
German CheXpert Chest X-ray Radiology Report Labeler

Deutscher CheXpert-Röntgenthorax-Befundlabeler

Authors

Alessandro Wollek1, 2 , Sardi Hyska3, Thomas Sedlmeyr1, 2, Philip Haitzer1, 2, Johannes Rueckel3, 4, Bastian O. Sabel5,

Michael Ingrisch3 , Tobias Lasser1, 2

Affiliations

1 Munich Institute of Biomedical Engineering, Technical

University of Munich, Garching b. München, Germany

2 School of Computation, Information and Technology,

Technical University of Munich, Garching b. München,

Germany

3 Department of Radiology, Ludwig-Maximilians-University

Hospital Munich, München, Germany

4 Institute of Neuroradiology, Ludwig-Maximilians-

University Hospital Munich, München, Germany

5 Institute for Clinical Radiology, Ludwig-Maximilians-

University Hospital Munich, Germany, München, Germany

Key words

thorax, radiography, pneumothorax, neural networks, label

extraction, annotation

received 1.6.2023

accepted 15.12.2023

published online 2024

Bibliography

Fortschr Röntgenstr

DOI 10.1055/a-2234-8268

ISSN 1438-9029

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG, Rüdigerstraße 14,

70469 Stuttgart, Germany

Correspondence

Alessandro Wollek

Munich Institute of Biomedical Engineering, Technical

University of Munich, Boltzmannstr. 11, 85748 Garching b.

München, Germany

Tel.: +49/89 28 91 08 40

alessandro.wollek@tum.de

ABSTRACT

Purpose The aim of this study was to develop an algorithm to

automatically extract annotations from German thoracic radi-

ology reports to train deep learning-based chest X-ray classifi-

cation models.

Materials and Methods An automatic label extraction mod-

el for German thoracic radiology reports was designed based

on the CheXpert architecture. The algorithm can extract la-

bels for twelve common chest pathologies, the presence of

support devices, and “no finding”. For iterative improvements

and to generate a ground truth, a web-based multi-reader an-

notation interface was created. With the proposed annotation

interface, a radiologist annotated 1086 retrospectively collec-

ted radiology reports from 2020–2021 (data set 1). The effect

of automatically extracted labels on chest radiograph classifi-

cation performance was evaluated on an additional, in-house

pneumothorax data set (data set 2), containing 6434 chest

radiographs with corresponding reports, by comparing a Den-

seNet-121 model trained on extracted labels from the asso-

ciated reports, image-based pneumothorax labels, and pub-

licly available data, respectively.

Results Comparing automated to manual labeling on data

set 1: “mention extraction” class-wise F1 scores ranged from

0.8 to 0.995, the “negation detection” F1 scores from 0.624

to 0.981, and F1 scores for “uncertainty detection” from

0.353 to 0.725. Extracted pneumothorax labels on data set 2

had a sensitivity of 0.997 [95% CI: 0.994, 0.999] and specifici-

ty of 0.991 [95% CI: 0.988, 0.994]. The model trained on pub-

licly available data achieved an area under the receiver operat-

ing curve (AUC) for pneumothorax classification of 0.728

[95% CI: 0.694, 0.760], while the models trained on automat-

ically extracted labels and on manual annotations achieved

values of 0.858 [95 % CI: 0.832, 0.882] and 0.934 [95 % CI:

0.918, 0.949], respectively.

Conclusion Automatic label extraction from German thoracic

radiology reports is a promising substitute for manual labeling.

By reducing the time required for data annotation, larger train-

ing data sets can be created, resulting in improved overall mod-

eling performance. Our results demonstrated that a pneumo-

thorax classifier trained on automatically extracted labels

strongly outperformed the model trained on publicly available

data, without the need for additional annotation time and per-

formed competitively compared to manually labeled data.

Key points:
▪ An algorithm for automatic German thoracic radiology re-

port annotation was developed.

▪ Automatic label extraction is a promising substitute for

manual labeling.

▪ The classifier trained on extracted labels outperformed the

model trained on publicly available data.

ZUSAMMENFASSUNG

Ziel Das Ziel dieser Studie war die Entwicklung eines Algorith-

mus zur automatischen Extraktion von Labels aus deutschen

Chest
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Röntgenthoraxbefunden, um damit tiefe neuronale Netze zur

Klassifikation von Röntgenthoraxaufnahmen zu trainieren.

Material und Methoden Basierend auf der CheXpert-Archi-

tektur wurde ein Modell zur automatischen Label-Extraktion

für deutsche Röntgenthoraxbefunde entworfen. Der Algorith-

mus kann Labels für zwölf häufige Thoraxpathologien, die

Anwesenheit von Fremdmaterial und „Normalbefund“ extra-

hieren. Zur iterativen Verbesserung und Generierung eines

Referenzstandards wurde ein webbasiertes Multi-Reader-

Annotationsinterface erstellt. Mit dem vorgeschlagenen

Programm hat ein Radiologe 1086 retrospektiv gesammelte

Befunde aus dem Zeitraum 2020–2021 (Datensatz 1) anno-

tiert. Die Auswirkungen der automatisch extrahierten Labels

auf die Leistung der Röntgenbildklassifikation wurden an

einem zusätzlichen internen Pneumothorax-Datensatz

(Datensatz 2) mit 6434 Thorax-Röntgenaufnahmen und ent-

sprechenden Befunden bewertet, indem ein DenseNet-121-

Modell verglichen wurde, das auf extrahierten Labels basier-

end auf zugehörigen Befunden, bildbasierten Pneumothorax-

Labels oder öffentlich verfügbaren Daten trainiert wurde.

Ergebnisse Beim Vergleich automatischer mit manueller An-

notation des Datensatzes 1 ergaben sich für die klassenspezi-

fischen F1-Scores der Erwähnungsextraktion Werte zwischen

0,8 und 0,995, für die F1-Scores der Negationserkennung zwi-

schen 0,624 und 0,981 und für die F1-Scores der Unsicher-

heitserkennung zwischen 0,353 und 0,725. Die extrahierten

Pneumothorax-Labels des Datensatzes 2 hatten eine Sensitivi-

tät von 0,997 [95%-KI: 0,994, 0,999] und eine Spezifität von

0,991 [95%-KI: 0,988, 0,994]. Das auf öffentlich verfügbaren

Daten trainierte Modell erreichte eine Fläche unter der Ope-

rationscharakteristik-Kurve (AUC) für die Pneumothorax-Klas-

sifikation von 0,728 [95 %-KI: 0,694, 0,760], das Modell, das

auf automatisch extrahierten Labels trainiert wurde, erreichte

0,858 [95 %-KI: 0,832, 0,882] und auf manuellen Annotatio-

nen 0,934 [95%-KI: 0,918, 0,949].

Schlussfolgerung Die automatische Annotation von deut-

schen Röntgenthoraxbefunden ist ein vielversprechender Er-

satz für die manuelle Annotation. Durch die schnellere Annota-

tion können größere Trainingsdatensätze erstellt werden, was

eine höhere Modellleistung verspricht. Unsere Ergebnisse zeig-

ten, dass ein Pneumothorax-Klassifikator, der auf automatisch

extrahierten Labels trainiert wurde, das Modell, das auf öffen-

tlich verfügbaren Daten trainiert wurde, deutlich übertraf,

ohne zusätzliche Annotationszeit. Verglichen mit manuell

annotierten Daten klassifiziert das Modell vielversprechend.

Kernaussagen:
▪ Ein Algorithmus für das automatische Labeln von Rönt-

gehnthoraxbefunden wurde entwickelt.

▪ Das automatische Labeln ist ein vielversprechender Ersatz

für das manuelle Labeln.

▪ Der mit den extrahierten Labels trainierte Klassifikator

übertraf das mit öffentlich verfügbaren Daten trainierte

Modell.

Zitierweise
▪ Wollek A, Hyska S, Sedlmeyr T et al. German CheXpert

Chest X-ray Radiology Report Labeler. Fortschr Röntgenstr

2024; DOI 10.1055/a-2234-8268

Introduction

Chest X-rays are a frequently used and essential tool for detecting
lung pathologies, like pneumothorax [1, 2]. The accurate interpre-
tation of chest X-rays can be essential for the early detection,
timely diagnosis, and effective treatment of these conditions.
However, due to the large number of radiological images, radiolo-
gy departments in many countries and regions are understaffed
or overworked, ultimately risking the quality of care [3–5].

Recently, deep learning models used in decision support sys-
tems have achieved performance levels in chest X-ray diagnosis
of pathologies like pneumonia that are comparable to those of
radiologists [6, 7]. The integration of such models into clinical sys-
tems could reduce repetitive work, decrease workload, and
improve the diagnostic accuracy of radiologists.

One of the reasons for the recent surge of innovation based on
deep learning models is the availability of large data sets. For ex-
ample, the release of the ImageNet data set and the correspond-
ing image classification competition led to huge improvements in
the computer vision domain [8–11]. Similarly, the release of the
chest X-ray 14 data set [12] sparked the development of chest
X-ray classification models like CheXnet [13]. While the number
of images used by modern deep learning architectures has in-

creased over the years, large publicly available data sets required
for new architectures such as Vision Transformers [14] are missing
in radiology, thus limiting the use of advanced models [15] and
inhibiting advances in automated chest X-ray diagnosis.

Radiology departments around the world create large
amounts of chest X-ray image data with corresponding reports
during the clinical routine. Despite the existence of huge numbers
of radiological imaging studies and their radiological reports
stored in the Picture Archiving and Communication Systems
(PACS) of numerous clinics, only a few are used for the develop-
ment of new deep learning models, due to missing infrastructure,
data privacy considerations, and required time, among other
things.

Unlike commonly used image data sets, such as ImageNet,
chest X-ray data sets obtained from the clinical routine require
expert annotation due to the specialized knowledge required to
understand the images. This annotation task falls on radiologists,
who possess the necessary training and expertise to accurately
interpret the X-rays. While decision support systems for chest
X-ray diagnosis aim to reduce the workload of radiologists, a sig-
nificant challenge arises from the need for radiologists to perform
the time-consuming task of data annotation. This creates a “chick-
en-and-egg” problem, where the development of decision sup-
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port systems depends on large, annotated data sets, yet creating
these data sets requires significant time and effort on the part of
radiologists.

To reduce the amount of time needed for data annotation,
natural language processing systems have been created for ex-
tracting structured labels from free-text radiology reports. Such
systems can be primarily categorized as rule-based or deep learn-
ing-based approaches, each of which has its own benefits and lim-
itations. Rule-based systems, for instance, are easier to imple-
ment, require no computationally intensive training, provide
higher explainability, and can be easily updated with new rules
and classes by anyone. On the other hand, deep learning-based
approaches primarily rely on large language models, and thus
have the potential to produce more accurate label predictions
but require more computational resources and larger (manually)
annotated data sets. Furthermore, they can only be developed
and maintained by experts. Finally, current state-of-the-art gen-
erative language models that do not require fine-tuning, such as
GPT-4, cannot be used in a local environment and are potentially
not compliant with data protection regulations like the general
data protection regulation (GDPR).

Recent public chest X-ray data sets such as chest X-ray 14,
CheXpert [16], and MIMIC-CXR [17] were created by converting
existing radiological reports to class labels automatically using
rule-based systems. For example, the CheXpert labeler converts
an existing report to the thirteen classes: atelectasis, cardiomega-
ly, consolidation, edema, enlarged cardiomediastinum, fracture,
lung lesion, lung opacity, pleural effusion, pleural other, pneumo-
nia, pneumothorax, support devices, and an additional “no find-
ing” class. To minimize development time, the CheXpert labeler
was used to annotate the MIMIC-CXR data set as well. Moreover,
this labeler has been adapted and ported to process reports in
other languages, such as Brazilian [18] and Vietnamese [19]. The
process of labeling consists of three stages: In the first stage,
mention extraction, the labeler scans the report for phrases typi-
cal for a class as defined in class-specific lists. For example, the

pneumothorax phrase list contains phrases such as “pneumothor-
ax” and “pleural dehiscence”. Next, extracted mentions found in
the previous phase are classified as positive, negative, or uncertain
(mention classification). Finally, all mentions of a specific class
found in a single report are aggregated to create the observation
label (mention aggregation). If a report happens to mention no
observation, except support devices, the report is instead labeled
as “no finding”.

For German radiology reports, Nowak et al. investigated differ-
ent approaches for training a deep-learning based labeling model
[20]. In contrast to the CheXpert labeler, their model predicted
only six observations: pulmonary infiltrates, pleural effusion, pul-
monary congestion, pneumothorax, regular position of the cen-
tral venous catheter (CVC) and misplaced position of the CVC. So
far, neither the source code nor the model weights have been
released.

In this study, we propose an automatic labeler for German
thoracic reports based on the CheXpert algorithm (shown in
▶ Fig. 1). Our contributions are:
▪ We created a rule-based labeling algorithm for converting

German thoracic radiology reports to CheXpert labels.
▪ We propose a web-based annotation tool for radiologists to

adapt the labeler to new phrases used in a specific clinic and
create a ground truth data set.

▪ We demonstrated that our proposed labeler performs similarly
to radiological report labelers in other languages. In addition,
we showed that a pneumothorax classifier trained on weakly
labeled data outperforms models trained solely on publicly
available data and performs competitively compared to
manually labeled data.

Our code is publicly available at https://gitlab.lrz.de/IP/german-
radiology-report-labeler.

▶ Fig. 1 Automated labeling of German thoracic radiology reports. A report is passed to the report labeler and converted to 14 labels, based on the
CheXpert labels. The labeler detects each class according to class-specific phrases and converts them to positive, negative, or uncertain labels.
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Materials and Methods

Data Collection

We retrospectively identified thoracic radiology reports from
2020 to 2021 in our institutional PACS and randomly selected
900 reports, prior to the annotation, for the creation of a refer-
ence standard and 186 reports for phrase collection and develop-
ment. We refrained from re-balancing the development and test
subsets after data annotation to avoid biases introduced by data
selection and from phrases collected during annotation. In the fol-
lowing, we refer to this data set as data set 1 (DS 1). Initially, two
radiologists, one board-certified radiologist with more than ten
years of experience (BOS), and one first year radiology resident
(SA) from Ludwig-Maximilians-University Hospital Munich com-
piled a list of common phrases for each of the fourteen CheXpert
classes. During the following data annotation process, the list of
phrases was expanded to include positive, negative, and uncertain
phrases.

Data Annotation

To make the labeling of data set 1 as efficient and accurate as pos-
sible, we built a multi-user web-based labeling interface. The de-
sign and implementation respect patient data privacy by running
the process locally in a secure environment.

The annotation tool, shown in ▶ Fig. 2, displays the view posi-
tion and report text on the left side of the screen, with four select-
able labeling options available per pathology on the right. These
options conform to the original CheXpert architecture and include
positive, negative, uncertain, and none, which is used if the specif-
ic class was not mentioned. Radiologists can add new class-specif-
ic phrases by selecting “add new” and mark and comment on a
report for later review. Before saving the annotations, the applica-
tion highlights the phrases that were recognized by the labeler
but were marked as “none” and prompts for a phrase if a class
was selected during annotation, but not recognized by the labeler,
thereby improving the phrase lists.

To evaluate the labeler’s performance and expand the class
pattern list, one first year radiology resident (SH) from Ludwig-
Maximilians-University Hospital Munich annotated the 1086 ran-
domly selected radiology reports of data set 1 using our proposed
annotation interface. The initial annotation process was super-
vised by a board-certified radiologist with more than 10 years of
experience (*). To account for the limitation of a single reader, a
second data set was used for testing, see the section Pneumo-
thorax Classification (DS 2). The resulting class distribution is lis-
ted in ▶ Table 1.

Report Labeler

In German radiology reports, two distinct types of negations were
identified: expressions that contain phrases like “nicht” or “kein”
(“no”, “not”) and are observation-independent, which can be re-
solved by the German NegEx algorithm [21], and medical terms
that lack any negations but convey the lack of an observation, for
example, “Herz normal groß” (“regular heart size”). As the Che-
Xpert architecture addresses only negated observations, we ex-

tended the architecture by using multiple phrase files (positive,
negative, uncertain) per observation.

As the original mention classification stage (see ▶ Fig. 3) de-
pends on an extensive rule set created for English report texts, our
labeler utilizes a modified version of the German NegEx algorithm
to classify German mentions instead. In the first step, the labeling
algorithm identifies negation phrases such as “kann ausgeschlos-
sen werden” (“can be excluded”), and uncertainty phrases, such as
“unwahrscheinlich” (“unlikely”), based on a set of rules and marks
them as pre- or post-negation/uncertainty phrases.

To identify whether the classification of a mention is affected
by negation/uncertainty terms (see ▶ Fig. 3), a cut-off radius de-
termines how many words before and after the mention are taken
into consideration, following the German NegEx algorithm. Opti-
mized on the development set of DS 1, a cut-off radius of 15 was
used. If the relevant region around the mention contains an un-
certainty phrase, the mention is classified as uncertain. If either a
pre-negation or post-negation is found near the mention, it is
classified as negative. Uncertain phrases overrule negations to ac-
count for phrases such as “wahrscheinlich kein […]” (“probably no
[…]”). Finally, if there are no known negation or uncertainty phra-
ses in the surrounding region, the mention is classified as positive.

To form the final label for each observation, the results from
mention classification are aggregated as shown in ▶ Fig. 4. The
following rules are applied to derive the labels:
1. Observations with at least one positive mention are assigned a

positive label.
2. Observations with no positive mentions and at least one un-

certain mention, are labeled as uncertain.
3. Observations with no positive or uncertain mention or at least

one negative mention are classified as negative.

The “no finding” label follows a different logic. Initially, a report is
labeled as “no finding”. The label is changed to negative if any of
the other observations (excluding “support devices”) are labeled
as positive or uncertain.

The main benefit of automated label extraction is time savings.
Our proposed algorithm features low memory consumption and
enables parallel labeling of multiple reports using multi-thread-
ing. Using twelve threads, the algorithm labeled 100 reports on
average in 1.84 s ± 27.3ms on a workstation equipped with an
Intel i7–6800K CPU with a clock speed of 3.40GHz.

Label Extraction (DS 1)

Label extraction performance was measured by comparing ex-
tracted and annotated labels on DS 1 on three tasks: mention ex-
traction, negation detection, and uncertainty detection. Regard-
ing the mention extraction task, unlabeled findings (“none”)
were considered negative, and annotated (“positive”, “negative”,
or “uncertain”) positive. For negation detection, findings annota-
ted as negative were considered positive, others as negative. For
uncertainty detection, annotations were classified analogously.
The phrase lists were optimized on the development subset of
DS 1. Phrases that were collected during the test subset annota-
tion were discarded to avoid overfitting.
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▶ Fig. 2 Report annotation web interface. Top: On the left side view position and report are displayed, on the right the 14 labels can be selected.
Additionally, new phrases can be added by clicking “ADD NEW” and a report can be marked for later inspection. Bottom: After “SAVE” is clicked, the
tool highlights the matching phrases with their corresponding labels and asks for a phrase when the selected class was not found by the labeler.
Clicking “SAVE” again will save the annotation and load the next report.
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Pneumothorax Classification (DS 2)

As DS 1 exposes realistic manual data gathering limitations such as
limited size and labeling solely based on reports, we tested the label
extraction performance on a separate, internal data set (DS 2) [23].
This data set consists of 6434 frontal chest radiographs and their
reports, with 1568 being labeled as pneumothorax. Unlike DS 1,
the data set was annotated based on the images and patient history
rather than solely based on the reports, providing a higher annota-
tion quality. As the pneumothorax label is based on the report and
the chest radiograph, “none” labels are not applicable. Because
inconclusive cases were excluded, no uncertain cases are available
either. Consequently, only binary labels are evaluated.

To measure the effect of automatically extracted labels on
downstream model training and classification performance, we
extracted pneumothorax labels from the radiology reports of
DS 2. We converted the extracted labels to binary labels by con-
sidering uncertain cases to be positive, similar to the data collec-
tion process. For comparison, we applied the same conversion to
DS 1 labels and annotations. Additionally, “none” annotations
were considered negative.

We used a DenseNet-121 pre-trained on ImageNet as the
backbone for our network. We replaced the final fully connected
layer with a single output when fine-tuned on DS 2. We replaced
the final softmax activation with a sigmoid. We used ADAM with a
learning rate of 0.003 and a batch size of 32 and trained for
10 epochs. For our experiments, we selected the best checkpoint
based on the validation area under the receiver operating charac-
teristic curve (AUC). All images were normalized according to
the ImageNet mean and standard deviation and resized to

256 × 256 pixels. For data augmentation we applied ten-crop,
i. e., we took 224 × 224 pixel crops from the center and the cor-
ners of the regular and horizontally flipped image. For our experi-
ments, we compared a DenseNet-121 fine-tuned on the chest
X-ray 14 data set (CheXnet) and fine-tuned on DS 2. When fine-
tuning on DS 2, we trained with either radiologists’ annotations
(annotated) or automatically extracted labels (extracted). All
experiments were performed using PyTorch version 1.8.1.

Statistical Evaluation

We evaluated the labeler’s performance using F1 score, precision,
and recall regarding mention extraction, negation detection, and
uncertainty detection by comparing the extracted labels to the
annotated labels from DS 1. We evaluated pneumothorax classifi-
cation performance using receiver operating characteristics (ROC)
and AUC. Because our study is exploratory and involves multiple
comparisons, we refrained from providing P-values and provide
95 % confidence intervals calculated using the non-parametric
bootstrap method with 10,000-fold resampling at the image
level. The labeler performance with respect to the binary pneu-
mothorax labels of DS 2 was measured using sensitivity and speci-
ficity. For comparison of DS 1 and DS 2, we converted DS 1 labels
and annotations to binary labels, measured sensitivity and specifi-
city, and included precision, recall, and F1 score for the binary
DS 2 classification task. The statistical analyses in this study were
done using NumPy version 1.24.2 and Scikit-Learn version 1.2.2.

▶ Table 1 Data sets with data splits and annotated classes used in this study. Data set 1 class annotations were acquired using our proposed anno-
tation interface from free text reports. Data set 2 class annotations were acquired from reports and radiographs [23]. Enlarged cardiom. = enlarged
cardiomediastinum, P = positive, U = uncertain, N = negative

Data set Data set 1 (DS 1) Data set 2 (DS 2)

Split Development Test Training Validation Test

Reports 186 900 4507 660 1267

Class P U N P U N P N P N P N

Atelectasis 29 17 1 203 50 2 – – – – – –

Cardiomegaly 34 56 41 166 338 248 – – – – – –

Consolidation 17 28 115 210 23 552 – – – – – –

Edema 61 3 74 259 11 478 – – – – – –

Enlarged cardiom. 39 42 52 206 273 277 – – – – – –

Fracture 11 1 12 61 4 75 – – – – – –

Lung lesion 11 1 1 37 11 12 – – – – – –

Lung opacity 31 27 112 275 20 484 – – – – – –

No finding 24 – – 121 – – – – – – – –

Pleural effusion 72 7 90 411 49 390 – – – – – –

Pleural other 11 3 – 53 18 1 – – – – – –

Pneumonia 4 48 114 52 142 578 – – – – – –

Pneumothorax 27 1 147 62 11 786 1122 3385 204 456 326 941

Support devices 108 – 17 523 2 101 - - - - - -
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Results

Label Extraction (DS 1)

The mention extraction, negation detection, and uncertainty de-
tection results are shown in ▶ Table 2. Excluding the special case
“no finding”, the mention extraction F1 score ranged from 0.8 to
0.995, the negation detection F1 score from 0.624 to 0.981, and
the uncertainty detection F1 score from 0.353 to 0.725. The spe-
cial case “no finding” covers reports that describe a normal chest
radiograph and is the default label when the labeler does not find
anything. Since blank “none” labels are considered negative for
the mention extraction task, the precision reflects the labeler not
finding any mention in the report. Results marked as “N/A” have
insufficient samples for calculation.

Commonly, chest X-ray classification models are trained on bi-
nary labels. Following Irvin et al. [16], we treat uncertain labels as
positive and obtain sensitivity and specificity results as reported in
▶ Table 3.

Pneumothorax Label Extraction (DS 2)

The labeler extracted pneumothorax labels from DS 2 reports with
a sensitivity of 0.997 [95 % CI: 0.994, 0.999] and specificity of
0.991 [95% CI: 0.988, 0.994], see ▶ Table 3. Differences between
pneumothorax sensitivity and specificity on DS 1 and DS 2 can be
explained by the underlying annotation and data collection proce-

dure. Uncertain DS 1 annotations were considered positive, while
missing (“none”) annotations were considered negative. In con-
trast, DS 2 has a higher annotation quality, since, for example, in-
conclusive pneumothorax cases of DS 2 were discarded during the
data collection process of the initial work. The effect of data cura-
tion during data collection of DS 2 can also be observed when
comparing F1 scores. The model extracted pneumothorax labels
with an F1 score of 0.797 [95 % CI: 0.719, 0.864] on DS 1 and
0.987 [95% CI: 0.982, 0.990] on DS 2.

Pneumothorax Classifier

The ROC curves and corresponding AUC values for the pneumo-
thorax classification models trained on our internal data set with
manually annotated labels or extracted labels and trained on the
chest X-ray 14 data set are shown in ▶ Fig. 5. Training with manu-
ally annotated labels from multiple readers performed best with
an AUC of 0.934 [95 % CI: 0.918, 0.949], followed by the model
trained with labels extracted automatically with our labeler with
an AUC of 0.858 [95 % CI: 0.832, 0.882]. The CheXnet model
trained on chest X-ray 14 data performed worst with an AUC of
0.728 [95% CI: 0.694, 0.760].

Discussion

In this study, we proposed an automatic label extraction algo-
rithm for German thoracic radiology reports. Our deep learning
model trained on extracted labels demonstrated strong improve-
ments compared to the CheXnet model (0.728 vs. 0.858 AUC)
and competitive performance compared to training with manual-
ly annotated data (0.858 vs. 0.934 AUC), as shown in ▶ Fig. 5. This
indicates a promising alternative to manual annotation of the
training data, especially as the training data set size can be easily
scaled with our proposed method. We expect better performance
with larger training data sets, allowing for the use of more ad-
vanced model architectures, as larger training data sets generally
improve image classification performance [14].

Although the extracted pneumothorax labels from DS 2 had a
high label sensitivity and specificity of over 99 % (see ▶ Table 3),
the larger classification AUC difference by the deep learning mod-

▶ Fig. 4 Derivation of class labels by aggregating all classified men-
tions per observation. Since an observation can be mentioned mul-
tiple times in a report, they must be aggregated for classification.

▶ Fig. 3 Labeling flow from our proposed report labeler based on
the CheXpert architecture. The report is first matched against a set
of class-specific phrases. Afterwards, each match is classified as po-
sitive, negative, or uncertain. If the report did not match any phrase,
it is labeled as no finding in the final stage. English translation
provided below the German report excerpt.
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el trained on manual and extracted labels could be explained by
the effect of noisier labels, making it harder to generalize. Creat-
ing class labels from radiological reports will always be inferior to
the additional inspection of the image and a manual annotation.
While pneumothorax label specificity is similar on both data sets,
the sensitivity is considerably lower on data set 1, with a larger
confidence interval. We interpret this difference as the effect of
converting uncertain predictions to positives, as the uncertainty
detection F1 score is comparatively low (see ▶ Table 2). Further-
more, inconclusive pneumothorax cases were removed during
the original data collection process of DS 2, resulting in a higher
data set quality. In contrast, no report was discarded during the
data collection process of DS 1 to ensure an unbiased evaluation.
While greater annotation quality resulted in better label extrac-
tion performance, it must be balanced with the time required to
create such annotations. The results of our work show that our
proposed labeler is a promising tool for clinical data scientists to
create data sets.

Our label extraction algorithm was successful in identifying
corresponding labels in DS 1 across all classes. The results are in
line with other methods proposed in the literature [12, 16, 18].
Missed classifications were mostly due to missing phrases. For ex-
ample, the phrase “unauffällige knöcherne Konfiguration” (“un-
obtrusive bony configuration”) was not considered a negative
fracture label because “knöcherne Konfiguration” was not part of
the phrase list. Another error pattern was the application of a
phrase in the wrong context by the NegEx algorithm. For example,
the negation phrase “keine” in “keine pleurale Dehiszenzlinie, ver-
breitertes Mediastinum” (“no pleural dehiscence line, widened
mediastinum”) was incorrectly associated with “verbreitertes
Mediastinum” leading to an incorrect classification. Extensions to

the phrase lists and further improvements to the NegEx algorithm
will address these problems. Based on our experience, collecting
labeling phrases using the proposed interface and the labeler re-
sults, we assume that the method can be easily applied to radiol-
ogy reports from other clinics. Hence, additional classes can be in-
corporated quickly. However, the setup requires trained clinical
data scientists. Furthermore, the annotation speed can be greatly
improved by running the labeler first. Multiple readers could lower
the risk of overlooking classes missed by the labeler.

During the process of annotating radiological reports based on
the 14 CheXpert class labels, the radiologists commented that not
all class labels were equally simple to annotate. In particular, the
class “pleural other” was considered too vague for meaningful
evaluation. Although the CheXpert labels were chosen based on
the glossary of terms for thoracic imaging from the Fleischner
Society [22], some of these labels lacked clear definitions, which
could lead to inconsistent annotation, particularly when multiple
annotators are involved. Especially the “uncertain” classification is
arguably too vague to be effectively used for modeling. To address
these issues, future work could leverage the proposed annotation
tool to refine and expand the CheXpert classes, ensuring that the
labels are clearly defined and precise.

Images from a single clinic cannot be representative of the
global population. Most chest X-ray data sets that are currently
publicly available, such as Chest X-ray 14, CheXpert, or MIMIC-
CXR stem from U.S. clinics. By establishing a set of shared class
labels and developing chest X-ray report labels for other langua-
ges, models built on multi-institutional data sets will be more
robust and general. We hope that our work motivates further
research in other languages.

▶ Table 2 F1 score, precision and recall for the three evaluation tasks of our report labeler: mention extraction, negation detection, and uncertainty
detection for each finding. Labels were extracted from DS 1 and compared to manual annotations. F1 = F1 score, R = recall, P = precision.

Data set 1 Mention extraction Negation Uncertainty

Findings F1 R P F1 R P F1 R P

Atelectasis 0.968 0.96 0.976 N/A N/A N/A 0.648 0.7 0.603

Cardiomegaly 0.813 0.71 0.952 0.627 0.528 0.771 0.683 0.551 0.898

Consolidation 0.933 0.919 0.947 0.884 0.802 0.984 0.4 0.609 0.298

Edema 0.993 0.996 0.991 0.965 0.941 0.989 0.48 0.545 0.429

Enlarged cardio-mediastinum 0.867 0.807 0.937 0.678 0.569 0.84 0.725 0.607 0.902

Fracture 0.838 0.856 0.821 0.713 0.554 1.0 N/A N/A N/A

Lung lesion 0.8 0.833 0.769 0.917 0.917 0.917 0.385 0.455 0.333

Lung opacity 0.92 0.915 0.926 0.851 0.743 0.994 0.364 0.6 0.261

No finding 0.238 1.0 0.135 N/A N/A N/A N/A N/A N/A

Pleural effusion 0.99 0.985 0.995 0.948 0.938 0.958 0.5 0.429 0.6

Pleural other 0.864 0.792 0.95 N/A N/A N/A 0.8 0.778 0.824

Pneumonia 0.902 0.829 0.988 0.862 0.771 0.976 0.705 0.612 0.833

Pneumothorax 0.995 0.999 0.991 0.981 0.978 0.985 0.353 0.273 0.5

Support devices 0.939 0.92 0.96 0.842 0.762 0.939 N/A N/A N/A
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One limitation of our work is that we evaluated the effect of
automatically extracted labels on chest X-ray classification per-
formance only for the pneumothorax case, not for others. As this
limited availability of labeled German radiology reports motivated
our presented study, future work will evaluate chest X-ray classifi-
ers trained on extracted labels for all fourteen classes. Another
limitation is that the proposed labeler cannot handle semantically
equivalent words due to its rule-based nature. In a follow-up
study, we plan to replace it with a more sophisticated language
model. Finally, we observed that few radiology reports described
several images. Hence, extracted labels might not refer to the
chest radiograph but rather to another image.

In conclusion, we showed that extracting CheXpert labels
automatically from German chest X-ray radiology reports is a pro-
mising substitute for manual annotation. A pneumothorax model
trained on these extracted labels demonstrated competitive per-
formance compared to manually annotated data.

Clinical relevance

The presented automatic label extraction model for German thor-
acic radiology reports and the annotation interface are promising
tools for clinical data scientists collaborating with radiologists.
The model can efficiently annotate large data sets for training
deep learning-based chest X-ray classification models. Clinical
decision support by such models can reduce the workload on
radiologists, resulting in improved productivity, and more impor-
tantly, accurate and timely diagnosis of chest pathologies.
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