne J et al.. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer.  J Natl Cancer Inst. 1998;  90 455-460
  • 27 Kutchera W, Jones D A, Matsunami N et al.. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect.  Proc Natl Acad Sci USA. 1996;  93 4816-4820
  • 28 DuBois R N, Radhika A, Reddy B S et al.. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors.  Gastroenterology. 1996;  110 1259-1262
  • 29 Gustafson-Svard C, Lilja I, Hallbook O et al.. Cyclooxygenase-1 and cyclooxygenase-2 gene expression in human colorectal adenocarcinomas and in azoxymethane induced colonic tumours in rats.  Gut. 1996;  38 79-84
  • 30 Kargman S L, O'Neill G P, Vickers P J et al.. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer.  Cancer Res. 1995;  55 2556-2559
  • 31 Gupta S, Srivastava M, Ahmad N et al.. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma.  Cancer. 2000;  42 73-78
  • 32 Tremblay C, Dore M, Bochsler P N et al.. Induction of prostaglandin G/H synthase-2 in a canine model of spontaneous prostatic adenocarcinoma.  J Natl Cancer Inst. 1999;  91 1398-1403
  • 33 Tjandrawinata R R, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells.  Br J Cancer. 1997;  75 1111-1118
  • 34 Chan G, Boyle J O, Yang E K et al.. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck.  Cancer Res. 1999;  59 991-994
  • 35 Zimmermann K C, Sarbia M, Weber A A et al.. Cyclooxygenase-2 expression in human esophageal carcinoma.  Cancer Res. 1999;  59 198-204
  • 36 Wilson K T, Fu S, Ramanujam K S et al.. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas.  Cancer Res. 1998;  58 2929-2934
  • 37 Subbaramaiah K, Norton L, Gerald W et al.. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3.  J Biol Chem. 2002;  277 18649-18657
  • 38 Tsujii M, Kawano S, DuBois R N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential.  Proc Natl Acad Sci USA. 1997;  94 3336-3340
  • 39 Liu X H, Yao S, Kirschenbaum A et al.. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells.  Cancer Res. 1998;  58 4245-4249
  • 40 Liu X H, Kirschenbaum A, Yao S et al.. Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line.  Clin Exp Metastasis. 1999;  17 687-694
  • 41 Liu X H, Kirschenbaum A, Yao S et al.. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo.  J Urol. 2000;  164 820-825
  • 42 Williams C S, Tsujii M, Reese J et al.. Host cyclooxygenase-2 modulates carcinoma growth.  J Clin Invest. 2000;  105 1589-1594
  • 43 Tsujii M, Kawano S, Tsuji S et al.. Cyclooxygenase regulates angiogenesis induced by colon cancer cells.  Cell. 1998;  93 705-716
  • 44 Sawaoka H, Tsuji S, Tsujii M et al.. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo.  Lab Invest. 1999;  79 1469-1477
  • 45 Tamura M, Sebastian S, Gurates B et al.. Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells.  J Clin Endocrinol Metab. 2002;  87 3504-3507
  • 46 Hull M A, Thomson J L, Hawkey C J. Expression of cyclooxygenase 1 and 2 by human gastric endothelial cells.  Gut. 1999;  45 529-536
  • 47 Pourtau J, Mirshahi F, Li H et al.. Cyclooxygenase-2 activity is necessary for the angiogenic properties of oncostatin M.  FEBS Lett. 1999;  459 453-457
  • 48 Jones M K, Wang H, Peskar B M et al.. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing.  Nat Med. 1999;  5 1418-1423
  • 49 Yamada M, Kawai M, Kawai Y et al.. The effect of selective cyclooxygenase-2 inhibitor on corneal angiogenesis in the rat.  Curr Eye Res. 1999;  19 300-304
  • 50 BenEzra D. Neovasculogenic ability of prostaglandins, growth factors, and synthetic chemoattractants.  Am J Ophthalmol. 1978;  86 455-461
  • 51 Ziche M, Jones J, Gullino P M. Role of prostaglandin E1 and copper in angiogenesis.  J Natl Cancer Inst. 1982;  69 475-482
  • 52 Form D M, Auerbach R. PGE2 and angiogenesis.  Proc Soc Exp Biol Med. 1983;  172 214-218
  • 53 Liu X H, Kirschenbaum A, Lu M et al.. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line.  J Biol Chem. 2002;  277 50081-50086
  • 54 Amano H, Hayashi I, Endo H et al.. Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth.  J Exp Med. 2003;  197 221-232
  • 55 Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2.  J Biol Chem. 1999;  274 17042-17048
  • 56 Xin X, Yang S, Kowalski J et al.. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo.  J Biol Chem. 1999;  274 9116-9121
  • 57 Nie D, Lamberti M, Zacharek A et al.. Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis.  Biochem Biophys Res Commun. 2000;  267 245-251
  • 58 Daniel T O, Liu H, Morrow J D et al.. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis.  Cancer Res. 1999;  59 4574-4577
  • 59 Ashton A W, Yokota R, John G et al.. Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2).  J Biol Chem. 1999;  274 35562-35570
  • 60 Hennig R, Ding X Z, Tong W G et al.. 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue.  Am J Pathol. 2002;  161 421-428
  • 61 Ghosh J, Myers C E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells.  Proc Natl Acad Sci USA. 1998;  95 13182-13187
  • 62 Tong W G, Ding X Z, Witt R C et al.. Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway.  Mol Cancer Ther. 2002;  1 929-935
  • 63 Brash A R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate.  J Biol Chem. 1999;  274 23679-23682
  • 64 Brash A R, Boeglin W E, Chang M S. Discovery of a second 15S-lipoxygenase in humans.  Proc Natl Acad Sci USA. 1997;  94 6148-6152
  • 65 Shappell S B, Gupta R A, Manning S et al.. 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells.  Cancer Res. 2001;  61 497-503
  • 66 Jack G S, Brash A R, Olson S J et al.. Reduced 15-lipoxygenase-2 immunostaining in prostate adenocarcinoma: correlation with grade and expression in high-grade prostatic intraepithelial neoplasia.  Hum Pathol. 2000;  31 1146-1154
  • 67 Shappell S B, Boeglin W E, Olson S J et al.. 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma.  Am J Pathol. 1999;  155 235-245
  • 68 Gao X, Grignon D J, Chbihi T et al.. Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer.  Urology. 1995;  46 227-237
  • 69 Ding X Z, Iversen P, Cluck M W et al.. Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells.  Biochem Biophys Res Commun. 1999;  261 218-223
  • 70 Natarajan R, Esworthy R, Bai W et al.. Increased 12-lipoxygenase expression in breast cancer tissues and cells. Regulation by epidermal growth factor.  J Clin Endocrinol Metab. 1997;  82 1790-1798
  • 71 Natarajan R, Nadler J. Role of lipoxygenases in breast cancer.  Front Biosci. 1998;  3 E81-E88
  • 72 Connolly J M, Rose D P. Enhanced angiogenesis and growth of 12-lipoxygenase gene-transfected MCF-7 human breast cancer cells in athymic nude mice.  Cancer Lett. 1998;  132 107-112
  • 73 Chen Y Q, Duniec Z M, Liu B et al.. Endogenous 12(S)-HETE production by tumor cells and its role in metastasis.  Cancer Res. 1994;  54 1574-1579
  • 74 Hong S H, Avis I, Vos M D et al.. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors.  Cancer Res. 1999;  59 2223-2228
  • 75 Hagmann W, Gao X, Zacharek A et al.. 12-Lipoxygenase in Lewis lung carcinoma cells: molecular identity, intracellular distribution of activity and protein, and Ca(2+)-dependent translocation from cytosol to membranes.  Prostaglandins. 1995;  49 49-62
  • 76 Liu B, Marnett L J, Chaudhary A et al.. Biosynthesis of 12(S)-Hydroxyeicosatetraenoic acid by B16 amelanotic melanoma cells is a determinant of their metastatic potential.  Lab Invest. 1994;  70 314-323
  • 77 Chang W C, Liu Y W, Ning C C et al.. Induction of arachidonate 12-lipoxygenase mRNA by epidermal growth factor in A431 cells.  J Biol Chem. 1993;  268 18734-18739
  • 78 Chen B K, Kung H C, Tsai T Y et al.. Essential role of mitogen-activated protein kinase pathway and c-Jun induction in epidermal growth factor-induced gene expression of human 12-lipoxygenase.  Mol Pharmacol. 2000;  57 153-161
  • 79 Silletti S, Timar J, Honn K V et al.. Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high- and low-metastatic K1735 melanoma cell variants.  Cancer Res. 1994;  54 5752-5756
  • 80 Chen B K, Chang W C. Overexpression of c-Fos enhances the transcription of human arachidonate 12-lipoxygenase in A431 cells.  Biochem Biophys Res Commun. 1999;  261 848-852
  • 81 Nie D, Hillman G G, Geddes T et al.. Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth.  Cancer Res. 1998;  58 4047-4051
  • 82 Tang D G, Grossi I M, Chen Y Q et al.. 12(S)-HETE promotes tumor-cell adhesion by increasing surface expression of αvβ3 integrins on endothelial cells.  Int J Cancer. 1993;  54 102-111
  • 83 Tang D G, Chen Y Q, Renaud C et al.. Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor.  J Cell Biol. 1993;  121 689-704
  • 84 Tang D G, Diglio C A, Honn K V. Activation of microvascular endothelium by 12(S)-HETE leads to enhanced tumor cell adhesion via upregulation of surface expression of αvβ3 integrin: a post-transcriptional, PKC- and cytoskeleton-dependent process.  Cancer Res. 1994;  54 1119-1129
  • 85 Tang D G, Chen Y Q, Diglio C A et al.. Transcriptional activation of endothelial cell integrin αvβ3 protein kinase C activator 12(S)-HETE.  J Cell Sci. 1995;  108 2629-2644
  • 86 Brooks P C, Clark R AF, Cheresh D A. Requirement of vascular integrin αvβ3 for angiogenesis.  Science. 1994;  264 569-571
  • 87 Honn K V, Grossi I M, Diglio C A et al.. Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE induced endothelial cell retraction.  FASEB J. 1989;  3 2285-2293
  • 88 Tang D G, Diglio C A, Honn K V. 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and αvβ3 integrins.  Prostaglandins. 1993;  45 249-268
  • 89 Honn K V, Tang D G, Grossi I et al.. Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction.  Cancer Res. 1994;  54 565-574
  • 90 Tang D G, Renaud C, Stojakovic S et al.. 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis.  Biochem Biophys Res Commun. 1995;  211 462-468
  • 91 Setty B NJ, Graeber J E, Stuart M J. The mitogenic effect of 15- and 12-hydroxyeicosatetraenoic acid on endothelial cells may be mediated via diacylglycerol kinase inhibition.  J Biol Chem. 1987;  262 17613-17622

Kenneth HonnPh.D. 

Departments of Radiation Oncology and Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute

431 Chemistry Bldg., Detroit, MI 48202

eMail: k.v.honn@wayne.edu

    >