Semin Liver Dis 2004; 24(1): 21-42
DOI: 10.1055/s-2004-823099
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Pathology of Cholestasis

Melissa K. Li1 , 2 , James M. Crawford2
  • 1Assistant Professor of Pathology, University of Florida College of Medicine, Gainesville, Florida
  • 2Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
Further Information

Publication History

Publication Date:
13 April 2004 (online)

Hepatic formation of bile is critical to survival and is one of the most easily disrupted liver functions. Liver biopsy is performed to obtain a definitive diagnosis of cause, to exclude potential etiologies, or simply to assist in development of a differential diagnosis. Parenchymal changes of cholestasis (feathery degeneration of hepatocytes, dilated bile canaliculi with retained bile, Kupffer cell phagocytosis of bile that has leaked into the sinusoidal space) are nonspecific and may be seen with both nonobstructive and obstructive cholestasis. The portal tract changes of obstruction are characteristic: bile ductular proliferation, inspissated bile in bile ducts, portal tract edema, neutrophilic inflammation, and cholate stasis of periportal hepatocytes. Uncorrected obstruction incites robust fibrogenesis by portal tract myofibroblasts, engendering a characteristic jigsaw pattern of fibrous septa. Diseases with specific histological features include primary biliary cirrhosis, primary sclerosing cholangitis, biliary atresia, and graft-versus-host disease. However, the pathologist is cautioned not to overinterpret the cholestatic liver biopsy and to apply rigorous criteria for specific causal diagnoses. Most of the histological features of cholestasis are nonspecific. Hence, both practicing physician and pathologist should have sound knowledge of the pathology of cholestasis.

REFERENCES

  • 1 Trauner M, Boyer J L. Bile salt transporters: molecular characterization, function, and regulation.  Physiol Rev. 2003;  83 633-671
  • 2 Crawford J M. The role of vesicle-mediated transport pathways in hepatocellular bile secretion.  Semin Liver Dis. 1996;  16 169-189
  • 3 Trauner M, Meier P J, Boyer J L. Molecular pathogenesis of cholestasis.  N Engl J Med. 1998;  339 1217-1227
  • 4 Accatino L, Pizarro M, Solis N et al.. Differential expression of canalicular membrane Ca2+/Mg(2+)-ecto-ATPase in estrogen-induced and obstructive cholestasis in the rat.  J Lab Clin Med. 2000;  136 125-137
  • 5 Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver.  Annu Rev Nutr. 1996;  16 179-203
  • 6 Suchy F J, Balistreri W F, Hung J, Miller P, Garfield S A. Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue.  Am J Physiol. 1983;  245 G681-G689
  • 7 Buscher H P, Schramm U, MacNelly S, Kurz G, Gerok W. The acinar location of the sodium-independent and the sodium- dependent component of taurocholate uptake. A histoautoradiographic study of rat liver.  J Hepatol. 1991;  13 169-178
  • 8 Stieger B, Hagenbuch B, Landmann L et al.. In situ localization of the hepatocytic Na+ cotransporting polypeptide in rat liver.  Gastroenterology. 1994;  107 1781-1787
  • 9 Aiso M, Takikawa H, Yamanaka M. Biliary excretion of bile acids and organic anions in zone 1- and zone 3-injured rats.  Liver. 2000;  20 38-44
  • 10 Layden T J, Boyer J L. Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size.  Lab Invest. 1978;  39 110-119
  • 11 Wilton J C, Chipman J K, Lawson C J, Strain A J, Coleman R. Periportal- and perivenous-enriched hepatocyte couplets: differences in canalicular activity and in response to oxidative stress.  Biochemistry. 1993;  292 773-779
  • 12 Strazzabosco M, Spirli C, Okoliczanyi L. Pathophysiology of the intrahepatic biliary epithelium.  J Gastroenterol Hepatol. 2000;  15 244-253
  • 13 Alpini G, McGill J M, LaRusso N F. The pathobiology of biliary epithelia.  Hepatology. 2002;  35 1256-1268
  • 14 Benedetti A, Di Sario A, Marucci L et al.. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells.  Am J Physiol. 1997;  272 G1416-G1424
  • 15 Saxena R, Theise N D, Crawford J M. Microanatomy of the human liver: exploring the hidden interfaces.  Hepatology. 1999;  30 1339-1346
  • 16 Crawford A R, Lin X Z, Crawford J M. The normal adult human liver biopsy: a quantitative reference standard.  Hepatology. 1998;  28 323-331
  • 17 Theise N D, Saxena R, Portmann B C et al.. Canals of Hering and hepatic stem cells in humans.  Hepatology. 1999;  30 1425-1433
  • 18 Crawford J M. Development of the intrahepatic biliary tree.  Semin Liver Dis. 2002;  22 213-226
  • 19 Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply.  Microsc Res Tech. 1997;  38 552-570
  • 20 Sell S. Heterogeneity and plasticity of hepatocyte lineage cells.  Hepatology. 2001;  33 738-750
  • 21 Slott P A, Liu M H, Tavoloni N. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat.  Gastroenterology. 1990;  99 466-477
  • 22 Roskams T, Theise N D, Desmet V et al.. Hepatology. 2004;  , (In press)
  • 23 Wang X, Foster M, Al-Dhalimy M et al.. The origin and liver repopulating capacity of murine oval cells.  Proc Natl Acad Sci USA. 2003;  100(Suppl 1) 11881-11888
  • 24 Wang X, Willenbring H, Akkari Y et al.. Cell fusion is the principal source of bone-marrow-derived hepatocytes.  Nature. 2003;  422 897-901
  • 25 Hatch H M, Zheng D, Jorgensen M L, Petersen B E. SDF-1alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats.  Cloning Stem Cells. 2002;  4 339-351
  • 26 Kollet O, Shivtiel S, Chen Y Q et al.. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver.  J Clin Invest. 2003;  112 160-169
  • 27 Landing B H, Wells T R. Considerations of some architectural properties of the biliary tree and liver in childhood. In: Abramowsky CR, Bernstein J, Rosenberg HS Transplantation Pathology-Hepatic Morphogenesis. Perspectives in Pediatric Pathology. Vol. 14 Basel; S. Karger 1991: 122-142
  • 28 Ludwig J, Ritman E L, LaRusso N F, Sheedy P F, Zumpe G. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging techniques.  Hepatology. 1998;  27 893-899
  • 29 Miyake M, Okudaira M, Sato T, Kitagawa M, Hisauchi T. The blood vessels of the liver. Nippon Byori Gakkai Kaishi.  Trans Soc Pathol Jap. 1960;  49 589-632
  • 30 Popper H, Szanto P B. Intrahepatic cholestasis (cholangiolitis).  Gastroenterology. 1956;  31 683-700
  • 31 Anderson J. On hemorrhage from the umbilicus after the separation of the fetus.  Boston Med Surg J. 1850;  41 440-442
  • 32 Green R M, Crawford J M. Hepatocellular cholestasis: pathobiology and histological outcome.  Semin Liver Dis. 1995;  15 372-389
  • 33 Zollner G, Fickert P, Zenz R et al.. Hepatobiliary tranpsorter expression in percutaneous liver biopsies of patients with cholestatic liver disease.  Hepatology. 2001;  33 633-646
  • 34 Vox T A, Hooiveld G J, Koning H et al.. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion tranpsorter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver.  Hepatology. 1998;  28 1637-1644
  • 35 Trauner M, Arrese M, Soroka C J et al.. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis.  Gastroenterology. 1997;  113 255-264
  • 36 Lee J M, Trauner M, Soroka C J et al.. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat.  Gastroenterology. 2000;  118 163-172
  • 37 Soroka C J, Lee J M, Azzaroki F, Boyer J L. Cellular localization and up-regulation of multidrug resistance- associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver.  Hepatology. 2001;  33 783-791
  • 38 Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3).  J Biol Chem. 1999;  274 15181-15185
  • 39 Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein3 (Mrp3).  J Biol Chem. 2000;  275 2905-2910
  • 40 Ogawa K, Suzuki H, Hirohashi T et al.. Characterization of inducible nature of MRP3 in rat liver.  Am J Physiol Gastrointest Liver Physiol. 2000;  278 G438-G446
  • 41 Grambihler A, Higuchi H, Bronk S F, Gores G J. cFLIP-L inhibits p38 MAPK activation: an additional anti-apoptotic mechanism in bile acid-mediated apoptosis.  J Biol Chem. 2003;  278 26831-26837
  • 42 Nagore N, Howe S, Boxer L, Scheuer P J. Liver cell rosettes: structural differences in cholestasis and hepatitis.  Liver. 1989;  9 43-51
  • 43 Clayton P T, Casteels M, Mieli-Vergani G, Lawson A M. Familial giant cell hepatitis with law bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inbom error of bile acid synthesis.  Pediatr Res. 1995;  37 424-431
  • 44 Alagille D, Odievre M, Gautier M, Dommergues J P. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental and sexual devel opment, and cardiac murmur.  J Pediatr. 1975;  86 63-71
  • 45 Crawford J M. Cellular and molecular biology of the inflamed liver.  Curr Opin Gastroenterol. 1997;  13 175-185
  • 46 Crawford J M, Boyer J L. Clinicopathology conferences: inflammation-induced cholestasis.  Hepatology. 1998;  28 253-260
  • 47 Lefkowitch J H. Bile ductular cholestasis: an ominous histopathologic sign related to sepsis and “cholangitis lenta”.  Hum Pathol. 1982;  13 19-24
  • 48 Tavoloni N, Schaffner F. The intrahepatic biliary epithelium in the guinea pig: is hepatic artery blood flow essential in maintaining its function and structure?.  Hepatology. 1985;  5 666-672
  • 49 Ramadori G, Saile B. Portal tract fibrogenesis in the liver.  Lab Invest. 2004;  84 153-159
  • 50 Terada R, Yamamoto K, Hakoda T et al.. Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases.  Lab Invest. 2003;  83 665-672
  • 51 Tuchweber B, Desmouliere A, Bochaton-Piallat M L, Rubbia-Brandt L, Gabbiani G. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat.  Lab Invest. 1996;  74 265-278
  • 52 Desmouliere A, Darby I, Costa A MA et al.. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat.  Lab Invest. 1997;  76 765-778
  • 53 Uchio K, Tuchweber B, Manabe N et al.. Cellular retinol-binding protein-1 expression and modulation during in vivo and in vitro myofibroblastic differentiation of rat heaptic stellate cells and portal fibroblasts.  Lab Invest. 2002;  82 619-628
  • 54 Kinnman N, Francoz C, Barbu V et al.. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis.  Lab Invest. 2003;  83 163-173
  • 55 Crawford J M. Cirrhosis. In: MacSween RNM, Anthony PP, Scheuer PJ, Burt AD, Portmann BC Pathology of the Liver, 4th ed. Philadelphia; WB Saunders 2002: 575-619
  • 56 Hammel P, Couvelard A, O'Toole D et al.. Regression of liver fibrosis after biliary drainage in patients with chronic pancratitis and stenosis of the common bile duct.  N Engl J Med. 2001;  344 418-423
  • 57 Bach N, Thung S N, Schaffner F. The histological features of chronic hepatitis C and autoimmune chronic hepatitis: a comparative analysis.  Hepatology. 1992;  15 572-577
  • 58 Talwalkar J A, Lindor K D. Primary biliary cirrhosis.  Lancet. 2003;  362 53-61
  • 59 Mackay I R, Whittingham S, Fida S et al.. The peculiar autoimmunity of primary biliary cirrhosis.  Immunol Rev. 2000;  174 226-237
  • 60 Gores G J, Moore S B, Fisher L D, Powell F C, Dickson E R. Primary biliary cirrhosis: association with class II major histocompatibility antigens.  Hepatology. 1987;  7 889-892
  • 61 Bach N, Schaffner F. Familial primary biliary cirrhosis.  J Hepatol. 1994;  20 698-701
  • 62 Jones D E, Watt F E, Metcalf J V, Bassendine M F, James O F. Familial primary biliary cirrhosis reassessed: a geographically based population study.  J Hepatol. 1999;  30 402-407
  • 63 Saxena R, Hytiroglou P, Thung S N, Theise N D. Destruction of canals of Hering in primary biliary cirrhosis.  Hum Pathol. 2002;  33 983-988
  • 64 Scheuer P J. Ludwig Symposium on biliary disorders-part II. Pathologic features and evolution of primary biliary cirrhosis and primary sclerosing cholangitis.  Mayo Clin Proc. 1998;  73 179-183
  • 65 Vleggaar F P, van Buuren H R, Zondervan P E, ten Kate F JW, Hop W CJ. Jaundice in non-cirrhotic primary biliary cirrhosis: the premature ductopenic variant.  Gut. 2001;  49 276-281
  • 66 Goodman Z D, McNally P R, Davis K R, Ishak K G. Autoimmune cholangitis: a variant of primary biliary cirrhosis-clinicopathologic and serologic correlations in 200 cases.  Dig Dis Sci. 1995;  40 1232-1242
  • 67 Heathcote J. Variant syndromes of autoimmune hepatitis.  Clin Liver Dis. 2002;  6 381-396
  • 68 Kim W R, Lindor K D, Locke III G R et al.. Epidemiology and natural history of primary biliary cirrhosis in a US community.  Gastroenterology. 2000;  119 1631-1636
  • 69 Burt A D. Primary biliary cirrhosis and other ductopenic diseases.  Clin Liver Dis. 2002;  6 363-380
  • 70 Zein C O, Lindor K D. Primary sclerosing cholangitis.  Semin Gastrointest Dis. 2001;  12 103-112
  • 71 Bhathal P S, Powell L W. Primary intrahepatic obliterating cholangitis: a possible variant of “sclerosing cholangitis”.  Gut. 1969;  10 886-893
  • 72 Liu C, Crawford J M. Graft-versus-host disease of the liver. In: Ferrara JLM, Deeg J, Burakoff S Graft Versus Host Disease, 3rd ed. New York; Marcel Dekker 2004 (In press)
  • 73 Teshima T, Ferrara J L. Understanding the alloresponse: new approaches to graft-versus-host disease prevention.  Semin Hematol. 2002;  39 15-22
  • 74 Snover D C. Acute and chronic graft-versus-host disease: histopathological evidence for two distinct pathogenetic mechanisms.  Hum Pathol. 1984;  15 202-205
  • 75 Snover D C, Wiesdorf S A, Ramsay N K, McClave P, Kersey J H. Hepatic graft versus host disease: a study of the predictive value of liver biopsy in diagnosis.  Hepatology. 1984;  4 123-130
  • 76 Tanaka M, Umihara J, Shimmoto K et al.. The pathogenesis of graft-versus-host reaction in the intrahepatic bile duct. An immunohistochemical study.  Acta Pathol Jpn. 1989;  39 648-655
  • 77 Strasser S I, Shulman H M, Flowers M E et al.. Chronic graft-versus-host disease of the liver: presentation as an acute hepatitis.  Hepatology. 2000;  32 1265-1271
  • 78 Fujii N, Takenaka K, Shinagawa K et al.. Hepatic graft-versus-host disease presenting as an acute hepatitis after allogeneic peripheral blood stem cell transplantation.  Bone Marrow Transplant. 2001;  27 1007-1010
  • 79 Akpek G, Boitnott J K, Lee L A et al.. Hepatitic variant of graft-versus-host disease after donor lymphocyte infusion.  Blood. 2002;  100 3903-3907
  • 80 Malik A H, Collins R H, Saboorian H, Lee W M. Chronic graft-versus-host disease after hematopoietic cell transplantation presenting as an acute hepatitis.  Am J Gastroenterol. 2001;  96 588-590
  • 81 Vierling J M. Immune disorders of the liver and bile duct.  Gastroenterol Clin North Am. 1992;  21 427-449
  • 82 Andersen C B, Horn T, Sehested M, Junge J, Jacobsen N. Graft-versus-host disease: liver morphology and pheno/genotypes of inflammatory cells and target cells in sex-mismatched allogeneic bone marrow transplant patients.  Transplant Proc. 1993;  25 1250-1254
  • 83 Yeh K H, Hsieh H C, Tang J L et al.. Severe isolated acute hepatic graft-versus-host disease with vanishing bile duct syndrome.  Bone Marrow Transplant. 1994;  14 319-321
  • 84 Yau J C, Zander A R, Srigley J R et al.. Chronic graft-versus-host disease complicated by micronodular cirrhosis and esophageal varices.  Transplantation. 1986;  41 129-130
  • 85 Knapp A B, Crawford J M, Rappeport J M, Gollan J L. Cirrhosis as a consequence of graft-versus-host disease.  Gastroenterology. 1987;  92 513-519
  • 86 Stechschulte Jr D J, Fishback J L, Emami A, Bhatia P. Secondary biliary cirrhosis as a consequence of graft-versus-host disease.  Gastroenterology. 1990;  98 223-225
  • 87 Urban C H, Deutschmann A, Kerbl R et al.. Organ tolerance following cadaveric liver transplantation for chronic graft-versus-host disease after allogeneic bone marrow transplantation.  Bone Marrow Transplant. 2002;  30 535-537
  • 88 Kroumpouzos G. Intrahepaticcholestasis of pregnancy:what's new.  J Eur Acad Dermatol Venereol. 2002;  16 316-318
  • 89 Reyes H. Intrahepatic cholestasis. A puzzling disorder of pregnancy (review).  J Gastroenterol Hepatol. 1997;  12 211-216
  • 90 Germain A M, Carvajal J A, Glasinovic J C, Kato S, Williamson C. Intrahepatic cholestasis of pregnancy: an intriguing pregnancy-specific disorder.  J Soc Gynecol Investig. 2002;  9 10-14
  • 91 Bacq Y, Sapey T, Brechot M C et al.. Intrahepatic cholestasis of pregnancy: a French prospective study.  Hepatology. 1997;  26 358-364
  • 92 Heikkinen J, Maentausta O, Ylostalo P, Janne O. Changes in serum bile acid concentrations during normal pregnancy, in patients with intrahepatic cholestasis of pregnancy and in pregnant women with itching.  Br J Obstet Gynaecol. 1981;  88 240-245
  • 93 Gendrot C, Bacq Y, Brechot M C, Lansac J, Andres C. A second heterozygous MDR3 nonsense mutation associated with intrahepatic cholestasis of pregnancy.  J Med Genet. 2003;  40 e32
  • 94 Mullenbach R, Linton K J, Wiltshire S et al.. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy.  J Med Genet. 2003;  40 e70
  • 95 Jacquemin E, De Vree J M, Cresteil D et al.. The wide spectrum of multidrug resistance deficiency: from neonatal cholestasis to cirrhosis of adulthood.  Gastroenterology. 2001;  120 1448-1458
  • 96 Lammert F, Marschall H-U, Glantz A, Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis, and management.  J Hepatol. 2000;  33 1012-1021
  • 97 Ishak K G, Sharp H L, Schwarzenberg S J. Metabolic errors and liver disease. In: MacSween RMN, Burt AD, Portmann BC, et al. Pathology of The Liver, 4th ed. London; Churchill Livingstone 2002: 155-255
  • 98 Jonas M M, Perez-Atayde A R. Liver disease in infancy and childhood. In: Schiff ER, Sorrell MF, Maddrey WC Diseases of the Liver, 9th ed. Philadelphia; Lippincott Williams & Wilkins 2003: 1459-1496
  • 99 Jevon G P, Dimmick J E. Histopathologic approach to metabolic liver disease: part 1.  Pediatr Dev Pathol. 1998;  1 179-199
  • 100 Jevon G P, Dimmick J E. Histopathologic approach to metabolic liver disease: part 2.  Pediatr Dev Pathol. 1998;  1 261-269
  • 101 Knisely A S, Crawford J M. Pediatric and metabolic liver disease. In: Odze RD, Goldblum JR, Crawford JM Pathology of the Gastrointestinal Tract, Pancreas, Liver and Biliary Tree. Philadelphia; WB Saunders 2004: 979-998
  • 102 Perlmutter D H, Shepherd R W. Extrahepatic biliary atresia: a disease or a phenotype?.  Hepatology. 2002;  35 1297-1304
  • 103 Cocjin J, Rosenthal P, Buslon V et al.. Bile ductule formation in fetal, neonatal, and infant livers compared with extrahepatic biliary atresia.  Hepatology. 1996;  24 568-574
  • 104 Koukoulis G, Mieli-Vergani G, Portmann B. Infantile liver giant cells: immunohistological study of their proliferative state and possible mechanisms of formation.  Pediatr Dev Pathol. 1999;  2 353-359
  • 105 Raweily E A, Gibson A A, Burt A D. Abnormalities of intrahepatic bile ducts in extrahepatic biliary atresia.  Histopathology. 1990;  17 521-527
  • 106 Desmet V J. Ludwig symposium on biliary disorders-part I. Pathogenesis of ductal plate abnormalities.  Mayo Clin Proc. 1998;  73 80-89
  • 107 Low Y, Vijayhan V, Tan C EL. The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: an immunohistochemical study.  J Pediatr. 2001;  139 320-322
  • 108 Tan C EL, Moscoso G J. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: A way to understanding biliary atresia. Part 1.  Pathol Int. 1994;  44 587-599
  • 109 Torbenson M, Wang J, Abraham S, Maitra A, Boitnott J. Bile ducts and ductules are positive for CD56 (N-CAM) in most cases of extrahepatic biliary atresia.  Am J Surg Pathol. 2003;  27 1454-1457
  • 110 Talbot I C, Mowat A P. Liver disease in infancy: histological features and relationship to alpha-antitrypsin phenotype.  J Clin Pathol. 1975;  28 559-563
  • 111 Amarapurkar A, Somers S, Knisely A S, Portmann B C. Steatosis of periportal hepatocytes is associated with alpha-1-antitrypsin storage disorder at presentation in infancy.  Lab Invest. 2002;  82 309A-310A
  • 112 Deutsch G H, Sokol R J, Stathos T H, Knisely A S. Proliferation to paucity: evolution of bile duct abnormalities in a case of Alagille syndrome.  Pediatr Dev Pathol. 2001;  4 559-563
  • 113 Kahn E. Paucity of interlobular bile ducts: Arteriohepatic dysplasia and nonsyndromic duct paucity.  Perspect Pediatr Pathol. 1991;  14 168-215
  • 114 Alagille D. Intrahepatic biliary atresia (hepatic ductular hypoplasia). In: Berenberg SR Liver Diseases in Infancy and Childhood. Dordrecht, The Netherlands; Martinez Nijhoff 1976: 129-142
  • 115 Kahn E, Markowitz J, Aiges H, Daum F. Human ontogeny of the bile duct to portal space ratio: clinical and laboratory findings in 10 cases.  J Pediatr Gastroenterol Nutr. 1997;  24 44-48
  • 116 Braier J, Ciocca M, Latalla A et al.. Cholestasis, sclerosing cholangitis, and liver transplantation in Langerhans cell histiocytosis.  Med Pediatr Oncol. 2002;  38 178-182

James M CrawfordM.D. Ph.D. 

Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine

P.O. Box 100275, Gainesville, FL 32610-0275

Email: crawford@pathology.ufl.edu

    >