
Abstract
!

Metabolic fingerprinting techniques have re-
ceived a lot of attention in recent years and the
annual amount of publications in this field has in-
creased significantly over the past decade. This in-
crease in publications is due to improvements in
the analytical performance, most notably in the
field of NMR and MS analysis, and the increased
awareness of the different applications of this
growing field. Metabolomic fingerprinting or
profiling is continuously being applied to new

areas of research such as drug discovery from nat-
ural resources, quality control of herbal material,
and discovering lead compounds. In this review
the current state of the art of metabolic finger-
printing, focussing on NMR and MS technologies
will be discussed. The application of these two an-
alytical tools in the quality control of herbal mate-
rial and phytopharmaceuticals forms the major
part of this review. Finally we will look at the fu-
ture developments and perspectives of these two
technologies in the quality control of herbal ma-
terial.
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Introduction
!

Plants have been used throughout history as the
primary source of food, timber, fuel, and medi-
cine, among other purposes. Due to their amazing
ability to produce a vast structural array of chem-
ical components, of which only relatively few
have been identified, plants are one of the most
important sources for the development of new
drugs. Today plants, plant extracts and plant-de-
rived components are being used in a multitude
of herbal remedies and phytopharmaceuticals.
Well-known plants which are used to treat specif-
ic diseases include Artemisia annua (to treat un-
complicated malaria) [1] and the female flower-
ing tops of Cannabis sativa (to relieve pain and as
an appetite enhancer) [2]. A multitude of exam-
ples exists for the use of plant extracts to treat a
large array of diseases and the WHO estimates
that about 80% of the world population uses me-
dicinal plants as their primary source of medica-
tion. Many well-known drugs have also been iso-
lated from plants including artemisinin from
A. annua, paclitaxel from Taxus brevifolia, vinblas-
tine and vincristine from Catharanthus roseus and
galanthamine from the Amaryllidaceae family.
In the literature three terms are used to describe
the analysis of metabolites produced by plants.
van der Kooy
These terms, notably metabolic profiling, meta-
bolic fingerprinting and metabolomics are some-
times used interchangeably. It is not our intention
to give a formal definition of metabolomics. For a
formal definition and discussion [3,4] should be
consulted. A very simplistic view is that metabol-
omics can be seen in two different ways. Firstly
there is the microscopic view (targeted approach)
which looks at a specific set of compounds (e.g.,
phenolics or terpenoids, etc). This approach is al-
so called metabolic fingerprinting or metabolic
profiling. The second view is the macroscopic
view (untargeted approach) which aims at identi-
fying and quantifying all the metabolites present
in a specific organism [3]. Metabolomics is there-
fore a “systematic study of the unique chemical
fingerprints that specific cellular processes leave
behind” – and, more specifically, the study of their
small-molecule metabolite profiles [5]. The me-
tabolome represents the collection of all metabo-
lites in a biological organism, which are the end
products of its gene expression. Thus, while
mRNA gene expression data and proteomic anal-
yses do not tell the whole story of what might be
happening in a cell, metabolic fingerprinting can
give an instantaneous snapshot of the physiology
of that cell. One of the challenges of systems biol-
ogy is to integrate proteomic, transcriptomic, and
F et al. Quality Control of… Planta Med 2009; 75: 763–775
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metabolomic information to give a more complete picture of liv-
ing organisms.
The analytical tools used to study the metabolome include
mainly chromatography and spectroscopy. Chromatography is
used to separate the metabolites which are then being quantified
and identified with the use of various detectors. The two main
chromatography systems employed in metabolic fingerprinting
are gas chromatography (GC) and high-performance liquid chro-
matography (HPLC). The detectors used in these chromatography
systems depend largely on the type of components to be detected
and quantified. For a targeted approach, mass spectroscopy (MS)
is usually employed as the detector, while nuclear magnetic res-
onance (NMR) and MS are used without the chromatography
step as an untargeted analytical tool. In the 1980s the first re-
ports on the use of NMR for fingerprinting of plant extracts were
reported, e.g., Kubeczka and Formácek published a book [6] with
13C‑NMR fingerprints of essential oils and Schripsema and Ver-
poorte applied 1H‑NMR for characterizing plant cell cultures and
quantitative analysis of sugars in the cell culture extracts [7]. But,
particularly in the past decade, metabolomics is rapidly develop-
ing for studying plants and quality control of botanicals. The use
of these two analytical tools (MS and NMR) will be discussed in
more detail below as well as the applications in the quality con-
trol of herbal material and the perspectives of these methods.
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Metabolic Fingerprinting using NMR
!

Recent advances in analytical chemistry, combined with multi-
variate data analysis, have brought us closer to the final goal of
metabolomics, comprehensive evaluation of all metabolites, both
quantitatively and qualitatively in living organisms. Amongmany
different technological platforms, NMR and MS have been suc-
cessfully used for metabolic fingerprinting analysis. These two
techniques have their respective advantages and limitations, and
are often discussed as being complementary [8,9]. However, as a
tool for metabolomics, NMR has some unique advantages over
MS-based methods. It can provide a detailed analysis on the bio-
moleculear composition very quickly with relatively simple sam-
ple preparation [10–12]. It is a universal detector for all mole-
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
cules containing NMR-active nuclei, unlike MS where detection
of analytes is influenced by selective ionization or ultraviolet
spectrometers where only chromophore-bearing compounds
are detected. For all proton-bearing molecules, the intensity of
all proton signals is absolutely proportional to the molar concen-
tration of the metabolite. Using a proper internal standard, the
real concentration of metabolites can be easily calculated [11].
Because NMR spectroscopy is based on the physical characteris-
tics of compounds, it has a very high reproducibility.
In metabolomics, the detection of metabolites is not the final
step, but all data obtained from the analytical methods should
be further analyzed by statistical methods in order to extract all
possible information from the data. The accuracy and correctness
of the data to be further analyzed by the statistical methods are
inevitably reliant on the robustness of the raw analytical data
set. In this aspect, NMR has a unique advantage, the highest reli-
ability in metabolomics. Unlike the retention time in chromatog-
raphy-based techniques, with a few exceptions the chemical
shift, coupling constant, and integral of each signal in an NMR
spectrum does not change as long as it is measured under the
same conditions: the field strength applied, solvent, pH, and the
temperature. Despite the low intrinsic sensitivity, the robustness
of data and ability to cover a broad range of metabolites, has en-
abled NMR to be the favored overall “macroscopic”metabolomics
and fingerprinting tool. In addition to the advantages of data ro-
bustness, the power of NMR in structure elucidation of metabo-
lites cannot be matched by any other method. NMR has a long
history in the natural products chemistry field as the tool for
structural elucidation. With a proper database, it can generate
data which can be kept almost permanently [13]. In this part,
the general procedure of NMR metabolomic analysis will be dis-
cussed together with multivariate data analysis. The identifica-
tion of metabolites is of high importance and this aspect will be
highlighted. At the end of this section specific applications will be
discussed using NMR as a metabolic fingerprinting technique.

General procedures of NMR-based metabolomics
NMR-based metabolomics, like other methods using MS or chro-
matography, include sample preparation, extraction, multivari-
ate data analysis, and identification of metabolites.l" Fig. 1 shows
Fig. 1 Schematic flowchart of NMR-based meta-
bolomic analysis.
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the generally accepted procedure of NMR-based plant metabolo-
mics. The sample preparation steps need much caution in order
to obtain reproducible and reliable results. Because in the meta-
bolomic analysis, the age, type of tissues, developmental stage,
environmental conditions (e.g., water drought, sunlight, temper-
ature, and pH of soil), and harvesting time greatly affect the me-
tabolome obtained even from the same genotype. For these as-
pects sampling of the target materials should be carefully
planned to avoid increased biological variation interfering with
the final data interpretation [10]. After harvesting, the sample
should be frozen immediately to avoid any (bio)chemical change
in the material. The next step is grinding and extraction of the
material to liberate the metabolites from the cells. During the ex-
traction (bio)chemical reactions may occur in the material, re-
flected in changes in the metabolome. This can be avoided by
drying the material before extraction either by heat or freeze-
drying, keeping the material at a low temperature, or grinding
at low temperatures and/or in the presence of a solvent that de-
natures enzymes involved in metabolite alteration. Denaturation
can also be achieved by a brief microwave treatment. For the de-
velopment of an optimum extraction method, Ultra-Turrax®,
deep-freezing in liquid nitrogen followed by mechanical grind-
ing, sonication with a probe head or cup horn and bead beating
prior to solvent extraction were evaluated for the efficient break-
age of the cell using a mycobacteria, Mycobacterium bovis. Of the
evaluated methods sonication was found to be superior to others
[14].
As metabolomics aims at comprehensive fingerprinting of all me-
tabolites the extraction methods used should cover all possible
metabolites in an organism. Unfortunately, there is no single ex-
traction method to achieve that goal. The polarity of the solvent
limits the range of metabolites that can be extracted. Also the pH
is a factor that affects the profile of metabolites extracted, e.g., al-
kaloids are soluble in non-polar solvents at high pH, and in aque-
ous solvents at low pH. To overcome these problems in part, a
two-phase solvent system consisting of chloroform-methanol-
water (2 :1:1) has been applied to extract both polar and non-
polar compounds in a single extraction [15–18]. Also, this meth-
od was applied to metabolic fingerprinting of Ephedra with a
slight modification, by addition of NH4OH, for benzylamine alka-
loids extraction [19]. However, this elaborate two-phase extrac-
tion method was found to be problematic when dealing with a
large number of samples because of the long processing time
and the possibility of degradation or losses during processing. Re-
cently, a simple direct extraction method with deuterated NMR
solvents has been developed for sample preparation, which in
general gave better quality NMR spectra [20–24].
Single solvent systems have been used for some studies. Metha-
nol with TFAwas found to be a suitable solvent for the extraction
of alkaloids [25] while perchloric acid was routinely used for the
more polar metabolites, which prevents enzymatic degradation
of metabolites [26]. However, a combination of CD3OD and D2O
was found to be a more preferable solvent, since it can extract
more diverse metabolites. The combination of these two solvents
was used in different ratios, e.g., 30% to 70% of CD3OD depending
on the study [20,23,24]. In most of our work, a mixture of meth-
anol-d4 and KH2PO4 buffer in D2O (pH 6.0) has been used, which
extracts a wide range of metabolites including amino acids, car-
bohydrates, fatty acids, organic acids, phenolics, and terpenoids
in a single step [19–22]. The direct extraction method with deu-
terated NMR solvents can save time and make it possible to deal
with a large number of samples. Moreover, the buffer in the sol-
vent can avoid possible fluctuation of chemical shifts of signals in
the NMR spectra.
However, when commercial herbal preparations are analyzed a
more targeted approach is used focussing on the known major
bioactive compounds in the plant material. For instance, in the
case of St Johnʼs wort (Hypericum perforatum), both tablets and
capsules were analyzed using a mixture of MeOH-pyridine (6:4,
v/v) [27].

1H‑NMR analysis to detect all metabolites extracted
from samples
For NMR-based metabolomics, the 1H‑NMR spectrum provides a
wealth of chemical information. With the aid of chemical shifts
and coupling constants some metabolites (amino acids, phe-
nolics, sugars, and TCA-related organic acids) can be easily iden-
tified. The observed chemical shift positions and spin-spin cou-
pling pattern for each proton provide information as to what
kinds of protons are found in the molecules and subsequently
how the protons are arranged. Furthermore, the concentration
of each metabolite in the sample can be easily calculated from
the integration of the signals in the spectra. There is no require-
ment for calibration curves to convert signal intensity into con-
centration as used in other methods [8,28–30]. For obtaining re-
producible results on concentration, the following parameters
are important: relaxation delay, the pulse width, and the acquis-
ition time. The optimum range of these parameters in 1H‑NMR
was excellently reviewed by Pauli et al. [9]. One of the problems
in measuring 1H‑NMR spectra is the water signal, a huge signal
caused by residual water, which overlaps with the anomeric pro-
tons of sugars or glycosides (δ = 4.8–5.2). To suppress this unde-
sired water signal several methods have been applied, e.g., addi-
tion of paramagnetic ions like Mg2+ followed by Meiboom-Gill
modification of the Carr-Purcell (CPMG) spin-echo pulse pro-
gram [31] and pre-saturation using an additional pulse. When
the pre-saturation technique is applied during relaxation delay,
the most common method, unwanted reduction of the signal in-
tensity close to the suppressed water might occur. For correct
suppression, the temperature and pH of samples should be care-
fully adjusted since the water signal is greatly affected by those
factors. Depending on the molecular size of metabolites, specific
pulse sequences have been applied. To filter out the signals from
small molecules from those of large ones, spin diffusion differ-
ences can be utilized. This was nicely shown in an NMR-based
study on toxin-induced changes in lipoprotein profiles [32]. In
the case of a matrix containing macromolecules (e.g., proteins or
lipid vesicles) the application of a spin-echo sequence like the
CPMG pulse sequence allows the attenuation of unwanted reso-
nances from macromolecules [33]. However, in any 1H‑NMR
spectra of plant extracts using diverse pulse sequences there are
congested signals of metabolites. Multivariate data analysis is a
key step for sorting out the discriminating signals from the com-
plex spectra. Prior to the multivariate data analysis all signals in
the obtained 1H‑NMR spectra should be digitalized. This could be
achieved by the so-called bucketing procedure, which divides the
spectrum into small bins and sums all intensities in each bin.
Ideally, a smaller bucket size is better to examine subtle pertur-
bations in the metabolome. However, because of unfavorable
fluctuations of chemical shifts, even with a fixed temperature
and pH of samples, one can only use 8–16Hz (0.02 to 0.04 ppm
in 400MHz NMR) for the bucket size [34]. It is also possible to
use full-resolution NMR data for the multivariate data analysis
as shown in the study of Rasmussen et al. [27]. In this work, they
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
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showed that full-resolution NMR data sets (0.15Hz per data
point resulting in 30000 variables) gave more precise informa-
tion about constituents responsible for data clustering, compared
to the use of integrated NMR data sets (0.04 ppm bucketing re-
sulting in 200 variables). Some aligning methods were found to
improve the separation of NMR data for further statistical analy-
sis [35–37].

Multivariate data analysis of 1H‑NMR spectra to
recognize patterns and find discriminating signals
In recent metabolomics studies, many hundreds or sometimes
thousands of samples are routinely analyzed and a minimum of
several hundreds of signals are detected in each sample. It is cru-
cial to extract the relevant information from such a huge data set.
The samples are grouped based on the analysis of the metabo-
lome (pattern recognition) and a discriminating metabolite (bio-
marker) can be found by multivariate data analysis. The pattern
of a class represents the information about the relations between
the observations within the class, discerning which are similar,
which are different, or which are atypical outliers. Through the
pattern recognition somemetabolites can be found that are char-
acteristic of a class. Of the multivariate data analysis, principal
component analysis (PCA) and partial least squares projections
to latent structures (PLS) are on the verge of becoming routine
processing steps for raw analytical data. PCA is designed to ex-
tract and display the systematic variation in a data matrix and
PLS is a regression extension of PCA, which is used to reveal the
correlation between two kinds of data sets [38–41]. Both PCA and
PLS are projection methods by reducing original data to a few
principal components in order to describe maximum variation
within the data. All raw data (e.g., the integral values of all chem-
ical shifts in a 1H‑NMR spectra) of samples are plotted in a K-di-
mensional space (K = number of variables, e.g., chemical shifts in
1H‑NMR spectra) and the plotted samples are projected onto the
line generated by least square sense (principal component line).
The score of each sample is obtained along the PC line. The next
principal components can also be calculated by projection onto
the line which is orthogonal to the previous PC line or space. In
general, the first three PCs are used for the analysis. For the data
analysis, score and loading plots are used. The score plot is useful
for observation of any groupings in the data set and in addition
will highlight outliers that may be due to errors in sample prepa-
ration, experimental conditions or instrumentation parameters.
Coefficients by which the original variables should be multiplied
to obtain the PC are called loadings. The numerical value of a
loading of each variable on a PC shows how much the variable
has in common with that component. Prior to the PCA and PLS
analysis raw data are scaled in different ways. There are several
ways to scale the data. For unit-variance scaling, the standard de-
viation and the scaling weight as the inverse standard deviation
are calculated. Subsequently, each variable is multiplied by the
inverse standard deviation. Each scaled variable then has equal
variance. This method is useful when the classification relies
more on differences between minor compounds, since it in-
creases the influence of weaker signals. However, applying the
unit-variance scaling to an NMR data set, it is difficult to interpret
the loading plot obtained from the unit-variance scaling method
because all signals have the same variance and consequently are
different from the original NMR spectra. With mean-centering,
the average value of each variable is calculated and then sub-
tracted from the data. This improves the interpretability of the
loading plot since it resembles the original NMR spectra. Also,
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
the spectral noise is removed for the analysis as long as inten-
sities of noise are lower than real signals. However, the influence
of minor signals might be excluded since the mean-centering
method always retains the original value of signals. In particular,
the signals of plant secondarymetabolites can be underestimated
compared to high levels of primary metabolites. As an alternative
technique the so called Pareto scaling has becomemore common.
Pareto scaling gives each variable a variance numerically equal to
its initial standard deviation instead of unit-variance. Hence, Par-
eto scaling is intermediate between the extremes of mean-cen-
tered and unit-variance scaling [42], which gives some weight to
minor signals and at the same time it provides interpretable load-
ings. In recent years variable stability (VAST) scaling which
weights each variable according to a metric of its stability im-
proved the class distinction and predictive power of PLS‑DA
models for 1H‑NMR spectra of urines [43].

Two-dimensional NMR spectroscopy to identify
differentiating metabolites in the NMR spectra
The signals to discriminate sample groups are sorted by multi-
variate data analysis. Some metabolites like carbohydrates, ami-
no acids, or organic acids related to the TCA cycle can be eluci-
dated merely based on their chemical shifts in 1H‑NMR spectra.
However, for most cases, the spectral complexity and signal over-
lap in the 1H‑NMR spectra are too high for identification. Chem-
ical structures of metabolites, especially species-specific plant
secondary metabolites, should be confirmed by additional meth-
ods. Diverse two-dimensional (2D) NMR spectroscopy can give
information on chemical structures. Indeed one of the advan-
tages of NMR spectroscopy in plant metabolomics is the power
of structure elucidation of molecules in a complex mixture.
The 2D‑NMR spectroscopy available for metabolomics can be di-
vided into two types, resolved and correlated spectroscopy ac-
cording to the type of dispersion in the second frequency dimen-
sion [8]. A typical resolved technique is the 2D-1H-1H-J-resolved
spectra. It provides additional information on spin-spin coupling
constants, together with chemical shifts. One of the difficulties
for interpreting a 1H‑NMR spectrum is the interpretation of the
splitting pattern of each signal. If a target signal is detected in a
crowded region overlapping with other signals, the first step is
to identify its splitting pattern. In addition to this use of J-re-
solved spectra in structure elucidation, projected spectra on to
the axis of chemical shift have been applied in several studies
[20–22,44]. The projected spectrum produces a 1H‑NMR spec-
trum consisting of singlets for each 1H chemical shift, i.e., a fully
proton-decoupled proton NMR spectrum. In the projected spec-
trum all signals from macromolecules which have short T2 relax-
ation times are readily suppressed because the pulse sequence of
the J-resolved technique is based on a spin echo sequence [8].
Thus, baseline shifting caused by proteins, oligo- or polysacchar-
ides, which might overlap minor signals or result in overestima-
tion of target signals, are clearly reduced in the projected spectra
and lead to better separation in multivariate data analysis. An-
other promising resolved technique is diffusion-ordered spec-
troscopy (DOSY) where each NMR signal is resolved based on
the molecular diffusion coefficient [45]. DOSY can be used for
molecular weight evaluation of unknown, purified constituents
by preparing calibration curves with known compounds [46].
Although DOSY has a potential to differentiate metabolites hav-
ing the same chemical moieties and different molecular weights
in plant extract, e.g., glycosides from their aglycones, the applica-
tion in metabolomics has been limited so far to the analysis of
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polymers like polysaccharides from insects or mushrooms [47,
48], interaction between small molecules and ligands [49,50],
and hydrocarbon mixtures [51].
Following the resolved spectra, information on correlation be-
tween protons or carbon-proton can be obtained by homonu-
clear and heteronclear experiments. A typical proton homonu-
clear technique is correlation spectroscopy (COSY) that shows
which signals in a proton spectrum have mutual spin-spin cou-
plings. The resulting spectrum has the conventional 1D NMR
spectrum along the diagonal cross-peaks at chemical shifts corre-
sponding to pairs of coupled nuclei. In general protons within
three bonds are well correlated in the COSY spectrum but in sp2

spin systems such as olefinic and phenolic compounds, even the
correlation beyond three bonds is readily detected. A modified
pulse sequence of COSY, long range COSY, can selectively detect
correlation between protons far from each other (more than
three bonds). It can show structure confirmation of connectivity
between two molecules which is not possible to detect in a nor-
mal COSY spectrum.
It is one of the most time-consuming tasks to define NMR signals
belonging to the same molecule in the complex 1H‑NMR spectra
of a mixture. In particular, most 1H signals of carbohydrates are
detected in an extremely crowded region (δ = 3.0–4.5) overlap-
ping with each other or with the signals of amino acid protons
close to the amino group. A powerful 2D‑NMR technique, total
correlation spectroscopy (TOCSY) or the Hartmann-Hahn experi-
ment (HAHAHA) provides information on unbroken chains of
coupled protons in the same molecule. For example, if anomeric
protons of carbohydrates are defined, the rest of the signals in the
crowded region can be easily assigned using the correlation in
the TOCSY spectrum.
All organic molecules have carbons as their chemical backbone.
The information on the carbons is thus crucial for structure eluci-
dation. In fact measurement of a 13C‑NMR spectrum is an impor-
tant, if not indispensable, step to elucidate the chemical structure
of a pure compound. However, the magnetically active 13C iso-
tope has too low a sensitivity for the application to the analysis
of the metabolome since the natural abundance of 13C is only
1.1% of 12C and its magnetogyric ratio one fourth of 1H. It results
in 1/57000 of the 1H sensitivity. Also, the long relaxation time of
13C requires a longmeasuring time in order to obtain quantitative
results. To overcome the low sensitivity of 13C heteronuclear cor-
relation techniques are used from which the information on 13C
chemical shifts is indirectly obtained.
Direct correlation between carbons and protons can be detected
by heteronuclear multiple quantum coherence (HMQC) or het-
eronuclear single quantum coherence (HSQC) which gives better
sensitivity than HMQC but needs phase correction. In both HMQC
and HSQC spectra any carbon attached directly to a proton is de-
tected, consequently the chemical shift of a 13C connected to a
specific proton can be obtained. The assignment of C-6 and C-8
of 5,7-dihydroxyflavonoids can easily be learned from the HMQC
spectra of the extract of aerial parts of Genista tenera. In the
HMQC spectra the unusual upfield-shift of those aromatic car-
bons compared to other aromatic carbons, caused by the adjacent
oxygen, confirmed the presence of 5,7-dihydroxyflavonoids [52].
Long-range correlations (two and three bonds) between carbons
and protons can be observed by heteronuclear multiple bond cor-
relation (HMBC) spectra. It is an extremely powerful tool for
structure elucidation since carbon-carbon correlations can be in-
directly obtained with the aid of HMQC or HSQC. In addition, cor-
relations between quaternary carbons like carboxylic acid and
nearby protons can be seen in the spectra. The long-range cou-
plings in HMBC spectra can give information on the connectivity
between two moieties which are connected only by quaternary
carbons or hetero atomes (e.g., O-glycosides). One of the advan-
tages of NMR-based metabolomics is that there are numerous
combinations of 2D‑NMR experiments that provide information
on structures by diverse correlations. Aiming at specific correla-
tions, enhancing resolution, or simplifying spectra HMBC-J-re-
solved [39], DOSY-selective TOCSY [53], 2D-J-DOSY [54] and
DOSY-HMQC [55] have been applied to the analysis of complex
mixtures. The combined HMQC (or HSQC)-TOCSY sequence ex-
periment leads to a 13C-edited TOCSY spectrum, and information
on all connectivities of carbons in each molecule in a mixture.
Application to Plant Products
!

Classification
NMR-based metabolic fingerprinting has been applied to diverse
fields of plant research. Classification and identification of adul-
teration of plant products are among the major interests. Using
NMR-based metabolic analysis, it was possible to discriminate
different species of plants. An example is the study of Ilex [17].
Eleven species of Ilex were analyzed and based on their metabo-
lites, each species could be discriminated, especially Yerba mate
(I. paraguariensis) from its adulterants. The contributingmetabo-
lites were arbutin, phenylpropanoids, caffeine and theobromine.
Caffeine and theobromine were only found in the I. paraguarien-
sis, whereas arbutin was found only in other species. The study of
flower heads of chamomile (Matricaria recutita) showed that this
technique can be applied to assess the relative amount of stalk
materials in the different batches of flowers [56]. Another exam-
ple of NMR analysis combined with PCA is the application to
characterize 3 different Strychnos species using different parts of
the plants (seeds, roots, leaves and barks). All samples were
clearly classified based on their metabolites such as brucine, loga-
nin, Strychnos icaja alkaloids (icajine, sungucine) as well as fatty
acids [57].
Twelve Cannabis sativa cultivars were discriminated by analyzing
the organic fractions and aqueous fractions. THCA and CBDA
were the most important metabolites in organic fractions, while
primary metabolites found in the water fraction such as glucose,
asparagine and glutamic acid served as discriminating metabo-
lites [15].

Quality control in traditional Chinese medicines
Traditional Chinese medicines (TCM) are often used as a mixture
of several plants, with a hardly defined composition. Even though
there are regulations for quality control, this is often restricted
only to a certain compound or group of compounds. NMR-based
metabolic fingerprinting combinedwith pattern recognitionmay
be a very good tool for the quality control of TCM. Chemotaxo-
nomic analysis including quality control issues was applied in
the study of Ephedra [19]. Ephedra is one of the oldest medicinal
plants known to mankind. However, 3 different species of Ephe-
dra, E. sinica, E. intermedia, and E. equisetina are commonly and
widely used without strict distinction as long as there is a certain
amount of ephedrine alkaloids (0.8% of dry weight). Using NMR-
based metabolic fingerprinting, it was possible to discriminate E.
sinica, E. intermedia and E. distachya.Not only the ephedrine type
of alkaloids, but also another secondary metabolite (benzoic acid
analogue) was found to be an important discriminating metabo-
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775



Fig. 2 Score plot of principal component analysis
of ginseng preparations using PC1 vs. PC2 (A) and
PC1 vs. PC3 (B). 1–3; commercial ginseng prepara-
tions. And loading plot of principal component
analysis of ginseng preparations. PC1 and PC2 (C)
and PC3 (D). 1, alanine; 2, arginine; 3, fumaric acid;
4, inositol; 5, sucrose; 6, acetate; 7, anomeric pro-
tons of sugars; 8, methyl protons of saponins
(adapted from [58] reproduced with permission of
Georg Thieme Verlag KG Stuttgart, New York).
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lite. Among nine tested commercial Ephedra materials, one was
shown to be the mixture of two species. There are several reports
on the discrimination of ginseng (Panax ginseng) preparations,
which is one of the most popular herbal medicines. The first re-
port [58] using NMR-based metabolomics approach showed the
differences in ginseng products, different ages (4, 5 and 6 years
old) and differently processed (white and red) (l" Fig. 2). PCA of
J-resolved 1H‑NMR spectra of three commercial ginseng prepara-
tions showed striking differences among the preparations
(l" Fig. 2A and B). Loading plots explained that alanine, arginine,
fumaric acid, inositol and ginsenosides are important metabo-
lites to differentiate preparations from each other (l" Fig. 2C and
D). Other studies also showed that this approach can be used for
the quality control of fresh ginseng roots of different ages [59]
and different origins [60]. Recently, another study for the quality
evaluation of TCM was reported by Tarachiwin and coworkers
[61]. A combination of an NMR technique and multivariate anal-
ysis showed the differences in two Angelica acutiloba roots,
A. acutiloba Kitagawa (yamato-toki) and A. acutiloba Kitagawa
var. sukiyamae Hikino (hokkai-toki), with regard to their geo-
graphical and variety origin.
Application of NMR to commercial preparations of Artemisia has
been reported recently by Van der Kooy et al. [62]. NMR analysis
combined with PCA showed clear differences between A. annua
and A. afra. A more targeted analysis combined with LC‑MS
showed that the content of artemisinin in the commercial prod-
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
ucts is different from the commercial claim. Other studies of
NMR-based methods were applied to the characterization of
crude extracts and commercial preparations, including feverfew
[63], Kava-kava [64], Artemisia [65] and St. Johnʼs wort [66]. The
details were reviewed in a recent review by Holmes [67].
MS-Based Metabolomics
!

Hyphenated chromatography-MS systems employed for meta-
bolomic fingerprinting consist of three parts. The first part is the
chromatographic separation section, used to separate complex
mixtures obtained from the plant material. The most commonly
used chromatographic systems are HPLC, GC or CE. The second
part consists of the ionization chamber were the molecules are
being ionized. Different ionization sources exist such as electron
ionisation (EI), electrospray ionization (ESI), atmosperic pressure
chemical ionization (APCI) and atmospheric pressure photoioni-
zation (APPI). Another ionization source being used, but not in
combination with flow-based systems, is matrix-assisted laser
desorption/ionization (MALDI). The third part consists of the MS
were the ionized molecules are being detected as their mass-to-
charge ratio. Themost commonly usedMS systems include single
quadrupole, triple quadrupole, ion trap and time-of-flight spec-
trometers. More advanced high resolution spectrometers include
the Orbitrap or the Fourier transform-cyclotron. For an in depth



Fig. 3 Metabolite profiling chromatograms ob-
tained by UPLC‑TOF‑MS of wounded and un-
wounded plants. In the inset, the comparison of the
m/z = 209, 237 and 263 is shown ([71] reproduced
with permission of Wiley-VCH Verlag GmbH & Co.
KGaA).
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review of ionization sources and mass spectrometers reference
[68] should be consulted. There is little difference in the sample
preparation and data handling between MS-based and NMR-
based technologies, although the solvents being used differ be-
tween the two analytical systems. NMR makes use of deteurated
solvents while MS uses non-deteurated solvents.

Sample preparation and extraction
Various authors have made use of targeted extraction methods in
order to extract and analyze a specific group of components. Gar-
cia-Villalba et al. [69] used various solvents to extract a major
number of compounds from soybean seeds in a comparative
study between transgenic and conventional soybeans. The sol-
vents tested for their extraction efficiency included: aqueous
methanol (60, 80, 90 and 100%, v/v), aqueous ethanol (60, 80, 90
and 100%, v/v), ethyl acetate and aqueous acetonitrile (70 and
100%, v/v). An alternative extraction procedure was also tested
by removing the fat (mainly phospholipids) with hexane prior to
the extraction. They concluded that 80%methanol resulted in the
highest number of metabolites extracted. In a study to compare
the phenolic content between the leaves, stems, roots and fruits
of Vaccinium angustifolium, 95% ethanol was used as extraction
solvent [70]. Grata et al. [71] used 50mg of lyophilized leaf tis-
sues and extraction with isopropyl alcohol using a ball mill in a
case study of the wound response in Arabidopsis thaliana.
l" Fig. 3 illustrates the UPLC‑TOF‑MS chromatograms obtained
from the wouded plants in comparison to the control plants.
Vorst et al. [72] studied a non-directed unbiased total extraction
of metabolites from tubers (Solanum tuberosum). The material
was ground to a fine powder in liquid nitrogen. Extracts of 0.5 g
frozen powder with 2mL 62.5% methanol, 0.125% formic acid in
water at 0°C were prepared in duplicate. After immediate mix-
ing, the extracts were sonicated for 10min, spun down (10min
at 1000 g) and filtered through a 0.2 µm inorganic filter. Recently
another extraction protocol for a untargeted metabolomic ap-
proach for plant metabolomics was published [73], based on re-
versed-phase liquid chromatography coupled to high-resolution
mass spectrometry (LC-QTOF MS) of aqueous methanol extracts.
It can be concluded that no single extraction solvent will be able
to extract all metabolites present. This limitation holds unfortu-
nately true for all analytical procedures including NMR-based
metabolite fingerprinting.

Sample analysis
The most important limitations of MS-based methods are the in-
herent lack of ionization of certain components. Ionized compo-
nents can be identified and quantified at very low quantities
making the MS a very sensitive analytical tool for metabolic fin-
gerprinting. The lack of ionization and therefore the inability to
quantify or identify components that do not ionize limits the
use of MS to the more targeted metabolic profiling techniques.
Various probes are being employed to overcome this inherent
ionization problem in order to increase the dynamic range of
components that can be detected with the use of MS. Other limi-
tations of MS-based technologies are that the equipment needs
to be calibrated regularly and fragmentation of molecules occurs
which complicates the mass spectra. Fragmentation does how-
ever lead to structural information which in turn leads to identi-
fication of unknown components with the use of MS‑MS-based
technologies.
Samples prepared for MS analysis are usually separated chroma-
tographically before the separated compounds are analyzed with
the MS. Separation technologies employed largely make use of
GC [74,75], HPLC [70,76], and capillary electrophoresis (CE) [69,
77,78]. These technologies are either employed to obtain a tar-
geted chemical fingerprint of a specific plant extract or as an un-
targeted technique in order to quantify and identify as many me-
tabolites as possible in a plant tissue.
APCI and ESI are the most frequently used with HPLC chromatog-
raphy as the separation step. These probes are known as “soft
ionization” probes, while the detector used with these probes is
usually the ion trap or the single quadrupole detector [70,79–
81]. EI ionization, also known as “hard ionization”, is more fre-
quently employedwith GC as the chromatography step. More ad-
vanced MS technologies and also the more expensive technolo-
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775



Fig. 4 The total ion current (TIC) chromatograms of 34 GC‑MS data of
fresh medicinal materials of Houttuynia cordata collected from four repre-
sentative planting areas in China ([74] reproduced with permission of
Elsevier B.V.).
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gies employed to conduct metabolic fingerprinting include the FT
Cyclotron MS [82,83] and time of flight MS [76,78].

Data handling
Due to the inherent variation and reproducibility problems asso-
ciated with any chromatography technique, the generated data
should be aligned before any data reduction techniques such as
PCA or PLS can be employed. Alignments are used to reduce the
variation in retention times between samples. Dedicated soft-
ware, such as MetAlign, is used for the alignment of chromato-
graphic peaks, automated baseline correction and alignment of
all mass peaks across all samples. Subsequent statistics and bio-
informatic tools can be used to provide a detailed view on the
differences and similarities between samples or to link meta-
bolomics data to other systems biological information [73]. Dur-
ing another study and with the use of the software “Similarity
Evaluation System for Chromatographic Fingerprint of TCM”,
nine common peaks were identified which were used to evaluate
13 batches of Baishi samples from different provinces in China
[84]. Various other processing software systems are currently
available which aim at reducing variation between sample sets
and to extract as much information as possible from the raw data
sets. GC‑MS data were processed by [85] with MATLAB software
7.1 (Mathworks) while [86] used MET-IDEA to process data gen-
erated by GC, LC or CE chromatography in combination with MS
systems.
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Applications of Chromatography-MS for
Quality Control of TCM
!

Chromatography-MS technologies are mainly employed in a tar-
geted approach when the quality control of TCM products is in-
volved. Kang et al. [84]. used an HPLC‑PDA‑ESI‑MS for the chro-
matographic fingerprinting of furocoumarins in the roots of An-
gelica dahurica. A novel and sensitive HPLC‑DAD‑ESI/MS method
has been developed by Su et al. [87], for the simultaneous deter-
mination of five major flavonoids in Hypericum japonicum hy-
droalcoholic extracts. Fingerprinting of TCM is also used to iden-
tify substances illegally mixed into TCM preparations. Liu et al.
[88] identified aminophyline and prednisone acetate mixed ille-
gally in TCM preparations. Li et al. [89] developed an approach
with the use of HPLC/DAD and GC/MS in order to fingerprint
aporphinoid and quinolizidine alkaloids of the total alkaloids
from Caulophyllum robustum. The results were used to construct
binary chromatographic fingerprints of the total alkaloids. Arte-
misia annua is a potent antimalarial herbal drug. This activity is
ascribed to artemisinin, a sesquiterpene lactone that is very effec-
tive against drug-resistant Plasmodium species with a low toxic-
ity. As a consequence, in view of a possible use of the phytocom-
plex rather than pure artemisinin, an HPLC/DAD/MSmethod was
proposed for the simultaneous detection and quantification of
both flavonoids and artemisinin. Jensen et al. [90] developed a
LC‑MS-APCI method in order to evaluate the composition of ac-
tive constituents in phytopharmaceutical preparations. Several
commercial ginkgo preparations on the Swiss market were ana-
lyzed, and the ginkgolide and bilobalide contents were evaluated.
In another study a comparative analysis of the flavonoid compo-
nents of the leaves of two medicinal plants known in Brazil as
“espinheira santa”, namely, Maytenus ilicifolia and M. aquifolium
and a hybrid plant, M. aquifolium × M. ilicifolia, has been carried
out using HPLC coupled with PDA‑MS. By combining efficient LC
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
separation and ESI-multiple stage mass spectrometry (ESI‑MSn)
with UV detection, performed both with and without the post-
column addition of shift reagents, the on-line identification of
minor flavonoids inMaytenus extracts could be readily achieved.
Fingerprint analysis of the flavonoid extracts revealed significant
differences in the profiles of the twoMaytenus species, while the
hybrid plant contained flavonoids found in both parent species
[91]. Bruni et al. [92] examined the qualitative and quantitative
phytochemical variations in the dried flowering tops of culti-
vated Hypericum perforatum infected by phytoplasmas of the
“ash yellows” class. Methanolic extracts of healthy and infected
plants were separated by RP-HPLC to quantify naphthodian-
thrones and flavonoids, while essential oils were analysed by
means of GC/MS. The affected plants exhibited decreased
amounts of rutin, hyperoside, isoquercitrin, amentoflavone and
pseudohypericin whereas the chlorogenic acid content was
doubled. The essential oil yield was drastically reduced in in-
fected material and revealed an increased abundance of sesqui-
terpenes and a matching decrease in monoterpene hydrocarbons
and aliphatics. The consequences of the phytopathological condi-
tion of cultivated H. perforatum plants on the commercial quality
were further outlined. Zeng et al. [74] employed GC‑MS to devel-
op a quality control method on thirty-four samples of medicinal
materials of Houttuynia cordata collected from four different
areas. l" Fig. 4 illustrates a comparison of the total ion chromato-
grams of the 34 samples analyzed by GC‑MS.
Trends
!

The greatest challenge that metabolomics studies face is metabo-
lite differentiation and identification. Technical advances of cur-
rent analytical tools are promising in this perspective. NMR is the
tool traditionally utilized by natural products chemists for struc-
ture elucidation. The major limitation of NMR is its rather low
sensitivity when compared to other analytical methods. Recently



Fig. 5 Conventional LC × LC set-up using one multi-port switching valve
between the two dimensions ([122] reproduced with permission of Elsevier
B.V.).
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developed probes for high-resolution NMR, such as cryoprobes
and capillary NMR, help to increase the sensitivity threshold of
the technique. CryoNMR aims to limit the receiver coil noise and
to improve the coil quality factor by cooling the receiver coil and
the preamplifiers to 25 K or below. With the use of cryogenically
cooled probes the detection sensitivity of NMR is at least 3- to 4-
fold enhanced in comparisonwith conventional probes operating
at the same magnetic field [93]. Capillary NMR takes advantage
from the use of small diameter radiofrequency (RF) coils for
mass-limited samples (usually in the order of nanomole quanti-
ties). By decreasing the diameter of the receiver coil, the signal-
to-noise (S/N) ratio improves [94]. Both cryoNMR and capNMR
are very promising analytical approaches for metabolic finger-
printing studies.
The importance of “chemically characterizing” the metabolic
compounds has been pointed out by Kopka as one of the main
goals for any further development of the metabolomics approach
[95]. As no single analytical technique is suitable for the detection
and identification of all the metabolites in a biological sample,
the most common strategy to clean up or isolate and structurally
identify metabolites is to combine chromatographic techniques
to MS or/and NMR spectroscopy. The resulting hyphenated
methods, such as various HPLC‑NMR techniques, are succesfully
applied to natural products research. An off-line solid phase ex-
traction may sometimes be required to partially purify or con-
centrate the analytes [96,97]. Pioneering in the field of medicinal
plants were Hostettmann, Wolfender and coworkers, who since
the late 1990s have applied continuous and stopped-flow
HPLC‑NMR for the investigation of many natural products [98–
102], and many other publications as reviewed by Jaroszewski
[103]. More recently Wolfender and coworkers developed hy-
phenated methods for non-targeted metabolome profiling of mi-
nor metabolites from plant extracts [104,105]. The strategy is
based on ultra-performance liquid chromatography-time-of-
flight mass spectrometry (UPLC‑TOF‑MS). UPLC is a newly devel-
oped analytical technique that seems to be very promising in
metabolic fingerprinting and metabolomics studies. The method
is based on the use of very small particles (1.7 µm) at elevated
pressure, thus achieving superior theoretical plate numbers and
resolution in a short time of analysis and with less solvent con-
sumption [106,107]. When applied to natural products analysis,
UPLC revealed great advantages in comparison to standard HPLC
[108–110]. The combination of the technique with mass spec-
trometry has been applied for the analysis of biological fluids,
achieving very high resolution and sensitivity with the concur-
rent advantage of reduced separation speed [111–114]. A first at-
tempt at using UPLC‑MS for the differentiation of complex herbal
mixtures was done by Jacob et al. [115]. The author applied
UPLC‑MS in combination with chemometrics tools for a chroma-
tographic fingerprinting of 24 different Chinese medicinal herbs.
The aimwas to detect toxic compounds (aristolochic acids) in the
multiherbal preparations of the traditional Chinesemedicine. MS
is often chosen as detection method coupled to UPLC, but this re-
quires a sample preparation (e.g., pretreatment with solid phase
extraction or liquid-liquid extraction) that is considered the rate-
limiting factor of the method [107].
Another advanced liquid chromatographic technique that has
been applied only a few times in metabolic fingerprinting is the
hydrophilic interaction chromatography (HILIC). Themethod uti-
lizes hydrated silica columns and eluting systems that aremoving
from high organic solvents miscible with water to high aqueous
solvents. Water forms stagnant water layers on the stationary
phase surface and the polar compounds are partitioned in this
system [116]. The method is applicable to the analysis of hydro-
philic compounds that are subjected to high retention by the col-
umn. Tolstikov and Fiehn applied HILIC chromatography coupled
tomass detectors for the analysis of plant extracts [117] and later
for a comprehensive analysis of urine [118]. Oligosaccharides,
glycosides, amino sugars, amino acids, and sugar nucleotides
were detected in the phloem exudates from Cucurbita maxima
leaves by the authors. In order to cover a wider metabolome
range, Dunn proposed that HILIC chromatography should be con-
nected with reverse-phase liquid chromatography [119].
Although the mentioned enhanced liquid chromatographic tech-
niques have been developed, the peak resolution is still the limit-
ing factor when LC is chosen for comprehensive metabolic profil-
ing. The introduction of a second dimension has proved to be a
powerful strategy although, up to now, it has been mainly ap-
plied in proteomics [120,121]. When multidimensional chroma-
tography is applied, the sample is subjected to two analytical sep-
arations, which are columnswith orthogonal properties based on
different selectivities. A combination of 2D liquid chromatogra-
phy (Ag-LC × RP‑LC) and a mass spectrometric detection method
(APCI‑MS) was applied for a comprehensive analysis of triacylgly-
cerols in commercial natural oil by Dugo and coworkers. l" Fig. 5
illustrates a conventional LC × LC set-up which was used during
the analysis [122]. The analytes were clustered in groups in the
2D space thus facilitating their classification, and they were iden-
tified on the basis of the APCI-mass spectra. However, the meth-
od still suffers of some limitations such as mobile phase immisci-
bility, precipitation of buffer salts and incompatibility of station-
ary phase [123].
Analogously to two-dimensional liquid chromatography, also gas
chromatography has seen the development of GC × GC for the
analysis of targeted and/or unknown volatile compounds present
in a mixture. The separation efficiency is highly increased espe-
cially for very complex samples. Advantages are the fast acquisi-
tion time of the technique, andwith the use of the second dimen-
sion the problem of co-elution is in most of the cases reduced.
Compared to one-dimensional GC, the sensitivity of the chroma-
tographic technique is much enhanced (trace levels of com-
pounds are detected) and chemically similar compound patterns
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
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are created with a major advantage for the identification of un-
known compounds [124]. The combination of the GC × GC system
with a mass spectrometer represents a very comprehensive tool
for the analysis of complex mixtures. Only a limited number of
applications of this platform have been reported so far. The two-
dimensional gas chromatography technique coupled with quad-
rupole mass spectrometric detector (GC × GC‑qMS) was em-
ployed by Shellie and coworkers for the metabolic differentiation
of Pelargonium graveolens essential oils [125] and of semi-vola-
tile oils from roots of three different ginseng species [126]. Very
high efficiency was obtained, with mass spectra of high quality
that facilitated the identification of separated metabolites by
matching the results with available libraries. The same authors
applied a GC × GC approach coupled to time-of-flight MS (GC ×
GC‑TOF‑MS) for a metabolomic study of mammalian tissues
[127]. The TOF‑MS detector has the advantage of an efficient
spectral deconvolution of partially resolved GC × GC elutes that
gives more structural information. In the study of Shellie and col-
leagues, the technique led to the detection of more than 1200
compounds, with a number of peaks characterized by high “ana-
lytical purity” that was increased by a factor of seven when com-
pared to the classical one-dimensional GC‑TOF method. The au-
thors could structurally characterize only 10% of all the detected
compounds. Nevertheless, the method showed to be effective for
the determination of somemetabolomic biomarkers of obese and
lean mice. Hope and coworkers demonstrated the importance of
using tandem GC in combination with a TOF mass spectrometer
for the analysis of complex samples, such as metabolic extracts
from perennial rye grass for an evaluation of the pre- and post-
harvest physiology of the samples [128]. This was a very early-
stage study of GC × GC‑TOF‑MS applied to plants for the purpose
of metabolomic studies. The results of the analysis were limited
only to one single identified compound (malic acid) but the
method showed to have advantages of enhanced resolution and
increased speedwhen comparedwith 1D chromatography. In an-
other metabolomic-based study of plants a combination of GC ×
GC-TOFMS and principal component analysis (PCA) was applied
to chemically differentiate the extracts from basil, peppermint,
and stevia. The regions of interest, as resulted from the PCA, were
further deconvoluted by the use of the chemometric technique
parallel factor analysis (PARAFAC) and the interesting analytes
were quantified [129]. The GC × GC technique is a promising tool
and it is expected to gain a much wider distribution.
However, analytical progresses will not lead to any improvement
in the field of metabolomics science if we do not consider also
other points of view. Metabolomics “happens” within each cell,
and the tissues that are the object of our investigation at the mo-
ment are made of several cell types [130]. The next generation of
plant metabolome scientists must focus on the cellular and even
subcellular compartmentation of metabolism. Researchers have
started looking into the metabolomics of single cells with the
use of laser microdissection (LMD). In combination with
GC‑TOF‑MS analysis the technique has been applied for the first
time to a comprehensive metabolic fingerprinting of vascular
bundles of Arabidopsis after the choice of cryosectioning the tis-
sue as pretreatment procedure [131]. The study led to the identi-
fication of 68 metabolites. For more than half of them the authors
could demonstrate whether they were enriched or depleted in
vascular bundles. LMD has also been successfully used in combi-
nation with cryoprobe NMR for the analysis of specialized cells
from the floral and leaves tissues of Dilatris spp. coming from dif-
ferent herbarium specimens [132]. The phytochemical pattern of
van der Kooy F et al. Quality Control of… Planta Med 2009; 75: 763–775
LMD-derived samples was compared with that of whole leaf ex-
tracts and some secondary metabolites were identified and con-
nected with the specific cells. The study revealed the potential of
the method in chemotaxonomic applications even of plants that
are difficult to raise or to obtain. The same kind of approach, in
combination with mass spectrometric measurements (LMD/
NMR/MS) was carried out on the stone cells of Norway spruce
bark [133].
The next point that must be considered is that metabolism takes
place as a network happening within very short time fractions
(<msec), and not as individual pathways. It seems thus more
realistic to describe the metabolome of a tissue (or a cell) not as
a single snapshot, but measuring the actual metabolic flux.
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