Subscribe to RSS
DOI: 10.1055/s-2008-1027627
© Georg Thieme Verlag KG Stuttgart · New York
Pseudotumor cerebri: Quantitative Normalwerte anatomischer Kennstrukturen im kraniellen MRT
Pseudotumor Cerebri: Quantitative In-Vivo Measurements of Markers of Intracranial HypertensionPublication History
eingereicht: 8.5.2008
angenommen: 6.6.2008
Publication Date:
08 September 2008 (online)
Zusammenfassung
Ziel: Eine intrakranielle Druckerhöhung kann zu Veränderungen an anatomischen Strukturen führen, deren Kenntnis Voraussetzung einer erfolgreichen MR-Diagnostik beim Pseudotumor cerebri ist. Ziel der Untersuchung war, quantitative Normalwerte kritischer Strukturen zu bestimmen und deren Abhängigkeit von Geschlecht, Alter und Body-Mass-Index (BMI) zu ermitteln. Material und Methoden: 123 Personen ohne Hinweis auf eine intrakranielle Hypertension (63 Frauen, 60 Männer, 18 – 86 Jahre, MW 49,5 ± 17,8 Jahre, durchschnittlicher BMI 25,3 ± 4,2) wurden prospektiv eingeschlossen. Anhand einer kraniellen 3T-MRT (koronare STIR-Sequenz) wurde der Durchmesser des N. opticus, der Optikusscheide und des perineuralen Liquorsaums an 4 intraorbitalen Positionen vermessen, Höhe und Breite der Hypophyse und des Cavum Meckeli bestimmt und die Fläche errechnet. Ergebnisse: Die Weite der Optikusscheide nahm von ventral nach dorsal signifikant von im Mittel 5,3 ± 0,6 mm auf 4,1 ± 0,4 mm ab, sodass die Messposition bei Vergleichsmessungen zu berücksichtigen ist. Ähnliches gilt für den perineuralen Liquorsaum (MW 1,4 ± 0,3 mm vs. 1,0 ± 0,2 mm) und in geringem Maße für den Sehnerven selbst (MW 2,4 ± 0,4 mm vs. 2 ± 0,3 mm, p jeweils < 0,001). Die Weite der Optikusscheide korrellierte geringfügig mit dem Alter (r = 0,199), dies war aber statistisch nicht signifikant. Die koronar gemessene Fläche des Cavum Meckeli war unabhängig von Geschlecht, Alter und BMI und betrug im Mittel 39 ± 9,3 mm2. Die Höhe der Hypophyse unterschied sich bei Frauen (MW 4,4 ± 0,9 mm) und Männern (MW 4,2 ± 0,8 mm) im Mittel nur gering, allerdings nahm die Höhe bei Frauen im Gegensatz zu Männern im Alter signifikant ab (r = –0,38, p = 0,01). Schlussfolgerung: Die hier präsentierten Normalwerte sind Ausgangspunkt für die Bestimmung pathologischer Veränderungen bei Patienten mit V. a. Pseudotumor cerebri.
Abstract
Purpose: Intracranial hypertension can change the morphology of anatomical structures that are critical in the evaluation of pseudotumor syndromes. The purpose of our study was to establish the normal range of such markers of intracranial hypertension and to consider a dependency on sex, age and body-mass index (BMI). Materials and Methods: 123 persons without signs or symptoms of intracranial hypertension (63 females, 60 males, 18 – 86 years old, mean 49.5 SD 17.8 years, mean BMI 25.3 SD 42) were prospectively enrolled and MRI was performed at 3T. A STIR sequence in the coronal plane was used to measure the width of the optic nerve, the perioptic fluid rim and the total optic nerve sheath diameter in 4 different locations behind the eyeball. The height and width of the pituitary and Meckel’s cave were also measured and the area was calculated. Results: The mean width of the optic nerve sheath narrows significantly from anterior (mean 5.3 SD 0.6 mm) to posterior (mean 4.1 SD 0.4 mm), as does the perioptic fluid rim (mean 1.4 SD 0.3 mm vs. mean 1.0 SD 0.2 mm) and – to a lesser extent – the optic nerve itself (mean 2.4 SD 0.4 mm vs. mean 2 SD 0.3 mm, p = 0.000 for all). There was no statistically relevant correlation of the width of the optic nerve sheath with age. The coronal area of Meckel’s cave was independent of sex, age or BMI (mean 39 SD 9.3 mm2). The height of the pituitary differed little in women (mean 4.4 SD 0.9 mm) and men (mean 4.2 SD 0.8 mm), but we found a significant negative correlation with age in women only (r = –0.38, p = 0.01). Conclusion: The presented typical values and their deviations serve as a basis for the evaluation of pathologies in patients suspected of having pseudotumor syndrome.
Key words
pseudotumor cerebri - pituitary - MR imaging - orbit - intracranial hypertension
Literatur
- 1 Ball A K, Clarke C E. Idiopathic intracranial hypertension. Lancet Neurol. 2006; 5 433-442
- 2 Binder D K, Horton J C, Lawton M T. et al . Idiopathic intracranial hypertension. Neurosurgery. 2004; 54 538-551; discussion 551 – 532
- 3 Skau M, Brennum J, Gjerris F. et al . What is new about idiopathic intracranial hypertension? An updated review of mechanism and treatment. Cephalalgia. 2006; 26 384-399
- 4 Dandy W E. Intracranial Pressure without Brain Tumor: Diagnosis and Treatment. Ann Surg. 1937; 106 492-513
- 5 Friedman D I, Jacobson D M. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002; 59 1492-1495
- 6 Biousse V, Ameri A, Bousser M G. Isolated intracranial hypertension as the only sign of cerebral venous thrombosis. Neurology. 1999; 53 1537-1542
- 7 Fera F, Bono F, Messina D. et al . Comparison of different MR venography techniques for detecting transverse sinus stenosis in idiopathic intracranial hypertension. J Neurol. 2005; 252 1021-1025
- 8 Lin A, Foroozan R, Danesh-Meyer H V. et al . Occurrence of cerebral venous sinus thrombosis in patients with presumed idiopathic intracranial hypertension. Ophthalmology. 2006; 113 2281-2284
- 9 Silbergleit R, Junck L, Gebarski S S. et al . Idiopathic intracranial hypertension (pseudotumor cerebri): MR imaging. Radiology. 1989; 170 207-209
- 10 Brodsky M C, Vaphiades M. Magnetic resonance imaging in pseudotumor cerebri. Ophthalmology. 1998; 105 1686-1693
- 11 Gass A, Barker G J, Riordan-Eva P. et al . MRI of the optic nerve in benign intracranial hypertension. Neuroradiology. 1996; 38 769-773
- 12 Lirng J F, Fuh J L, Wu Z A. et al . Diameter of the superior ophthalmic vein in relation to intracranial pressure. AJNR Am J Neuroradiol. 2003; 24 700-703
- 13 Agid R, Farb R I, Willinsky R A. et al . Idiopathic intracranial hypertension: the validity of cross-sectional neuroimaging signs. Neuroradiology. 2006; 48 521-527
- 14 Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001; 56 1746-1748
- 15 Hansen H C, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997; 87 34-40
- 16 Hansen H C, Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat. 1996; 18 323-328
- 17 Helmke K, Hansen H C. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol. 1996; 26 706-710
- 18 Gibby W A, Cohen M S, Goldberg H I. et al . Pseudotumor cerebri: CT findings and correlation with vision loss. Am J Roentgenol. 1993; 160 143-146
- 19 Ozgen A, Aydingoz U. Normative measurements of orbital structures using MRI. J Comput Assist Tomogr. 2000; 24 493-496
- 20 Brodsky M C, Glasier C M. Magnetic resonance visualization of the swollen optic disc in papilledema. J Neuroophthalmol. 1995; 15 122-124
- 21 Weigel M, Lagreze W A, Lazzaro A. et al . Fast and quantitative high-resolution magnetic resonance imaging of the optic nerve at 3.0 tesla. Invest Radiol. 2006; 41 83-86
- 22 Cox T D, Elster A D. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology. 1991; 179 721-724
- 23 Elster A D, Chen M Y, Williams 3 rd D W. et al . Pituitary gland: MR imaging of physiologic hypertrophy in adolescence. Radiology. 1990; 174 681-685
- 24 Elster A D, Sanders T G, Vines F S. et al . Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology. 1991; 181 531-535
- 25 Suzuki M, Takashima T, Kadoya M. et al . Height of normal pituitary gland on MR imaging: age and sex differentiation. J Comput Assist Tomogr. 1990; 14 36-39
- 26 Hayakawa K, Konishi Y, Matsuda T. et al . Development and aging of brain midline structures: assessment with MR imaging. Radiology. 1989; 172 171-177
- 27 Denk C C, Onderoglu S, Ilgi S. et al . Height of normal pituitary gland on MRI: differences between age groups and sexes. Okajimas Folia Anat Jpn. 1999; 76 81-87
- 28 Böttcher J, Hahn H K, Reichenbach J R. et al . MR-Volumetrie der Hypophyse: In-vitro- and In-vivo-Resultate einer neuen semiautomatischen interaktiven Segmentationstechnik. Fortschr Röntgenstr. 2005; 177 S 328
- 29 Farb R I, Vanek I, Scott J N. et al . Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology. 2003; 60 1418-1424
- 30 Rohr A, Dorner L, Stingele R. et al . Reversibility of venous sinus obstruction in idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2007; 28 656-659
- 31 Bono F, Giliberto C, Mastrandrea C. et al . Transverse sinus stenoses persist after normalization of the CSF pressure in IIH. Neurology. 2005; 65 1090-1093
- 32 Williams L S, Schmalfuss I M, Sistrom C L. et al . MR imaging of the trigeminal ganglion, nerve, and the perineural vascular plexus: normal appearance and variants with correlation to cadaver specimens. AJNR Am J Neuroradiol. 2003; 24 1317-1323
Dr. Axel Rohr
Neuroradiologie, UK-SH Campus Kiel
Schittenhelmstr. 10
24105 Kiel
Phone: ++ 49/4 31/5 97 48 06
Fax: ++ 49/4 31/5 97 49 13
Email: Axel.Rohr@gmx.de