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Abstract Background Factor XIa (FXIa) is an emerging therapeutic target, and FXIa inhibition is
a promising mechanism to improve therapeutic index over current anticoagulants.
Milvexian (BMS-986177/JNJ-70033093) is an oral small-molecule FXIa inhibitor.
Objective Milvexian’s antithrombotic efficacy was characterized in a rabbit arterio-
venous (AV) shunt model of venous thrombosis and compared with the factor Xa
inhibitor apixaban and the direct thrombin inhibitor dabigatran.
Methods The AV shunt model of thrombosis was conducted in anesthetized rabbits.
Vehicle or drugs were administered as intravenous bolus plus a continuous infusion.
Thrombus weight was the primary efficacy endpoint. Ex vivo activated partial
thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT) were
measured as the pharmacodynamic responses.
Results Milvexian dose dependently reduced thrombus weights by 34.3�7.9,
51.6�6.8 (p<0.01; n¼ 5), and 66.9�4.8% (p<0.001; n¼ 6) versus vehicle at
0.25þ0.17, 1.0þ0.67, and 4.0�2.68mg/kg bolusþmg/kg/h infusion, respectively.
Ex vivo clotting data supported a dose-dependent prolongation of aPTT (with 1.54-,
2.23-, and 3.12-fold increases from baseline upon the AV shunt start), but no changes in
PT and TT. Dose-dependent inhibition in thrombus weight and clotting assays was also
demonstrated for both apixaban and dabigatran as the references for the model
validation.
Conclusion Results demonstrate that milvexian is an effective anticoagulant for
prevention of venous thrombosis in the rabbit model, which supports the utility of
milvexian in venous thrombosis, as seen in the phase 2 clinical study.
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Introduction

Thrombotic conditions, such as atrial fibrillation, stroke,
myocardial infarction, deep vein thrombosis (DVT), and
pulmonary embolism, are the leading causes of morbidity
and mortality worldwide.1 Current oral anticoagulants in-
clude vitamin K antagonists (warfarin) and direct oral anti-
coagulants that target serine proteases in the common
coagulationpathway, such as thrombin (dabigatran) or factor
Xa (FXa; apixaban, rivaroxaban, edoxaban, betrixaban).
Although these anticoagulants are effective in treating
and/or preventing thrombosis, all are associated with an
increased risk of bleeding events, which results in patients
either not receiving antithrombotic therapy or being sub-
optimally treated with currently available agents.2 Thus, a
significant unmet medical need remains for novel antico-
agulants that can effectively prevent thrombosis while pre-
serving hemostasis.

Factor XIa (FXIa), a serine protease within the intrinsic
pathwayof coagulation, has emerged as a newand promising
drug target based on evidence that it inhibits the pathophys-
iologic formation of a thrombus while preserving normal
hemostatic function.3–5 Human hemophilia C patients who
are severely deficient in factor XI (FXI) have a mild to
moderate risk of bleeding and display reduced incidence of
DVT and/or ischemic stroke.6,7 On the other hand, elevated
levels of FXI are associated with the risk of several thrombo-
embolic disorders.8,9 Furthermore, the synthetic antisense
oligonucleotide IONIS-FXIRx that targets FXI mRNA proved
to be superior to enoxaparin in reducing the incidence of DVT

in a phase 2 total knee arthroplasty clinical trial and
appeared to be safe with respect to bleeding.10 Similarly,
abelacimab,11 a monoclonal antibody that binds to the
catalytic domain of FXI and locks the zymogen, and osoci-
mab,12 a monoclonal antibody against FXIa, both demon-
strated the antithrombotic efficacy in separate phase 2
clinical studies to prevent venous thromboembolism among
patients undergoing knee arthroplasty.

Various preclinical studies demonstrated the role of
FXI/FXIa in thrombosis, with minimal impact on hemostasis.
In animal models, FXI-knockout mice are protected from
arterial and venous thrombosis13–15 without increasing
bleeding time while also exhibiting prolonged activated
partial thromboplastin time (aPTT) and normal prothrombin
time (PT).16 Similar observationswere reportedwith specific
inhibition of FXI/FXIa in rats,17 rabbits,18,19 and
baboons.20,21

Hence, FXIa inhibitors are promising novel anticoagulants
that provide an improved therapeutic index over the cur-
rently approved oral anticoagulants. Milvexian is an oral,
small-molecule FXIa inhibitor that has demonstrated robust
efficacy in a phase 2 clinical study for the prevention of
venous thromboembolism in patients undergoing total knee
arthroplasty.22,23 The efficacy of milvexian in a rabbit model
of electrically mediated carotid arterial thrombosis (ECAT)
was recently reported.24 The current study reports on pre-
clinical antithrombotic efficacy of milvexian in a rabbit
arteriovenous (AV) shunt model of venous thrombosis, a
model that was used to evaluate the in vivo efficacy of the
FXa inhibitor apixaban25 and the direct thrombin inhibitor
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dabigatran.26 In the current study, the FXa inhibitor apixaban
and the direct thrombin inhibitor dabigatran were used as
reference agents.

Materials and Methods

Animals
Male New Zealand white rabbits were purchased from
Charles River Lab (Wilmington, MA, United States). Rabbits
with a bodyweight between 2.45 and 3.22 kg and aged about
10 to 14 weeks were used for the AV shunt study. All the
animal care and experimental procedures were approved by
the Institutional Animal Care and Use Committee (IACUC) of
Janssen (Spring House, PA, United States). Animals were
housed in standard rabbit cages, one animal per cage, and
maintained at 22°C for a 12-hour daylight cycle. Standard
rabbit diet and water were provided, along with enrichment
with fruit and carrots, except for green leaves.

Arteriovenous Shunt Protocol
The rabbit AV shunt model was established as described
previously.19,27Rabbitswere randomlydivided into different
experimental groups. Each group had five to six animals
based on historic data power analysis.

Ketaminehydrochloride (HCl; 20.0–50.0mg/kg intramus-
cular [IM]) and xylazine (2.0–10.0mg/kg IM) were used for
anesthetic induction. Subsequent anesthetic maintenance
was provided as needed (i.e., approximately every 30–
50minutes) with ketamine HCl (22.7–25.0mg/kg/�0.5 h
IM) and xylazine (2.3–5.0mg/kg/�0.5 h IM) for the duration
of the study. Alternatively, rabbits were induced and subse-
quently maintained on isoflurane gas anesthetic (2–4% iso-
flurane and O2 flow rate at 0.9–1.2 L/min via nose cone).
Anesthetic depth was continuously monitored throughout
the study period via visual assessment (i.e., signs of wakeful-
ness, body movement) and evaluation of pedal/palpebral
reflexes, jaw tone, and/or changes in heart and/or respiratory
rate. Anesthetic adjustments were made as needed to main-
tain a steady anesthetic plane. Vital signs (e.g., heart rate,
electrocardiogram, oxygen saturation levels, arterial blood
pressure, respiratory rate, body temperature) were moni-
tored throughout the study period.

Following anesthesia, a 2-cm incision was made on each
thigh to expose the femoral artery and vein, respectively. The
vein and artery were cannulated with PE-100 tubing and
allowed to equilibrate for 20minutes. An AV shunt device
was then connected between the femoral arterial (at one
thigh) and femoral vein (at the opposite thigh) cannulas. The
shunt device consisted of an outer piece of Tygon tubing
(length: 8 cm; inner diameter [i.d.]: 7.9mm) and an inner
piece of tubing (length: 2.5 cm; i.d.: 4.8mm). The shunt also
contained an 8-cm length of 2–0 silk thread as the trigger for
thrombus formation. Forty minutes after blood flow through
the shunt was initiated, the shunt was disconnected and the
silk thread, along with the clot, was removed and weighed.

Milvexian used in this study was synthesized by scientists
at Bristol Myers Squibb (New Brunswick, NJ, United States).
The compound structure, selectivity, and pharmacology

profile of milvexian have been reported previously.22 The
doses of milvexian for the current study were selected based
on a rabbit ECAT study24 and increased one dose level for the
rabbit AV shunt model. The loading dose and continuous
infusion regimens aimed to achieve a steady-state plasma
drug level during the course of AV shunt thrombosis. The
milvexian dosing solutions for the current study were pre-
pared fresh daily in a vehicle containing 70% polyethylene
glycol and 10% ethanol with 20% H2O at 0.42mg/kg (0.25
mg/kg bolusþ0.17mg/kg/h infusion), 1.67mg/kg (1.0mg/kg
bolusþ0.67mg/kg/h infusion), and 6.68mg/kg (4.0mg/kg
bolusþ2.68mg/kg/h infusion) in a dosing volume of 5mL/
3 kg body weight. Vehicle or various milvexian doses were
administered intravenously (IV) via the marginal ear vein
beginning 30minutes prior to the AV shunt.

Apixaban was purchased from AstaTech (Catalog No:
41088; Bristol, PA, United States). The IV dosing regimen
for apixaban in rabbits essentially followed a previously
reported procedure,25,28,29 with the following specifica-
tions: The apixaban dosing solution was prepared in vehicle
(35% hydroxypropyl β-cyclodextrin in 10-mM phosphate
buffer, pH 7.0) and dosed with bolus plus continuous IV
infusion to achieve a steady-state plasma drug level during
AV shunt thrombosis. Apixaban was dosed at 0.015mg/kg
(0.006mg/kg bolusþ0.009mg/kg/h infusion), 0.15mg/kg
(0.06mg/kg bolusþ0.09mg/kg/h infusion), and 1.5mg/kg
(0.6mg/kg bolusþ0.9mg/kg/h infusion) IV in a volume of
2mL/kg.

Dabigatran was purchased from PharmaBlock Sciences
Nanjing Inc (Catalog No: PBN20120440; Nanjing, China). The
dosing solutionwas prepared in vehicle containing 10% N-N-
dimethylacetamide:90% of 5% dextrose. The doses for the
current study were selected based on a previous report29 at
0.015mg/kg (0.006mg/kg bolusþ0.009mg/kg/h infusion),
0.15mg/kg (0.06mg/kg bolusþ0.09mg/kg/h infusion), and
1.5mg/kg (0.6mg/kg bolusþ0.9mg/kg/h infusion) IV in a
volume of 2mL/kg.

Ex Vivo Clotting Assays
Coagulation reagents were purchased from Diagnostica
Stago (Parsippany, NJ, United States), namely, thrombin 10
(Catalog No: 00611; Lot No: 251851) for thrombin time (TT),
Neoplastine Cl 5 (Catalog No: 00666; Lot No: 01504) for PT,
and C.K. Prest 5 (Catalog No: 00597; Lot No: 112768) and
CaCl2 (0.025M; Catalog No: 00367; Lot No: 254158) for aPTT.
Coagulometer STA rt4 (Diagnostica Stago) was used for ex
vivo clotting time analysis.

Blood samples (1mL each) were collected from the femo-
ral artery cannula in 3.2% sodium citrate (BD Biosciences,
Franklin Lakes, NJ, United States) before and after shunt
setup and centrifuged at 2,500 g for 15minutes at 20°C.
The resulting platelet-poor plasma (PPP) was transferred
into clean tubes and stored at –80°C until use.

Coagulation assays were performed with PPP in a four-
channel coagulometer STA rt4 (Diagnostica Stago). Briefly,
for the aPTT assay, 50-µL C.K. Prest reagent was incubated
with 50-µL PPP for 3minutes at 37°C in a cuvette, and
coagulation was initiated by adding 50-µL 25-mM CaCl2.
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For the PT assay, 50-µL PPP was incubated for 1minute at
37°C in a cuvette, and coagulation was initiated by adding
100-µL Neoplastine Cl reagent. For the TT assay, 100-µL PPP
was incubated for 1minute at 37°C in a cuvette, and coagu-
lation was initiated by adding 100-µL thrombin (1.5 IU/mL).
The onset of clotting was recorded as the coagulation time.
The above clotting assays were performed on blood samples
from each animal.

Statistical Analysis
All data are expressed as mean� standard error of the mean.
Statistical analyses were performed using Prism software
(v8.0; GraphPad, San Diego, CA, United States). Significance
was defined at p<0.05, as determined byone-wayanalysis of
variance. Tukey’s test was used for multiple comparisons.

Results

The dose-dependent effects of milvexian on thrombus
weight in the rabbit AV shunt thrombosis model were
evaluated, and the data are illustrated in ►Fig. 1. Milvexian
significantly reduced thrombusweight in the rabbit AV shunt
model of thrombosis by 34.3�7.9, 51.6�6.8 (p <0.01;
n¼5), and 66.9�4.8% (p <0.001; n¼6) at 0.25þ0.17,
1.0þ0.67, and 4.0þ2.68mg/kg milvexian of bolus plus
infusion doses, respectively (►Fig. 1A).

Blood samples collected at 30 and 70minutes after bolus
injection plus initiation of infusion of milvexian (i.e., imme-
diately prior to and after AV shunt thrombosis) were used for
clotting assays. Ex vivo clotting data are summarized
in ►Fig. 1. Milvexian produced a dose-dependent

Fig. 1 Dose-dependent effects of milvexian on thrombus formation in the rabbit arteriovenous (AV) shunt model of thrombosis and ex vivo
clotting. (A) Milvexian dose dependently reduced thrombus weight in the rabbit AV shunt model of thrombosis, with 34.3� 7.9, 51.6� 6.8, and
66.9� 4.8% inhibition versus vehicle, respectively, at doses of 0.25þ 0.17, 1.0þ 0.67, and 4.0þ 2.68mg/kg. Plasma samples were taken
immediately prior to (30minutes after infusion) and after (at 70minutes) the AV shunt thrombosis and subjected to the ex vivo analysis of
(B) activated partial thromboplastin time (aPTT), (C) prothrombin time (PT), and (D) thrombin time (TT). Each symbol in (A) represents 1 animal.
Fold changes are indicated against vehicle in (B) and (C). ��p< 0.01. ���p< 0.001. ����p< 0.0001. Analysis of variance (ANOVA) followed by
Tukey’s test.
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prolongation of aPTT (►Fig. 1B), with 1.54-, 2.23- (p<0.001),
and 3.12-fold (p<0.001) increases frombaseline upon the AV
shunt start, respectively. No significant changes were ob-
served for milvexian in PT (►Fig. 1C) and TT (►Fig. 1D) in the
ex vivo clotting assays.

Both apixaban and dabigatran were used to calibrate the
rabbit AV shunt model. Apixaban dose dependently reduced
thrombus weight in the rabbit AV shunt model of thrombo-
sis, with 34.6�10.9, 42.6�6.9 (p<0.05; n¼6), and
76.2�9.0% (p<0.001; n¼6) inhibition versus vehicle, re-
spectively, at doses of 0.006þ0.009, 0.06þ0.09, and
0.6þ0.9mg/kg of bolus plus infusion as summarized
in ►Fig. 2A. Ex vivo clotting assays showed significant

increases for apixaban in aPTT (1.83-fold; p<0.0001) and
PT (2.29-fold; p<0.0001) at the 0.6þ0.9mg/kg dose
(►Fig. 2B and 2C), but no significant change for TT (►Fig. 2D).

Dabigatran also dose dependently reduced thrombus
weight in the rabbit AV shunt model of thrombosis, with
16.0�13.5, 54.2�10.9 (p <0.05; n¼5), and 93.3�1.9%
(p<0.001; n¼5) inhibition versus vehicle, respectively, at
doses of 0.006þ0.009, 0.06þ0.09, and 0.6þ0.9mg/kg of
bolus plus infusion as summarized in ►Fig. 3A. Ex vivo
clotting assays showed significant increases for dabigatran
in aPTT (2.37-fold; p<0.0001), PT (2.16-fold; p<0.0001),
and TT (16.8-fold; p<0.0001) at the 0.6þ0.9mg/kg dose
upon AV shunt start (►Fig. 3B–D).

Fig. 2 Dose-dependent effects of apixaban on thrombus formation in the rabbit arteriovenous (AV) shunt model of thrombosis and ex vivo
clotting. (A) Apixaban dose dependently reduced thrombus weight in the rabbit AV shunt model of thrombosis. Plasma samples were taken
immediately prior to (30minutes after infusion) and after (at 70minutes) the AV shunt thrombosis and subjected to the ex vivo analysis of
(B) activated partial thromboplastin time (aPTT), (C) prothrombin time (PT), and (D) thrombin time (TT). Each symbol in (A) represents 1 animal.
Fold changes are indicated against vehicle in panels (B) and (C). �p <0.05. ���p< 0.001. ����p< 0.0001. Analysis of variance (ANOVA) followed by
Tukey’s test.
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Discussion

The rabbit AV shunt model of thrombosis is one of the most
widely used animal models to characterize the antithrom-
botic efficacy of anticoagulants, including all of the currently
approved oral anticoagulants. This model employs an extra-
corporeal perfusion system via contact activation for throm-
bus formation under different shear rate of blood flow.30 The
thrombus produced by this model is similar to venous
thrombus composed of mainly red blood cells and fibrin
with some platelets and leukocytes, with the characteristics
of human pathology.31 In the present study, we report that
milvexian dose dependently inhibited venous thrombosis.
Consistent with its mode of action, milvexian also caused a

dose-dependent prolongation of ex vivo aPTT, but not PT or
TT, demonstrating selectivity for FXIa inhibition in the
intrinsic pathway of coagulation. The plasma drug levels of
milvexian were 0.515�0.063, 1.695�0.059, and
5.467�0.533 μM at 0.25þ0.17, 1.0þ0.67, and 4.0�2.68
mg/kg bolusþmg/kg/h infusion, respectively.

This study was done in parallel with two reference
therapeutic agents, apixaban and dabigatran, as a part of
model calibration. Dose-dependent inhibition in thrombus
weight was demonstrated for both apixaban and dabigatran.
The antithrombotic efficacy of apixaban was previously
reported in various rabbit models of thrombosis, including
AV shunt thrombosis, DVT, and electrically induced carotid
artery thrombosis.25,29 The effect of apixaban observed in

Fig. 3 Dose-dependent effects of dabigatran on thrombus formation in the rabbit arteriovenous (AV) shunt model of thrombosis and ex vivo
clotting. (A) Dabigatran dose dependently reduced thrombus weight in the rabbit AV shunt model of thrombosis. Plasma samples were
taken immediately prior to (30minutes after infusion) and after (at 70minutes) the AV shunt thrombosis and subjected to the ex vivo analysis of
(B) activated partial thromboplastin time (aPTT), (C) prothrombin time (PT), and (D) thrombin time (TT). Each symbol in (A) represents
1 animal. Fold changes are indicated against vehicle in (B) and (C). �p< 0.05. ��p< 0.01. ���p< 0.001. ����p< 0.0001. Analysis of variance
(ANOVA) followed by Tukey’s test.
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the AV shunt thrombosis model was in agreement with
previous reports in rabbits25,29 and in line with the clinical
studies of apixaban for the prevention/treatment of venous
thromboembolism.32 Likewise, the effective dose range in
the current study for dabigatran in the rabbit AV shuntmodel
was also in agreement with previous reports for dabigatran
in a rabbit model of venous thrombosis.33

With respect to the coagulation parameters studied,
apixaban increased both aPTT and PT, demonstrating its
impact on the common pathway of coagulation. Dabigatran
also increased aPTT, PT, and, to a larger extent, TT, demon-
strating its role in targeting the common pathway and the
final step of coagulation. Thus, apixaban and dabigatran are
expected to inhibit coagulation initiated by either the intrin-
sic or extrinsic pathwayof coagulation. In contrast,milvexian
selectively inhibits coagulation initiated by the intrinsic
pathway of coagulation and is not expected to have an
appreciable impact on coagulation initiated by the extrinsic
pathway of coagulation (deemed critical for hemostasis), as
evidenced by a lack of effect on PT. Although bleeding was
not assessed in the current study, we have previously
reported that milvexian did not increase cuticle bleeding
time in rabbits either alone or when added on top of
aspirin.24 In contrast, apixaban and dabigatran have been
demonstrated to increase bleeding in rabbit models.25,29

TheAVshunt thrombosismodel used in thepresent study is
designed to replicate the key pathophysiologic features of
fibrin-rich venous thrombosis. Similar preclinical validation
was also recently demonstrated for another FXIa inhibitor,
asundexian, in a rabbit AV shunt thrombosis model.34 More
recently, we have reported on the efficacy of milvexian for the
prevention of venous thromboembolism in patients undergo-
ing total knee arthroplastywithout any statistically significant
increases in bleeding comparedwith enoxaparin.22,23 In addi-
tion tovenous thrombosis, the invivoefficacyofmilvexianwas
demonstrated in a rabbit ECAT model,24 further supporting
clinical evaluation in settings of arterial thrombosis.

It should be pointed out that while no hemostasis studies
were conducted for milvexian in the current report, the
advantage of FXI/FXIa blockage over direct-acting oral anti-
coagulants (DOACs) on hemostasis has been provided
through various lines of both preclinical and clinical
evidence.3,13–17,35,36 DOACs are effective as anticoagulant
therapies, but have been associated with bleeding compli-
cations such as intracranial and gastrointestinal bleed-
ing.35,36 A previous study in a rabbit venous thrombosis
model (cuticle bleeding model) revealed that apixaban and
dabigatran prolonged bleeding time by 1.13�0.02- and
4.4�0.4-fold, respectively, at doses associated with an
�80% reduction in thrombus formation.29 In contrast to
DOACs, either FXIa inhibitors or FXI deficiency provided
protection from thrombosis with no increase in bleeding
times in various species.3,13–17Human hemophilia C patients
who are severely deficient in FXI have amild tomoderate risk
of provoked bleeding and display a reduced incidence of DVT
and/or ischemic stroke.6,7 As expected, no bleeding liability
was found for milvexian in the rabbit cuticle bleeding model
(milvexian alone and/or in combination with aspirin).24

Likewise, milvexian demonstrated robust efficacy in a phase
2 clinical study for the prevention of venous thromboembo-
lism in patients undergoing total knee arthroplasty with no
statistically significant increase in bleeding.23

The results of the current study demonstrated that mil-
vexian is an effective anticoagulant for the prevention of
venous thrombosis in the rabbit model, which supports the
utility of milvexian in venous thrombosis.

What is known about this topic?

• FXIa is an emerging target for the prevention and
treatment of thrombosis.

• Inhibition of FXIa is a promisingmechanism to prevent
thrombosis while preserving hemostasis.

What does this paper add?

• This study demonstrates the antithrombotic effect of
milvexian in a rabbit model of venous thrombosis.
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