Horm Metab Res 2007; 39(4): 250-255
DOI: 10.1055/s-2007-973075
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

TNF-α Alters Visfatin and Adiponectin Levels in Human Fat

J. Hector 1 , B. Schwarzloh 1 , J. Goehring 1 , T. G. Strate 2 , U. F. Hess 1 , G. Deuretzbacher 3 , N. Hansen-Algenstaedt 3 , F.-U. Beil 1 , P. Algenstaedt 1
  • 1Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Germany
  • 2Department of General, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
  • 3Spine Center, University Medical Center Hamburg-Eppendorf, Germany
Further Information

Publication History

received 4. 9. 2006

accepted 20. 11. 2006

Publication Date:
19 April 2007 (online)

Abstract

Adiponectin and visfatin are newly discovered adipokines that are strongly expressed in human visceral adipose tissue. To identify new regulatory mechanisms in fat, the effect of TNF-alpha (TNF) on adiponectin, on its two receptors, and on visfatin was investigated by incubating human visceral adipose tissue from patients without diabetes mellitus with TNF for 24, 48 and 72 hours. The mRNA expression of visfatin, adiponectin, and its two receptors, as well as the protein expression of adiponectin were determined. A decrease of adiponectin mRNA expression of 97% after incubation with TNF (5.75 nmol/l) for 24 hours, a decrease of 91% after 48 hours, and a decrease of 96% after 72 hours were measured. The reduction of protein expression was measured to be 42% after 24 hours, 28% after 48 hours, and 39% after 72 hours of incubation with TNF (5.75 nmol/l). The mRNA level of adiponectin receptor 1 (AdipoR1) was elevated about 72% after 48 hours of incubation and 67% after 72 hours of incubation, whereas the mRNA expression of adiponectin receptor 2 (AdipoR2) was not altered significantly. The visfatin mRNA level was found to be highly increased by 255% after 24 hours and 335% after 48 hours and 341% after 72 hours of incubation with TNF (5.75 nmol/l). Our results support the concept of visceral adipose tissue as an endocrine organ. We demonstrate that TNF has regulatory functions on adiponectin, AdipoR1 and on visfatin in human visceral adipose tissue. TNF levels are elevated in states of obesity and insulin resistance. Due to this fact TNF could be the reason that there is a decrease in the level of adiponectin, whereas there is an increase in the level of visfatin in states of obesity and insulin resistance.

References

  • 1 Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes.  Diabetes. 1994;  43 1066-1084
  • 2 Hamann A, Munzberg H, Algenstaedt P, Tafel J. [Molecular principles of obesity].  Herz. 2001;  26 178-184
  • 3 Algenstaedt P, Schaefer C, Biermann T, Hamann A, Schwarzloh B, Greten H, Ruther W, Hansen-Algenstaedt N. Microvascular alterations in diabetic mice correlate with level of hyperglycemia.  Diabetes. 2003;  52 542-549
  • 4 Kahn BB, Flier JS. Obesity and insulin resistance.  J Clin Invest. 2000;  106 473-481
  • 5 Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: Leptin, acylation stimulating protein, and adiponectin.  Curr Opin Lipidol. 2002;  13 51-59
  • 6 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 7 Brame LA, Considine RV, Yamauchi M, Baron AD, Mather KJ. Insulin and endothelin in the acute regulation of adiponectin in vivo in humans.  Obes Res. 2005;  13 582-588
  • 8 Herrmann BL, Saller B, Stratmann M, Berg C, Mann K, Janssen OE. Effects of a combination of rhGH and metformin on adiponectin levels in patients with metabolic syndrome.  Horm Metab Res. 2005;  37 49-52
  • 9 Heliövaara MK, Strandberg TE, Karonen SL, Ebeling P. Association of serum adiponectin concentration to lipid and glucose metabolism in healthy humans.  Horm Metab Res. 2006;  38 336-340
  • 10 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 11 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 12 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 13 Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin.  J Clin Endocrinol Metab. 2001;  86 3815-3819
  • 14 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 15 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 16 Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.  J Clin Invest. 2001;  108 1875-1881
  • 17 Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.  Science. 2005;  307 426-430
  • 18 Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor.  Mol Cell Biol. 1994;  14 1431-1437
  • 19 Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.  J Clin Invest. 1995;  95 2409-2415
  • 20 Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance.  J Intern Med. 1999;  245 621-625
  • 21 Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates.  J Biol Chem. 1993;  268 26055-26058
  • 22 Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor.  Proc Natl Acad Sci USA. 1994;  91 4854-4858
  • 23 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50 2094-2099
  • 24 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2002;  290 1084-1089
  • 25 Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory.  Diabetes. 2002;  51 1319-1336
  • 26 Jia SH, Li Y, Parodo J, Kapus A, Fan L, Rotstein OD, Marshall JC. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis.  J Clin Invest. 2004;  113 1318-1327
  • 27 Algenstaedt P, Rosenblatt N, Kolb I, Krutzelmann A, Schwarzloh B, Bottcher A, Wiesner L, Greten H, Hansen-Algenstaedt N. A new model of primary human adipocytes reveals reduced early insulin signaling in type 2 diabetes.  Horm Metab Res. 2004;  36 531-537
  • 28 Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes?.  Diabetologia. 2005;  48 1038-1050
  • 29 Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, Olefsky JM, Lodish HF. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance.  Diabetes. 2002;  51 3176-3188
  • 30 Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans.  Am J Physiol Endocrinol Metab. 2003;  285 527-533
  • 31 Fasshauer M, Klein J, Kralisch S, Klier M, Lossner U, Bluher M, Paschke R. Growth hormone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes.  FEBS Lett. 2004;  558 27-32
  • 32 Inukai K, Nakashima Y, Watanabe M, Takata N, Sawa T, Kurihara S, Awata T, Katayama S. Regulation of adiponectin receptor gene expression in diabetic mice.  Am J Physiol Endocrinol Metab. 2005;  288 876-882
  • 33 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.  Nature. 2003;  423 762-769
  • 34 Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, Ravussin E. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of type 2 diabetes.  Diabetologia. 2004;  47 816-820
  • 35 Zinman B, Hanley AJ, Harris SB, Kwan J, Fantus IG. Circulating tumor necrosis factor-alpha concentrations in a native Canadian population with high rates of type 2 diabetes mellitus.  J Clin Endocrinol Metab. 1999;  84 272-278
  • 36 Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes.  J Endocrinol. 2005;  185 1-8
  • 37 Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-Greenwood GD. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes.  J Mol Endocrinol. 2001;  26 107-117

Correspondence

PD Dr. P. Algenstaedt

Department of Internal Medicine III

University Medical Center Hamburg-Eppendorf

Martinistraße 52

20246 Hamburg

Germany

Phone: +49/40/42803 47 55

Fax: +49/40/42803 68 20

Email: algensta@uke.uni-hamburg.de

    >