Methods Inf Med 2009; 48(01): 11-17
DOI: 10.3414/ME9131
Original Articles
Schattauer GmbH

Medical Image Computing for Computer-supported Diagnostics and Therapy

Advances and Perspectives
H. Handels
1   Department of Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
J. Ehrhardt
1   Department of Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. Januar 2018 (online)

Summary

Objectives: Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow.

Methods: For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future.

Results: From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing.

Conclusions: The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient’s image data and have the future potential to improve medical diagnostics and patient treatment.

 
  • References

  • 1 Duncan JS, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell 2000; 22 (01) 85-106.
  • 2 Handels H, Horsch A, Meinzer HP. Advances in medical image computing. Methods Inf Med 2007; 46 (03) 251-253.
  • 3 Lehmann TM, Meinzer HP, Tolxdorff T. Advances in biomedical image analysis – past, present and future challenges. Methods Inf Med 2004; 43 (04) 308-314.
  • 4 Pfeifer B, Fischer G, Hanser F, Seger M, Hintermüller C, Modre-Osprian R, Trieb T, Tild B. Atrial and ventricular myocardium extraction using model-based techniques. Methods Inf Med 2006; 45 (01) 19-26.
  • 5 Säring D, Ehrhardt J, Stork A, Bansmann MP, Lund GK, Handels H. Computer-assisted analysis of 4D cardiac MR image sequences after myocardial infarction. Methods Inf Med 2006; 45 (04) 377-383.
  • 6 Handels H, Werner R, Frenzel T, Säring D, Lu W, Low D, Ehrhardt J. 4D medical image computing and visualization of lung tumor mobility in spatiotemporal CT image data. Int J Med Inform 2007; 76S: S433-S439.
  • 7 Ehrhardt J, Werner R, Frenzel T, Säring D, Lu W, Low D, Handels H. An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med Phys 2007; 34 (03) 711-721.
  • 8 Werner R, Ehrhardt J, Frenzel T, Säring D, Lu W, Low D, Handels H. Motion artifact reducing reconstruction of 4D CT image data for the analysis of respiratory dynamics. Methods Inf Med 2007; 46 (03) 254-260.
  • 9 Wells WM, Grimson EL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996; 15 (04) 429-442.
  • 10 Choi HS, Haynor DR, Kim Y. Partial volume tissue classification of multichannel magnetic resonance images – a mixel model. IEEE Trans Med Imaging 1991; 10 (03) 395-407.
  • 11 Held K, Kops ER, Krause BJ, Wells W, Kikinis R, Muller-Gartner HW. Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 1997; 16 (06) 878-886.
  • 12 McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal 1996; 1 (02) 91-109.
  • 13 Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 1991; 13 (06) 583-598.
  • 14 Falcao AX, Stolfi J, de Alencar Lotufo R. The image foresting transform: theory, algorithms, and applications. IEEE Trans Pattern Anal Mach Intell 2004; 26 (01) 19-29.
  • 15 Boykov Y, Funka-Lea G. Graph cuts and efficient N-d image segmentation. Int J Comput Vis 2006; 70 (02) 109-131.
  • 16 Barrett WA, Mortensen NE. An interactive live-wire boundary extraction. Med Image Anal 1997; 1 (01) 331-341.
  • 17 Pitiot A, Delingette H, Thompson PM, Ayache N. Expert knowledge-guided segmentation system for brain MRI. NeuroImage. 2004; 23 (01) S85-S96.
  • 18 Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Pattern Anal Mach Intell 2001; 23 (06) 681-685.
  • 19 Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models – their training and application. Comput Vis Image Underst 1995; 61 (01) 38-59.
  • 20 Christensen GE, Joshi SC, Miller MI. Volumetric transformation of brain anatomy. IEEE Trans Med Imaging 1997; 16 (06) 864-877.
  • 21 Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 1995; 3 (03) 190-208.
  • 22 Ehrhardt J, Handels H, Plötz W, Pöppl SJ. Atlasbased recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf Med 2004; 43 (04) 391-397.
  • 23 Toga AW, Thompson PM, Isaac NB. Image registration and the construction of multidimensional brain atlases. Handbook of Medical Imaging. San Diego: Academic Press; 2000. pp 635-653.
  • 24 Guimond A, Meunier J, Thirion J-P. Average brain models: a convergence study. Comput Vis Image Underst 2000; 77 (02) 192-210.
  • 25 Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 2004; 23 (01) S151-S160.
  • 26 Lorenzen P, Prastawa M, Davis B, Gerig G, Bullitt E, Joshi S. Multi-modal image set registration and atlas formation. Med Image Anal 2006; 10 (03) 440-451.
  • 27 Hill DLG, Hawkes DJ, Hussain Z, Green SEM, Ruff CF, Robinson GP. Accurate combination of CT and MR data of the head: validation and applications in surgical and therapy planning. Comput Med Imaging Graph 1993; 17 4–5 357-363.
  • 28 Hutton BF, Braun M. Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 2003; 33 (03) 180-192.
  • 29 Meyer CR, Boes JL, Kim B, Bland PH, Zasadny KR, Kison PV, Koral K, Frey KA, Wahl RL. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Med Image Anal 1997; 1 (03) 195-206.
  • 30 Handels H, Ehrhardt J, Plötz W, Pöppl SJ. Virtual planning of hip operations and individual adaption of endoprostheses in orthopaedic surgery. Int J Med Inform 2000; 58-59: 21-28.
  • 31 Shahidi R, Tombropoulos R, Grzeszczuk RP. Clinical applications of three-dimensional rendering of medical data sets. Proceedings of the IEEE 1998; 86 (03) 555-568.
  • 32 Thompson PM, Toga AW. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Med Image Anal 1997; 1 (04) 271-294.
  • 33 Ehrhardt J, Handels H, Malina T, Strathmann B, Plötz W, Pöppl SJ. Atlas-based recognition of anatomical structures and landmarks to support the virtual three-dimensional planning of hip operations. In: Ellis RE, Peters TM. editors. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2003); 2003. Montreal, Canada: Springer; 2003. pp 17-24.
  • 34 Handels H, Werner R, Frenzel T, Säring D, Lu W, Low D, Ehrhardt J. Improved reconstruction of 4D MSCT image data and motion analysis of lung tumors using non-linear registration methods. In: Kim SI, Suh TS. editors. World Congress on Medical Physics and Biomedical Engineering; 2006. Seoul, Korea: Springer; 2006. pp 2172-2175.
  • 35 Werner R, Ehrhardt J, Frenzel T, Lu W, Low D, Handels H. Analysis of tumor-influenced respiratory dynamics using motion artifact reduced thoracic 4D CT images. In: Buzug T, Holz D, Weber W, Bongartz J, Kohl-Bareis M, Hartmann U. editors. Advances in Medical Engineering; 2007. Berlin: Springer; 2007. pp 181-186.
  • 36 Ehrhardt J, Säring D, Handels H. Structure-preserving interpolation of temporal and spatial image sequences using an optical flow based method. Methods Inf Med 2007; 46: 300-307.
  • 37 Stefanescu R, Pennec N, Ayache N. A grid service for the interactive use of a parallel non-rigid registration algorithm of medical images. Methods Inf Med 2005; 44 (02) 239-243.
  • 38 Werner R, Ehrhardt J, Schmidt R, Handels H. Modeling respiratory lung motion – a biophysical approach using finite element methods. In: Hu XP, Clough AV. editors. SPIE Medical Imaging; 2008. San Diego: 2008: 0N1-11.
  • 39 Färber M, Hoeborn E, Dalek D, Hummel F, Gerloff C, Bohn C-A, Handels H. Training and evaluation of lumbar punctures in a VR-environment using 6DOF haptic device. In: Westwood JD, Haluck RS, Hoffmann HM, Mogel GT, Phillips R, Robb RA. et al., editors. Medicine Meets Virtual Reality 16, Studies in Health Technology and Informatics; 2008. Long Beach, USA: 2008. pp 112-114.
  • 40 Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001; 10 (02) 266-277.
  • 41 Paragios N, Deriche R. Geodesic active regions for supervised texture segmentation. International Conference on Computer Vision (ICCV 1999); 1999. Kerkyra, Greece; 1999 pp 926-932.
  • 42 Paragios N, Deriche R. Unifying boundary and region- based information for geodesic active tracking. Computer Vision and Pattern Recognition (CVPR’99); 1999; Colorado, USA; 1999 pp 300-305.
  • 43 Zhu SC, Yuille A. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 1996; 18 (09) 884-900.
  • 44 Ashburner J, Friston KJ. Unified segmentation. NeuroImage 2005; 26: 839-851.
  • 45 Cremers D, Soatto S. Motion competition: a variational approach to piecewise parametric motion segmentation. Int J Comput Vis 2005; 62 (03) 249-265.
  • 46 Ehrhardt J, Schmidt-Richberg A, Handels H. A variational approach for combined segmentation and estimation of respiratory motion in temporal image sequences. International Conference on Computer Vision (ICCV 2007); 2007. Rio de Janeiro, Brazil; 2007 pp 1-7.
  • 47 Wyatt P, Noble JA. Map mrf joint segmentation and registration of medical images. Med Image Anal 2003; 7 (04) 539-552.
  • 48 Yezzi A, Zollei L, Kapur T. A variational framework for integrating segmentation and registration through active contours. Med Imag Anal 2003; 7 (02) 171-185.
  • 49 Ehrhardt J, Werner R, Frenzel T, Lu W, Low D, Handels H. Analysis of free breathing motion using artifact reduced 4D CT image data. In: Reinhardt JM, Pluim PW. editors. SPIE Medical Imaging; 2007. San Diego: 2007: 1N-8.
  • 50 Low D-A, Nystrom M, Kalinin E, Parikh P, Dempsey J-F, Bradley J-D, Mutic S, Wahab S-H, Islam T, Christensen G, Politte D-G, Whiting B-R. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys 2003; 6: 1254-1263.
  • 51 Lu W, Parikh PJ, El Naqa I, Nystrom MM, Hubenschmidt JP, Wahab SH. et al. Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients. Med Phys 2005; 32 (04) 890-901.