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ABSTRACT

Retinal diseases are a leading cause of impaired vision and

blindness but some lack effective treatments. New therapies

are required urgently to better manage retinal diseases. Natu-

ral pentacyclic triterpenoids and their derivatives have a wide

range of activities, including antioxidative, anti-inflammatory,

cytoprotective, neuroprotective, and antiangiogenic proper-

ties. Pentacyclic triterpenoids have great potential in prevent-

ing and/or treating retinal pathologies. The pharmacological

effects of pentacyclic triterpenoids are often mediated

through the modulation of signalling pathways, including

nuclear factor erythroid-2 related factor 2, high-mobility

group box protein 1, 11β-hydroxysteroid dehydrogenase type

1, and Src homology region 2 domain-containing phospha-

tase-1. This review summarizes recent in vitro and in vivo evi-

dence for the pharmacological potential of pentacyclic triter-

penoids in the prevention and treatment of retinal diseases.

The present literature supports the further development of

pentacyclic triterpenoids. Future research should now at-

tempt to improve the efficacy and pharmacokinetic behaviour

of the agents, possibly by the use of medicinal chemistry and

targeted drug delivery strategies.

The Potential Application of Pentacyclic Triterpenoids
in the Prevention and Treatment of Retinal Diseases

Reviews
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Background
The retina is a light-sensitive layer at the rear of the eye that con-
verts light into neuronal impulses to obtain vision. Retinal cells
such as the RPE, photoreceptor cells, horizontal cells, bipolar cells,
amacrine cells, ganglion cells, and Müller cells have been identi-
fied and their major circuitry and connections in the tissue have
been summarised in detail recently [1]. The retina is one of the
most metabolically active tissues in the body and requires appro-
priate levels of nutrients and oxygen for normal function [2].
Blood flow disruption and excessive oxygen consumption are
Cheng Z et al. The Potential Application… Planta Med 2021; 87: 511–527 |© 2021. Thieme. Al
leading causes of impaired energy production in the retina and
may also promote inflammation, neovascularisation, and even
retinal cell death. Other factors like hypertension, high blood sug-
ar level, and inheritance also contribute to disease progression [3,
4]. Common retinal diseases include AMD, DR, retinal detach-
ment, and retinitis pigmentosa [5–7]. Patients suffering from
these diseases have blurred or distorted vision, and their lives can
be seriously affected [7]. However, effective treatments are few
and current interventions are limited to intravitreal injections of
anti-VEGF antibody or corticosteroids, surgery, laser treatment,
and/or nutrient supplementations [8,9]. Because most retinal dis-
511l rights reserved.
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ABBREVIATIONS

11β-HSD1 11β-hydroxysteroid dehydrogenase type 1

AKBA acetyl-11-keto-β-boswellic acid
AMD age-related macular degeneration

CBX carbenoxolone

CDDO 2-cyano-3,12-dioxo-oleana-1,9-dien-28-oic acid

DMAPP dimethylallylpyrophosphate

DR diabetic retinopathy

FPP farnesyl pyrophosphate

GCLC glutamate-cysteine ligase catalytic subunit

GCLM glutamate-cysteine ligase regulatory subunit

GL glycyrrhizin

HMGB1 high-mobility group box protein 1

HO-1 heme oxygenase-1

HRMECs human retinal microvascular endothelial cells

Hsp70 heat shock protein 70

HUVECs human umbilical vein endothelial cells

I/R ischaemia-reperfusion

ICAM-1 intercellular adhesion molecule-1

IPP isopentenyl pyrophosphate

Keap1 Kelch-like ECH-associated protein 1

LPS lipopolysaccharide

MVA mevalonic acid

NQO1 NAD(P)H quinone oxidoreductase 1

Nrf2 nuclear factor erythroid-2 related factor 2

OA oleanolic acid

OIR oxygen-induced retinopathy

ONL outer nuclear layer

PTs pentacyclic triterpenoids

RGC rat ganglion cell

ROS reactive oxygen species

RPE retinal pigment epithelium

SAR structure-activity relationship

SHP-1 Src homology region 2 domain-containing

phosphatase-1

UA ursolic acid

VEGF vascular endothelial growth factor
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eases are irreversible, new therapies are urgently needed to pre-
vent the initiation and progression of disease.

Natural compounds are the subject of intensive research inter-
est for their potential in managing a range of diseases. This review
focuses on recent advances in the potential application of natural
compounds, particularly PTs and their derivatives, in the preven-
tion and treatment of retinal disease.

Biosynthesis of triterpenoids

The terpenoids are a large and diverse group of natural products.
The biosynthesis of terpenoids begins with condensation of the
five-carbon isoprenoid subunits IPP and its isomer DMAPP via the
MVA pathway [10–12]. Condensation with additional isoprenoid
subunits produces the sesquiterpenoids (C15), diterpenoids
(C20), sesterpenoids (C25), triterpenoids (C30), and tetraterpe-
512 Cheng Z et al. The P
noids (C40) [13]. As the number of component isoprenoid sub-
units increases, the potential for structural complexity increases.

In the peroxisome, head-to-tail condensation of DMAPP with
two units of IPP generates C15 FPP [11,12]. Head-to-head con-
densation of two molecules of FPP then generates the linear C30
triterpene precursor squalene [10–12], which undergoes epoxida-
tion to 2,3-oxidosqualene [11,12]. In its chair-boat-chair confor-
mation, 2,3-oxidosqualene is cyclised to sterols such as lanosterol
(in fungi and animals) or cycloartenol (in plants) [11,12], while
the chair-chair-chair conformation leads to a wide array of triter-
penenes such as taraxasterol, lupeol, and the α/β amyrins [11,12],
which are transformed further to diverse triterpenes by CYP en-
zymes [11] (▶ Fig. 1).

The terms triterpene and triterpenoid are often used to de-
scribe the same C30-terpene compound, although triterpene re-
fers more specifically to naturally occurring agents [13]. There are
a number of triterpenes [14], with many being present as the
aglycones (free hydroxyl or carboxylate moieties), while others
are glycosylated (e.g., the saponins) or exhibit other types of con-
jugation [14]. Triterpenoid is a broader term, which covers natural
degradation products, natural and synthetic derivatives, and
hydrogenation products [13].
otential Application… Planta Med 2021; 87: 511–527 | © 2021. Thieme. All rights reserved.
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PTs have received considerable attention due to their potent
biological and pharmacological properties [15]. Different PTs ex-
hibit antitumour, antiviral, antimicrobial, antiparasitic, antidia-
betic, and anti-inflammatory actions, and also mediate cardio-,
hepato- and gastro-protection [14,15]. Important PTs that have
found clinical application include GL, celastrol, CBX, AKBA, escin,
UA, and OA (▶ Fig. 2). These molecules have attracted attention
for their potential in treating a range of human pathologies in-
cluding retinal diseases.
Methodology
We searched the databases of Pubmed, Google Scholar, and
Clinicaltrials using the key words of “pentacyclic triterpenoid”,
“pentacyclic triterpene”, “retina”, “oxidative”, “glycyrrhizin”,
“carbenoxolone”, “AKBA”, “celastrol”, “escin”, “oleanolic acid”,
“CDDO”, “pharmacokenetics”, “structure activity relationship”,
and “docking”. We focused on articles discussing the biosynthesis
of triterpenes and pharmacological actions (with reference to in
Cheng Z et al. The Potential Application… Planta Med 2021; 87: 511–527 |© 2021. Thieme. Al
vivo, in vitro, and clinical reports) and the signaling pathways by
which they mediate these actions. Their applications in the treat-
ment of retinal diseases and the side effects of triterpenoids are
also covered. In this review, 159 references from the years 1998
to 2020 are included.

Naturally occurring pentacyclic triterpenoids
Glycyrrhizin

GL (- (3β,20β)-20-carboxy-11-oxo-30-norolean-12-en-3-yl-2-O-
β‑D-glucopyranuronosyl-α-D-glucopyranosiduronic acid), also
known as glycyrrhizic acid or glycyrrhizinic acid, is a triterpene
glycoside from the root of the medicinal herb Glycyrrhiza glabra
(liquorice) [16]. GL has clinical potential in treating chronic hepa-
titis [16]. There is also evidence that GL has anti-inflammatory,
antiviral, and antimicrobial actions [17]. Around 30 clinical trials
have evaluated GL, principally for the treatment of liver disease
and cancer [18]. According to clinical data, the pharmacokinetics
of GL were linear to a maximum oral dose of 200mg, adminis-
tered 6 times per week [19], and accumulation occurred with on-
513l rights reserved.
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going administration [19]. The threshold GL plasma concentration
for efficacy in the treatment of chronic hepatitis is around 5mg/
mL [20].

The protective actions of GL in the retina include maintenance
of the structure and metabolic activities of retinal cells in vitro and
in vivo in disease models. For example, He et al. [21] reported that
GL significantly decreased the production of ROS induced by
sodium iodate and prevented apoptosis in human ARPE-19 cells.
GL was also found to promote the activation of Nrf2 and HO-1
(HMOX1) expression by increasing the phosphorylation and acti-
vation of the pro-survival Akt cascade. These findings are in broad
agreement with another study that also reported that GL pro-
tected the retina by attenuating ROS production, increasing the
poly [ADP-ribose] polymerase 1 DNA-repair enzyme and decreas-
ing cell death mediated by caspase-3 [22].

In mice, GL (10mg/kg by i. p. injection) administered prior to
and following I/R injury protected the retina from neuronal and
vascular damage [23]. In addition, Song et al. [24] reported that
GL suppressed ocular hypertension induced by triamcinolone
acetonide, improved electrophysiological parameters, and com-
pensated for triamcinolone acetonide-induced changes in ocular
metabolism.

GL also inhibits HMGB1, which is a ubiquitous nuclear protein
that is released from damaged cells and induces proinflammatory
responses [25]. The intravitreal injection of HMGB1 upregulated
the proinflammatory ICAM-1 in the rat retina, which was attenu-
ated after oral administration of GL [26]. Accordingly, GL has the
potential to inhibit proinflammatory processes mediated by
HMGB1.

Detailed studies by Mohammadʼs group [27] and others have
established a role for HMGB1 in pathogenic mechanisms that are
activated in DR. HMGB1 is proangiogenic [28] and has been
shown to increase retinal proliferation in patients with DR [29].
By suppressing the increase in HMGB-1 expression and the activa-
tion of NF-κB in DR, GL attenuated pro-angiogenic signalling [30].
GL also prevented the diabetes-induced loss of brain-derived neu-
rotrophic factor in rats [31], decreased excitotoxicity produced by
high glutamate concentrations in the central nervous system [32],
and restored retinal occludin [27]. In addition, GL prevented the
activation of Toll-like receptor 4 and TNF-α in primary retinal en-
dothelial cells that were cultured in high-glucose medium. This
modulated the decrease in phosphorylated-Akt under the culture
conditions and decreased caspase-3 cleavage to promote cell sur-
vival [23].

There have been no reports of side effects from the retinal ap-
plication of GL, but several studies have noted that GL modulates
the pharmacokinetics of coadministered drugs or chemicals, such
as midazolam [33], paeoniflorin [34], ribavirin [35], puerarin [36],
glibenclamide [37], omeprazole [38,39], aconitine [40], talinolol
[41], and even other PTs like asiatic acid [42] and celastrol [43],
following systematic administration. These interactions may be
due to altered functions of CYPs and P-glycoprotein.

Carbenoxolone

CBX (-(3β)-3-[(3-carboxypropanoyl)oxy]-11-oxoolean-12-en-30-
oic acid) is a derivative of GL and is also found in licorice root.
CBX has been used in the treatment of ulcers of the stomach and
514 Cheng Z et al. The P
digestive tract [18], but this has decreased because of adverse ef-
fects, such as electrolyte disturbance and hypertension [24].

CBX is a nonselective inhibitor of the enzyme 11β-HSD1 [24]
that regulates the biosynthesis of ligands for glucocorticoid and
mineralocorticoid receptors [44]. Na et al. [45] reported that
CBX prevented dry eye syndrome in the rat by inhibiting the ex-
pression and activity of 11β-HSD1 (▶ Table 1).

Pan et al. [46] found that CBX was a partially reversible inhib-
itor of gap junction channels, which are specialised membrane do-
mains between adjacent cells that regulate the transfer of cyto-
plasmic components [47]. CBX is now used as an experimental re-
agent in in vitro and in vivo retinal models to decrease membrane
potential, study the role of connexins in gap junctions [48], and
investigate a range of retinal processes [49–52]. As an irreversible
inhibitor of voltage-dependent calcium channels, CBX has been
used to evaluate the role of these channels in the retina [53–55].
However, the clinical usage of CBX is limited by its toxicity that
leads to retinal opacity and swelling [46] and retinal thinning
[56]. CBX also decreases the responses of photoreceptors to light
[57,58] and photoreceptor-to-horizontal cell synaptic transmis-
sion [59].

Acetyl-11-keto-β-boswellic acid

Boswellic acids are PTs present in the resin of Boswellia species
[60]. Boswellic acids have reported anti-inflammatory [60,61],
antimicrobial [60,61], antiparasitic [60], anticancer [62], anti-ar-
thritic [61], and immunomodulatory [61] actions. Although more
than 12 different boswellic acids have been identified in resin
extracts, 11-keto-β-boswellic acid and AKBA [(3R,4R,4aR,6aR,
6bS,8aR,11R,12S,12aR,14aR,14bS)-3-acetyloxy-4,6a,6b,8a,11,12,
14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-
tetradecahydropicene-4-carboxylic acid] appear to have the
greatest pharmacological significance [60]. Three clinical trials
have evaluated boswellic acids in relapsing remitting multiple
sclerosis, osteoarthritis of the knee, and in pain, stiffness, and
impaired function in joints; another trial of the efficacy of boswel-
lic acids in the treatment of renal stones is scheduled, but recruit-
ment has not yet started.

SHP-1 (also known as tyrosine-protein phosphatase non-re-
ceptor type 6) regulates growth, mitosis, differentiation, and on-
cogenic transformation in a range of cell types, including retinal
cells. Indeed, SHP-1-deficient mice exhibit progressive retinal de-
generation [63], while the activation of SHP-1 in retinal pericytes
promotes apoptosis in DR [64].

AKBA has been reported to increase SHP-1 expression and ac-
tivity in normoxic mouse retina explants [65], which modulates
signalling by STAT3. This prevents the activation of hypoxia-indu-
cible factor-1α and VEGF in the oxygen-induced mouse model of
retinopathy (OIR) [65]. AKBA decreased neovascularisation in the
OIR mouse retina by suppressing STAT3 phosphorylation and
VEGF expression. AKBA also inhibited cell proliferation and tube
formation in this model. Similarly, AKBA prevented the increase
in activated p-STAT3 in VEGF-treated HRMECs [66]. The antiangio-
genic actions of AKBA are of potential value in studying the role of
neovascularisation in the pathogenesis of retinal disease [66].

The fed/fasted state has a major impact on the pharmacoki-
netics of AKBA. An approximate fourfold increase in the Cmax in
otential Application… Planta Med 2021; 87: 511–527 | © 2021. Thieme. All rights reserved.
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healthy volunteers, produced by a single oral dose of Boswellia ex-
tract (AKBA 20–30mg), was attributable to increased absorbance
following a high-fat meal [Cmax: 6 ng/mL (fasted) vs. 28.8 ng/mL
(fed)] [67,68]. After repeated oral administration of a Boswellia
extract (800mg, three times daily for 4 weeks), the steady-state
concentration was 0.04 µM (~ 20.5 ng/mL) [69]. Low absorption
and/or extensive metabolism appear to contribute to the poor
bioavailability of AKBA [70].

Celastrol

Celastrol (3-hydroxy-9β,13α-dimethyl-2-oxo-24,25,26-trinorolea-
na-1(10),3,5,7-tetraen-29-oic acid) is a major constituent of the
medicinal plant Tripterygium wilfordii Hook F. Its reported pharma-
cological activities are broad and include anti-inflammatory, car-
dioprotective, and neuroprotective actions, as well as anticancer,
anti-obesity, and antidiabetic effects [71]. The anti-inflammatory
actions of celastrol in the retina are attributed to its capacity to
modulate multiple inflammatory mediators, including the cyto-
kines IL-1β, CCL2, and TNF-α, Hsp70, and cyclooxygenase-2 [71–
75]. Bian et al. demonstrated the efficacy of celastrol against
light-induced retinal inflammation at low concentrations [72].
Pretreatment of ARPE-19 cells with 0.1–1.5 µM celastrol inhibited
the phosphorylation and activation of the NF-κB p65 subunit on
Ser536 and decreased IL-6 secretion following the application of
LPS.

Celastrol protected rat RGCs from damage due to ocular hy-
pertension [73]. The intraperitoneal injection of celastrol (1mg/
kg for 14 days) promoted RGC survival in the rat optic nerve crush
model [74]. Celastrol also preserved the outer nuclear layer struc-
ture and thickness in the mouse retina after damage by bright
light, attenuated light-induced photoreceptor apoptosis, and in-
creased the amplitudes of scotopic a- and b-waves [72].

Most studies have reported that the intraperitoneal adminis-
tration of celastrol in vivo decreases body weight in experimental
animals [74,76,77]. Thus, to retain the pharmacological benefits
of celastrol, alternate delivery routes have been evaluated. Intra-
vitreal administration of celastrol (1mg/kg) was effective, but less
so than daily intraperitoneal administration, and multiple applica-
tions may be required for optimal benefit. Detailed studies are
now warranted to evaluate this possibility.

Escin

Escin [(2S,3S,4S,5R,6R)-6-{[(3S,4S,4aR,6aR,6bS,8R,8aR,9R,10R,
12aS,14aR,14bR)-9-acetoxy-8-hydroxy-4,8a-bis(hydroxymethyl)-
4,6a,6b,11,11,14b-hexamethyl-10-[2-methyl-1-oxobut-2-
enoxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropi-
cen-3-yl]oxy}-4-hydroxy-3,5-bis{[(2S,3R,4S,5S,6R)-3,4,5-trihy-
droxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy}-2-tetrahydro-
pyrancarboxylic acid] is a mixture of triterpenoid saponins from
the horse chestnut tree, Aesculus hippocastanum. Earlier studies
reported that escin has anti-inflammatory, anti-oedematous, and
anticancer properties [78,79], and has potential application in the
treatment of chronic venous insufficiency, haemorrhoids, and
postoperative oedema [78,79]. It has been reported that escin
functions by activating Akt-Nrf2 signalling [80].

In the ARPE-19 model, the combination of escin and triamcin-
olone acetonide prevented the disruption of the brain-retinal bar-
Cheng Z et al. The Potential Application… Planta Med 2021; 87: 511–527 |© 2021. Thieme. Al
rier due to VEGF treatment, and increased the expression of occlu-
din and the ZO-1 protein that maintains tight junctions [81]. Sim-
ilar effects were also produced by the combination in vivo. Thus,
escin and triamcinolone acetonide decreased retinal leakage in
the rat, which was associated with loss of the integrity of the
brain-retinal barrier following ischaemic injury [82].

Clinical studies by Wu et al. [83] reported that the Cmax of escin
Ia and escin Ib were 0.77 ± 0.64 ng/mL and 0.38 ± 0.26 ng/mL, re-
spectively, in healthy volunteers after oral administration of 60mg
escin saposin tablets (which contained escin Ia 18.6mg and escin
Ib 11.4mg); both compounds reached Tmax at around 2 h.

Oleanolic acid

OA [3-hydroxyolean-12-en-28-oicacid; (4aS,6aR,6aS,6bR,8aR,10-
S,12aR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,
5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-car-
boxylic acid] is one of the best-known PTs and is found in the bark,
leaves, and fruits of over 1600 plant species as both a free acid and
a glycosylated saponin [84]. OA is most abundant in members of
the Oleaceae family, such as the principal commercial source olive
(Olea europaea), Lantana camara, and Lisgustrum lucidum [84–88].

OA has been used clinically in China as a hepatoprotective ad-
juvant agent for decades [84,85,87] and has antitumour, antidia-
betic, antimicrobial, antiparasitic, and antihypertensive actions, as
well as antioxidant and anti-inflammatory properties [87]. Studies
in healthy Chinese volunteers reported that plasma concentra-
tions of 12.1 ± 6.8 ng/mL were attained after a single oral dose of
40mg [89]. The highest oral dose that was used in rats was
50mg/kg and produced a Cmax of 132 ± 122 ng/mL [90].

OA also suppresses VEGF-induced activation of VEGF-receptor
2 and its downstream protein Erk1/2 in HUVECs. However, the
antiangiogenic actions of OA in the mouse retina in vivo requires
higher doses (up to 125mg/kg), which may be due to its short
half-life and low oral bioavailability (only ~ 0.7%), most likely due
to poor absorption [91].

Ursolic acid

UA (3β-hydroxy-urs-12-ene-28-oic acid; (1S,2R,4aS,6aR,6aS,
6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-hepta-
methyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-
picene-4a-carboxylic acid] is a secondary plant metabolite that is
structurally similar to OA. UA is present in the bark, leaves, peel,
and wax layers of many edible fruits [92]. UA reportedly has di-
verse pharmacological properties, including anticancer [92,93],
antimicrobial [92], antiviral [92], anti-inflammatory [93], and anti-
diabetic activities [93]. Clinical trials of UA have provided some
evidence that it may have value in preventing muscle atrophy
and sarcopenia (NCT02401113; study completed). However, the
utility of UA in the treatment of metabolic syndrome
(NCT02337933; study completed but results not reported) and
primary sclerosing cholangitis (NCT03216876; study withdrawn
due to lack of feasibility) is unclear at present. UA is rapidly ab-
sorbed (tmax ≤ 1 h) [94,95], but the bioavailability is low. A Cmax

of 295 ng/mL after oral administration of a UA extract (80mg/
kg) was reported in Wistar rats [94], and a Cmax of 68.3 ng/mL
was achieved in SD rats after administration of authentic UA
(10mg/kg) [95].
517l rights reserved.
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The photoprotective activity of UA in RPE cells has been as-
sessed. UA was found to mitigate damage elicited by UV light by
inhibiting the NF-κB pathway [96,97], but also produced an in-
crease in ROS [96]. However, the bioavailability of UA is low and
both medicinal chemistry and formulation strategies have been
undertaken to improve its activity. Alvarado et al. [98] designed
and tested UA-loaded poly(dl-lactide-coglycolide) acid nanopar-
ticles that exhibited potent anti-inflammatory activity in the rab-
bit eye without producing toxicity. This approach could be further
adapted in optimising the clinical application of PTs, especially
those with poor pharmacokinetic properties, including poor oral
bioavailability.

Other pentacyclic triterpenoids

There are several other PTs with pharmacological potential in the
treatment of retinal injury (▶ Table 1). The intravitreal injection of
asiatic acid [(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-
10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexameth-
yl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-pi-
cene-4a-carboxylic acid] in rats with elevated intraocular pressure
and chronic ocular hypertension improved RGC survival and pre-
vented retinal dysfunction, such as retinal thinning. Asiatic acid
prevented retinal apoptosis in chronic ocular hypertension by
modulating the ratio of Bcl-2 and Bax [99].

Madecassic acid [(1S,2R,4aS,6aR,6aS,6bR,8R,8aR,9R,10R,11-
R,12aR,14bS)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,
9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetrade-
cahydro-1H-picene-4a-carboxylic acid] protected HRMECs from
hypoxia-induced apoptosis by preventing the decline in the
Bax :Bcl-2 ratio and attenuating caspase-3 and caspase-9 cleav-
age. Madecassic acid also decreased ROS production and lipid
peroxidation, and modulated endoplasmic reticulum stress in hy-
poxic HRMECs [100].

Corosolic acid [(1S,2R,4aS,6aR,6aS,6bR,8aR,10R,11R,12aR,
14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,
6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-car-
boxylic acid] elicited antiangiogenic effects in a chorioallantoic
membrane assay, characterised by a decrease in the vascular area
and density and the number of gap junctions. Although, intravi-
treal administration of corosolic acid in Wistar rats was safe and
well-tolerated pharmacological activity was low [101]. As with
certain other PTs, the clinical use of corosolic acid may be en-
hanced by improved formulation.

In addition to the PTs mentioned, the activity of crude plant ex-
tracts that contain triterpenes has been assessed in vivo. Such ex-
tracts have been tested in rat models of DR and vasculopathy and
have been found to exhibit antioxidant and antiproliferative activ-
ities. Because ROS-mediated cell death contributes to decreased
retinal viability in ocular disease, PT analogues have significant
therapeutic potential.

Taken together, naturally occurring PTs are potentially valuable
in retinal disease. However, the pharmacokinetic profiles of PTs
are suboptimal in the clinical setting. It would now be useful to
improve the pharmacokinetic properties of these agents. This
might be achieved using novel delivery modalities, such as nano-
formulation.
518 Cheng Z et al. The P
Chemically modified pentacyclic triterpenoid
derivatives

As mentioned, naturally occurring PTs like OA exhibit favourable
pharmacological activity in a number of retinal pathologies.
Chemical modifications have been adopted in initial medicinal
chemistry strategies to attempt to overcome their pharmacoki-
netic drawbacks and mitigate adverse effects. Accordingly, a se-
ries of semisynthetic PT derivatives based on OA have been devel-
oped for this purpose; their structures are shown in ▶ Fig. 2.

2-Cyano-3,12-dioxo-oleana-1,9-dien-28-oic acid and dh404

CDDO [2-cyano-3,12-dioxo-oleana-1,9-dien-28-oic acid, also
known as bardoxolone or RTA 401; (4aS,6aR,6bS,8aR,12aS,
14aR,14bS)-11-cyano-2,2,6a,6b,9,9,12a-heptamethyl-10,14-di-
oxo-1,3,4,5,6,7,8,8a,14a,14b-decahydropicene-4a-carboxylic ac-
id), where R=COOH in ▶ Fig. 3a] is a potent semisynthetic deriva-
tive of OA. Further structural modifications have been introduced
to produce a series of CDDO analogues, including dh404
[R=CONHCH2CF3 and where the unsaturated bond in the C-ring
of CDDO is reduced; (4aS,6aR,6bR,8aR,12aR,14aR)-11-cyano-
2,2,6a,6b,9,9,12a-heptamethyl-10,14-dioxo-N-(2,2,2-trifluoro-
ethyl)-1,3,4,5,6,6a,6b,7,8,8a,9,10,12a,12b,13,14,14a,14b-octa-
decahydropicene-4a(2H)-carboxamide (▶ Fig. 3c)], CDDO methyl
ester (CDDO‑Me), RTA408, and CDDO-imidazolide (CDDO‑Im)
(▶ Fig. 3c). A phase I clinical study of CDDO pharmacokinetics in
patients with solid tumours reported that blood concentrations of
at least 1 µM (the effective preclinical concentration) can be at-
tained using a continuous intravenous infusion of a dose of
38.4mg/m2/h dose over a 5-day period every 28 days [102].

The CDDO analogues are potent activators of Nrf2, which is
the master regulator of the Nrf2-inducible gene battery of anti-
oxidant genes in response to oxidative stress [103]. Under normal
conditions, Nrf2 is present in the cytoplasm bound to Keap1 and
Cullin 3 [104–106]. In a normoxic environment, this complex may
be rapidly degraded by ubiquitination [104–106]. However, in
oxidative stress, Nrf2 is translocated to the nucleus and activates
the transcription of genes that enhance the antioxidant response
[104–106], including NQO1, GCLC, GCLM, sulfiredoxin 1, thiore-
doxin reductase 1, HO-1, and glutathione S-transferases [105–
110]. Nrf2 and its downstream genes are a major component of
the antioxidant defence against the pathogenesis of retinal inju-
ries like AMD, DR, choroidal neovascularisation, I/R injury, posteri-
or uveitis, and glaucoma [111–117], Indeed, Nrf2 knockout ani-
mals exhibit increased retinal degeneration and retinopathy
[111–117]. The capacity of CDDO analogues to activate the
Nrf2-inducible gene battery affords protection to the retina.

Deliyanti et al. [118] reported the antioxidant and anti-inflam-
matory activities of dh404. In the OIR mouse model, dh404 acti-
vated the major Nrf2-responsive genes NQO1, glutathione syn-
thase, HO-1, and GCLM. dh404 also alleviated inflammation by
decreasing TNF-α, CCL2, and ICAM-1 expression and also pre-
vented vascular leakage by restoring VEGF in vitro and in vivo
(▶ Table 2).

Similar findings were made in a rat model of diabetes [119].
Thus, dh404 activated the Nrf2-responsive genes HO-1 and
NQO1 in the retina, attenuated gliosis in Müller cells by decreas-
ing glial fibrillary acidic protein, and suppressed the proinflamma-
otential Application… Planta Med 2021; 87: 511–527 | © 2021. Thieme. All rights reserved.
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tory TNF-α, IL-6, ICAM-1, and monocyte chemotactic protein 1.
dh404 also prevented vascular leakage from the diabetic rat retina
by inhibiting the increase in albumin and VEGF, and decreased an-
giopoietin 2. These actions of dh404 could be optimised by fur-
ther structural modifications and utilising improved delivery ap-
proaches.

2-Cyano-3,12-dioxo-oleana-1,9-dien-28-oic
acid-Imidazolide

As mentioned, the Nrf2-inducible gene battery is important in
maintaining the survival of ocular tissues after exposure to pro-
oxidant stresses. Like dh404, CDDO‑Im [(2-cyano-3,12-dioxoolea-
na-1,9-dien-28-imidazolide; (4aR,6aR,6aS,6bR,8aS,12aS,14bS)-
8a-(imidazole-1-carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-
3,13-dioxo-4a,5,6,6a,7,8,9,10,12,12a-decahydropicene-2-car-
bonitrile] attenuated ROS production in murine photoreceptor
661W cells and minimised I/R injury in mice by upregulating the
major Nrf2-inducible genes NQO1, GCLC, GCLM, and HO-1 [120].
Similar findings were reported by Himori et al.; CDDO‑Im pro-
tected mouse eyes in vivo and RGC cells in vitro against oxidative
stress [121]. Two further CDDO derivatives – CDDO-trifluoroeth-
yl-amide (CDDO-TFEA) and CDDO-ethyl-amide (CDDO‑EA) – po-
tently activated NQO1 activity in 661W cells in a concentration-
dependent fashion within the nanomolar range [122]. CDDO-
TFEA decreased light-induced retinal damage by preventing thin-
ning of the ONL and increasing retinal NQO1 and GCLC expression
in BALB/c mice [122].

2-Cyano-3,12-dioxo-oleana-1,9-dien-28-oic
acid-Methyl ester

CDDO‑Me [also known as RTA402, bardoxolone methyl, or CDDO-
methyl ester, methyl (4aS,6aR,6bS,8aR,12aS,14aR,14bS)-11-cya-
Cheng Z et al. The Potential Application… Planta Med 2021; 87: 511–527 |© 2021. Thieme. Al
no-2,2,6a,6b,9,9,12a-heptamethyl-10,14-dioxo-1,3,4,5,6,7,8,8a,
14a,14b-decahydropicene-4a-carboxylate] activates Nrf2 and
inhibits NF-κB. CDDO‑Me has been evaluated in ~ 30 clinical trials
for potential application in a range of pathological conditions, in-
cluding renal diseases, diabetes, and pulmonary hypertension
(https://clinicaltrials.gov). In a phase I clinical trial of CDDO‑Me in
cancer patients, Hong et al. reported that the maximum tolerated
dose is 900mg/d when orally administered once daily for 21 days
over a 28-day cycle [123]. The Cmax was 25 ± 13 ng/mL and the
Cmin was 8.8 ± 4.3 ng/mL. CDDO‑Me also has low bioavailability,
but this was improved by using an amorphous spray dried disper-
sion dosage form [124]. This highlights the potential pharmacoki-
netic advantages offered by novel delivery approaches.

CDDO‑Me preserved the integrity of the blood-brain barrier,
protected endothelial cells, and upregulated tight junction pro-
teins [125]. CDDO‑Me is highly potent in its protective actions
against oxidative stress. Thus, CDDO‑Me protected the mouse
retina against I/R injury by abrogating superoxide levels and inhib-
iting retinal vascular degeneration, as well as by activating Nrf2
target genes such as NQO1, GCLM, GCLC, and HO-1 [126].

RTA408

RTA408 {also known as omaveloxolone, N-[(4aS,6aR,6bS,8aR,
12aS,14aR,14bS)-11-cyano-2,2,6a,6b,9,9,12a-heptamethyl-
10,14-dioxo-1,3,4,5,6,7,8,8a,14a,14b-decahydropicen-4a-yl]-
2,2-difluoropropanamide} is the only OA analogue to date that
has been evaluated in clinical trials of corneal endothelial cell loss,
ocular pain, and ocular inflammation following cataract surgery
(NCT02128113, NCT02065375). RTA408 is protective in human
foetal RPE cells at low concentrations (≤ 100 nM) and inhibits
H2O2-induced apoptosis and necrosis by modulating the Bcl-2:
Bax ratio and inhibiting H2O2-induced protein glutathionylation
519l rights reserved.
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[127]. As an Nrf2 activator, RTA408 promotes cell survival by
increasing the expression of Nrf2, HO-1, NQO1, superoxide dis-
mutase-2, catalase, glutaredoxin-1, and thioredoxin-1 [127]. Clin-
ical studies on patients with Friedreichʼ ataxia [128] and solid tu-
mours [129] have shown similar pharmacokinetic profiles (AUC,
Cmax, t1/2) at low oral doses (20mg/d); the pharmacokinetics were
linear over the dose range 2.5mg/d and 300mg/d [128].

RS9

Nakagami et al. [130] used CDDO as a lead compound to prepare
a series of derivatives using microbial transformation. One of the
products – termed RS9 (methyl (1aR,3aR,5aS,5bR,7aR,9S,11aS,
11bR,13bS,13cR)-1a-cyano-9-hydroxy-3,3,5a,5b,10,10,13b-hep-
tamethyl-2,12-dioxo-1a,3,3a,4,5,5a,5b,6,7,8,9,10,11,11a,11b,
12,13b,13c-octadecahydropiceno[1,2-b]oxirene-7a(2H)-carbox-
ylate) – carries an epoxide moiety in the A-ring, an esterified car-
boxylate substituent at the D/E-ring junction, and a hydroxyl
group in the E-ring. RS9 was more potent than CDDO‑Me in inhib-
iting t-BHP-induced RPE cell death, mediated via Nrf2 activation
and leading to increased expression of NQO1, HO-1, and GCLM.
This further supports the potential value of medicinal chemistry
in improving the efficacy of PT analogues. Multiple doses of RS9
[130] increased NQO1 and HO-1 expression in the retina of neo-
natal rats. Other studies corroborated these findings in murine
photoreceptor and ARPE-19 cells [131,132]. Indeed, when formu-
lated with PLA-0020, RS9 protected the retina from light-induced
ONL thinning in zebrafish and NaIO3-mediated oxidative damage
in ARPE-19 cells [132]. RS9 also suppressed neovascularisation in
the OIR rat model and inhibited blood-brain barrier hyperperme-
ability produced in rabbits by administration of glycated albumin.
In contrast, CDDO‑Me was relatively ineffective. The potency of
RS9 was corroborated in another study [133]. Thus, RS9 increased
the expression of HO-1 and NQO1 mRNAs at a low dose (1 and
3mg/kg), whereas CDDO‑Me only activated HO-1 expression at
much higher doses (10mg/kg). Again, RS9 improved the endo-
thelial cell barrier in vitro and in vivo assays.

RS9 was also reported to be effective in certain genetic dis-
eases of the retina. For example, Nakagami [134] showed that
RS9 significantly inhibited ONL in rhodopsin Pro347Leu transgenic
rabbits by activating the Nrf2-targeted genes NQO1 and HO-1
(▶ Table 2). This finding suggested that activation of the Nrf2-
Keap1 signaling pathway could delay the pathogenesis of RP that
is due to rhodopsin gene mutations. Considered together, RS9 is
an example of the value of medicinal chemistry and drug delivery
strategies to maximise efficacy and pharmacokinetics without in-
creasing toxicity. Extension of these strategies is now warranted
to produce superior OA analogues.

Apart from the OA analogues, very few other PTs have been
subjected to structural modifications by medicinal chemistry or
chemical biology approaches. Betulinic acid is structurally similar
to OA but has a substituted cyclopentane E-ring in place of the
cyclohexane system. Several betulinic acid derivatives with great-
er aqueous solubility showed improved cytoprotective activity
and safety in RPE and Müller cells. Antioxidant activities were
mediated by attenuating the activation of Akt, Erk1/2, and JNK
pathways [135,136].
521l rights reserved.
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Structure-activity relationships of pentacyclic
triterpenoids

PTs share similar structures, and investigations into their SAR
could provide clues for drug design and enhancement of pharma-
ceutical actions. However, to our knowledge, there have been no
SAR studies to date that have been based specifically on the reti-
na. Rather, the focus of most SAR studies has been on anti-inflam-
matory and anticancer aspects of the molecules and their interac-
tions with certain enzymes. It has been suggested that the activ-
ities of PTs are dependent on multiple structural and physico-
chemicals factors, including hydrogen bond formation, hydro-
phobic character, and steric and electronic properties of chemical
substituents. Further structural modifications to explore the phar-
macological potential of PTs would now be justified [137].

Based on reports regarding the role of PTs in other diseases, it
is feasible that hydrogen bonding capacity may play a role in their
pharmacological actions. A notable feature of anti-inflammatory
activity appears to be the presence of a hydrogen bond donor
(such as a free hydroxyl group) at C3 and a hydrogen bond accep-
tor and/or dipolar contact at C16 (▶ Fig. 4) [138]. OA, UA and
their derivatives show anti-inflammatory effects by inhibiting
COX-2 via a hydrogen bond [139,140]. Hydroxyl or substituted
hydroxyl groups (containing, for example, acyl or amido substitu-
ents) at C2, C3, C15, C16, or C22 [141–145] and carboxyl or sub-
stituted carboxyl groups at C17 and C24 (such as alkyl, aryl,
ethers, esters, amides, or nitrogen-containing heterocyclic moi-
eties) have been reported to produce PTs with enhanced activity
[142,143]. Hydrogen bond-forming groups at C3 or C28 of UA
analogues are important for their cytotoxicity as well as their in-
hibitory effects on NF-κB and mitochondrial transmembrane
potential [146,147]. At these two positions, their toxicity can be
increased by the replacement of amino groups, while their inhib-
itory effect can be abolished by the change of electron-withdraw-
ing groups such as COC6H5Cl or ‑Cl [146,147]. Furthermore,
heterocyclic groups such as indole [143,148], thiazolidinedione
[149], L-tyrosine [149], piperazine [140], 4-phenyl-1H‑1,2,4-tria-
zol-5(4H)-one [140], oxadiazole [140], and triazol [140] could en-
hance the biological activities of OA and UA as the nitrogen in the
heterocycle can serve as a hydrogen bond acceptor or donor
[150]. In addition, glycosylations at C3, C21, and C22 are also crit-
ical, since this can increase hydrogen bonding. Sugar chains are
preferred at the C21, C22, and C3 positions, as the hydroxyl of
sugar can serve as a hydrogen bond donor and acceptor [144].
The distance between the PT skeleton and agylcon also influences
the activity. A shorter distance between the PT moiety and the
sugar group leads to enhanced cellular effects [151], while the
long sugar chain at C28 could result in reduced potency [144,
145]. C28 has also emerged as a potentially important position in
these molecules that could be exploited in drug design because
SAR analyses on betulinic acid analogues have indicated that
bulky and electron-donating substituents promote activity [152,
153].

In addition, PTs with the structure of α, β-unsaturated carbonyl
moieties are Michael acceptors, which are prone to react with nu-
cleophile bioactive molecules. This accounts for the promising
pharmaceutical activities [154–156]. For example, CDDO was re-
ported to interact with sulfhydryl of cysteine residues in Keap1
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[157] and form covalent interaction with Cys151 [158], which is
essential to detect increased oxidative stress [158].
Conclusions
In summary, the PTs and their derivatives have considerable po-
tential in the treatment of retinal pathologies because they have
cytoprotective, antioxidant, neuroprotective, and anti-inflamma-
tory actions (▶ Tables 1 and 2 and Fig. 5). Important considera-
tions in future studies to assess PTs include:
1. That retinal cell damage in vitro or retinal degeneration in vivo

may be caused by a range of injurious stimuli, including light,
chemicals, ischaemia, and physical injury. Retinal damage and
disease development are complex processes that involve mul-
tiple contributory mechanisms and that can be exacerbated by
coincident diseases, such as diabetes and hypertension. Diag-
nostic markers should be monitored to guide the appropriate
therapeutic use of PTs. For instance, inflammatory and meta-
bolic indicators may be useful endpoints to monitor retinal de-
generation and responses to PTs.

2. Information is increasing that retinal damage and retinal dis-
eases are related to altered cellular signalling pathways. PTs dif-
ferentially modulate such pathways, e.g., OA derivatives acti-
vate the Nrf2 gene battery, which promotes the antioxidant
defence in cells, and GL inhibits HMGB1, which may attenuate
inflammatory mechanisms. Cytoprotection afforded by PTs
could enhance insight into the pathogenesis of retinal diseases
and improved targeting of specific pathways that may produce
new therapies.

3. Most PTs have been found to modulate several signalling
mechanisms so that side effects during treatment are likely.
By adapting advances in drug delivery, including targeted drug
carriers, such unwanted actions of PTs may be minimised.
Additionally, chemical modification of PTs should now be
undertaken to improve the properties of PTs for use in retinal
treatments. For example, CDDO analogues are more potent
and exhibit greater retinal protection than the parent com-
otential Application… Planta Med 2021; 87: 511–527 | © 2021. Thieme. All rights reserved.
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pound OA. However, precautions are necessary because rela-
tively minor chemical modifications can significantly alter the
specific activities of analogues. For example, GL is an HMGB1
inhibitor with retina protective actions, while the structurally
similar CBX is a 11β-HSD1 inhibitor and may elicit retinal toxic-
ity.

4. The reported synergism between PTs and glucocorticoids sug-
gests that combination treatments should now be evaluated in
a systematic fashion. This may also enable effective PTs to be
used at lower doses when used in combination with other
agents.

5. Chemical modification of PTs should be rationally pursued with
the aim of improving the aqueous solubility and the pharma-
cokinetic properties of active agents.
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