Semin Neurol 2007; 27(2): 133-142
DOI: 10.1055/s-2007-971172
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Dominantly Inherited Ataxias: Lessons Learned from Machado-Joseph Disease/Spinocerebellar Ataxia Type 3

Henry L. Paulson1
  • 1Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. März 2007 (online)

ABSTRACT

To date, nearly 30 distinct genetic forms of dominantly inherited ataxia are known to exist. Of these, Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is perhaps the most common in many regions of the world including the United States. This article discusses MJD/SCA3 as a paradigm example of the dominant ataxias, which are collectively known as the spinocerebellar ataxias. Using MJD/SCA3 as a starting point, the article reviews common clinical and genetic features of the SCAs and highlights new insights into molecular mechanisms, especially of the SCAs caused by polyglutamine expansion. Also discussed are current and future therapeutic opportunities for MJD/SCA3 in particular, many of which have relevance to other SCAs.

REFERENCES

  • 1 Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. In: Wells R, Ashizawa T Genetic Instabilities and Neurological Diseases. 2nd ed. San Diego; Elsevier/Academic Press 2005: 363-377
  • 2 Rub U, Brunt E R, de Vos R A et al.. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance.  Neuropathol Appl Neurobiol. 2004;  30 402-414
  • 3 Rub U, de Vos R A, Schultz C et al.. Spinocerebellar ataxia type 3 (Machado-Joseph disease): severe destruction of the lateral reticular nucleus.  Brain. 2002;  125 2115-2124
  • 4 Suenaga T, Matsushima H, Nakamura S, Akiguchi I, Kimura J. Ubiquitin-immunoreactive inclusions in anterior horn cells and hypoglossal neurons in a case with Joseph's disease.  Acta Neuropathol (Berl). 1993;  85 341-344
  • 5 Murata Y, Yamaguchi S, Kawakami H et al.. Characteristic magnetic resonance imaging findings in Machado-Joseph disease.  Arch Neurol. 1998;  55 33-37
  • 6 Kawai Y, Takeda A, Abe Y et al.. Cognitive impairments in Machado-Joseph disease.  Arch Neurol. 2004;  61 1757-1760
  • 7 Kawaguchi Y, Okamoto T, Taniwaki M et al.. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1  Nat Genet. 1994;  8 221-228
  • 8 Durr A, Stevanin G, Cancel G et al.. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features.  Ann Neurol. 1996;  39 490-499
  • 9 Cancel G, Abbas N, Stevanin G et al.. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus.  Am J Hum Genet. 1995;  57 809-816
  • 10 Jardim L B, Pereira M L, Silveira I et al.. Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n.  Arch Neurol. 2001;  58 899-904
  • 11 Maciel P, Gaspar C, DeStefano A L et al.. Correlation between CAG repeat length and clinical features in Machado-Joseph disease.  Am J Hum Genet. 1995;  57 54-61
  • 12 Matilla T, McCall A, Subramony S H, Zoghbi H Y. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease.  Ann Neurol. 1995;  38 68-72
  • 13 Buhmann C, Bussopulos A, Oechsner M. Dopaminergic response in Parkinsonian phenotype of Machado-Joseph disease.  Mov Disord. 2003;  18 219-221
  • 14 Gwinn-Hardy K, Singleton A, O'Suilleabhain P et al.. Spinocerebellar ataxia type 3 phenotypically resembling Parkinson disease in a black family.  Arch Neurol. 2001;  58 296-299
  • 15 Tuite P J, Rogaeva E A, St George-Hyslop P H, Lang A E. Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion.  Ann Neurol. 1995;  38 684-687
  • 16 Gatchel J R, Zoghbi H Y. Diseases of unstable repeat expansion: mechanisms and common principles.  Nat Rev Genet. 2005;  6 743-755
  • 17 Moseley M L, Zu T, Ikeda Y et al.. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8.  Nat Genet. 2006;  38 758-769
  • 18 Gu W, Ma H, Wang K et al.. The shortest expanded allele of the MJD1 gene in a Chinese MJD kindred with autonomic dysfunction.  Eur Neurol. 2004;  52 107-111
  • 19 Padiath Q S, Srivastava A K, Roy S, Jain S, Brahmachari S K. Identification of a novel 45 repeat unstable allele associated with a disease phenotype at the MJD1/SCA3 locus.  Am J Med Genet B Neuropsychiatr Genet. 2005;  133 124-126
  • 20 van Alfen N, Sinke R J, Zwarts M J et al.. Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype.  Ann Neurol. 2001;  49 805-807
  • 21 Takano H, Cancel G, Ikeuchi T et al.. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations.  Am J Hum Genet. 1998;  63 1060-1066
  • 22 Schols L, Haan J, Riess O, Amoiridis G, Przuntek H. Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome?.  Neurology. 1998;  51 1603-1607
  • 23 Berke S J, Paulson H L. Protein aggregation and the ubiquitin proteasome pathway: gaining the upper hand on neurodegeneration.  Curr Opin Genet Dev. 2003;  13 253-261
  • 24 Gunawardena S, Goldstein L S. Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways.  Arch Neurol. 2005;  62 46-51
  • 25 Ross C A, Poirier M A. Protein aggregation and neurodegenerative disease.  Nat Med. 2004;  10 S10-S17
  • 26 Taylor J P, Hardy J, Fischbeck K H. Toxic proteins in neurodegenerative disease.  Science. 2002;  296 1991-1995
  • 27 Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg A L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins.  Mol Cell. 2004;  14 95-104
  • 28 La Spada A R, Taylor J P. Polyglutamines placed into context.  Neuron. 2003;  38 681-684
  • 29 Cemal C K, Carroll C J, Lawrence L et al.. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit.  Hum Mol Genet. 2002;  11 1075-1094
  • 30 Goti D, Katzen S M, Mez J et al.. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration.  J Neurosci. 2004;  24 10266-10279
  • 31 Warrick J M, Morabito L M, Bilen J et al.. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism.  Mol Cell. 2005;  18 37-48
  • 32 Ikeda H, Yamaguchi M, Sugai S et al.. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo.  Nat Genet. 1996;  13 196-202
  • 33 Warrick J M, Paulson H L, Gray-Board G L et al.. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila.  Cell. 1998;  93 939-949
  • 34 Berke S J, Chai Y, Marrs G L, Wen H, Paulson H L. Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3.  J Biol Chem. 2005;  280 32026-32034
  • 35 Chai Y, Berke S S, Cohen R E, Paulson H L. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways.  J Biol Chem. 2004;  279 3605-3611
  • 36 Doss-Pepe E W, Stenroos E S, Johnson W G, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis.  Mol Cell Biol. 2003;  23 6469-6483
  • 37 Burnett B, Li F, Pittman R N. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity.  Hum Mol Genet. 2003;  12 3195-3205
  • 38 Mao Y, Senic-Matuglia F, Di Fiore P P et al.. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain.  Proc Natl Acad Sci USA. 2005;  102 12700-12705
  • 39 Nicastro G, Menon R P, Masino L et al.. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition.  Proc Natl Acad Sci USA. 2005;  102 10493-10498
  • 40 Burnett B G, Pittman R N. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation.  Proc Natl Acad Sci USA. 2005;  102 4330-4335
  • 41 Masino L, Musi V, Menon R P et al.. Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail.  FEBS Lett. 2003;  549 21-25
  • 42 Muchowski P J, Wacker J L. Modulation of neurodegeneration by molecular chaperones.  Nat Rev Neurosci. 2005;  6 11-22
  • 43 Miller V M, Xia H, Marrs G L et al.. Allele-specific silencing of dominant disease genes.  Proc Natl Acad Sci USA. 2003;  100 7195-7200
  • 44 Xia H, Mao Q, Eliason S L et al.. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia.  Nat Med. 2004;  10 816-820
  • 45 Friedman J H, Fernandez H H, Sudarsky L R. REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3).  Mov Disord. 2003;  18 1520-1522
  • 46 Iranzo A, Munoz E, Santamaria J et al.. REM sleep behavior disorder and vocal cord paralysis in Machado-Joseph disease.  Mov Disord. 2003;  18 1179-1183
  • 47 Paulson H L, Perez M K, Trottier Y et al.. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3.  Neuron. 1997;  19 333-344
  • 48 Arrasate M, Mitra S, Schweitzer E S, Segal M R, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death.  Nature. 2004;  431 805-810
  • 49 Yang W, Dunlap J R, Andrews R B, Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells.  Hum Mol Genet. 2002;  11 2905-2917
  • 50 Schmitt I, Evert B O, Khazneh H, Klockgether T, Wuellner U. The human MJD gene: genomic structure and functional characterization of the promoter region.  Gene. 2003;  314 81-88
  • 51 Schmidt T, Landwehrmeyer G B, Schmitt I et al.. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients.  Brain Pathol. 1998;  8 669-679
  • 52 Berke S J, Schmied F A, Brunt E R, Ellerby L M, Paulson H L. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3.  J Neurochem. 2004;  89 908-918

Henry L PaulsonM.D. Ph.D. 

Department of Neurology, University of Iowa College of Medicine

3160 Med Labs, Iowa City, IA 52242

    >