
Abstract
!

Somatic stem cells can be found in many rapidly
regenerating tissues, e.g., the skin, gastrointesti-
nal mucosa, and hematopoietic system, but are al-
so present at low numbers in non-regenerative
organs such as the heart and brain. In these or-
gans, somatic stem cells aid in normal tissue ho-
meostasis and repair after injury as well as self-
renewal and the generation of specific progenitor
cells during differentiation. Cancer stem-like cells
are a small subpopulation of self-renewing cells
that are able to proliferate upon appropriate stim-
ulation and differentiate into heterogeneous line-
ages in tumors. Modulation of the behavior of
normal tissue stem cells and cancer stem-like
cells is an emerging and thriving new field of re-
search. The present review gives an overview of
the state-of-the-art findings and highlights per-
spectives for future scientific developments and
clinical application.
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HCC: hepatocellular carcinoma
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iPSC: induced pluripotent stem cells
JAK: Janus activated kinase
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Embryonic Stem Cells and Pluripotent
Adult Stem Cells for Tissue Regeneration
!

Somatic stem cells can be found in many rapidly
regenerating tissues, e.g., the skin, gastrointesti-
nal mucosa, and hematopoietic system, but are al-
so present at low numbers in non-regenerative
organs such as the heart and brain. They function
in maintaining normal tissue homeostasis and in
tissue repair after injury as well as self-renewal
and the generation of specific progenitor cells
during differentiation. If needed, somatic stem
cells can switch from a quiescent state to a highly
Ef
proliferative state, differentiate to functionally
mature cells and replace other differentiated cells
during physiological tissue turnover [1–4].
One of the most promising applications of stem
cell biology is tissue regeneration. The concept is
to differentiate stem cells into specific tissue and
cell types in order to treat neurodegenerative dis-
eases, muscular diseases, diabetes, and others.
The challenge in regenerative medicine is the tar-
geted differentiation of stem cells into the desired
cell type. Embryonic stem cell-like induced plu-
ripotent stem cells (iPSC) can be generated by in-
ducing expression of defined transcription fac-
ferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942
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tors. The expansion and differentiation of stem cells takes place in
vitro in cell cultures using cocktails of growth factors and natural
or synthetic small molecules, which regulate crucial signaling
pathways of stem cell differentiation [5]. Current protocols are
based on embryonic stem cells (mainly derived from aborted fe-
tuses) or adult stem cells (i.e., hematopoietic stem cells derived
from bone marrow) [6].
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Cancer Stem-like Cells and Their Role in Cancer Therapy
!

Cancer stem cells are small populations of self-renewing cells
with the ability to proliferate upon appropriate stimulation and
differentiate to heterogeneous lineages in tumors [7]. The term
“cancer stem cells” is merely an operational term. Cancer stem
cells do not necessarily derive from normal stem cells nor are
they multipotent [8,9]. Hence, cancer stem cells may not show
lineage-dependent cell differentiation. Therefore, terms such as
“cancer-initiating cells” or “cancer stem-like cells” are more ap-
propriate than “cancer stem cells”.
Cancer stem-like cells are characterized by clonal expansion that
initiates and sustains tumor growth in vivo. Cancer stem-like cells
should not be confused with the cell of cancer origin, which is the
very first malignantly transformed cell [10]. Cancer stem-like
cells can originate from normal stem cells or progenitor cells after
acquisition of tumor-initiating mutations [11,12]. It remains a
matter of discussion whether cancer stem-like cells can be de-
rived only from normal stem cells [13,14], or if they can also be
derived frommature cells that are dedifferentiated or transdiffer-
entiated, which is regulated by genetic and epigenetic factors [9,
15].
There is much debate about the identification of cancer stem-like
cells, and a variety of different cellular markers have been pro-
posed to differentiate between cancer stem-like cells and the
general population of cancer cells within a tumor. Putative
markers of high relevance include the cell surface protein CD34
and the glycosylated isoform of CD133/prominin [16]. Another
marker, e.g., in breast cancer, is the hyaluronic acid binding re-
ceptor CD44 which controls cell-cell interactions and is involved
in cross-talk between cancer stem-like cells and their microen-
vironment [17–19]. CD44+/CD24- cells are associated with breast
cancer metastasis to distant sites [20]. CD24 inhibits CXCL12-
CXCR4-mediated migration of cells. Loss of CD24 expression,
therefore, fosters invasion and metastasis [21]. However, these
markers are not exclusively expressed by cancer stem-like cells,
but rather are also expressed on normal cells. Furthermore, can-
cer stem-like cells have been identified that lack these markers
[22].
The development of resistance represents a major obstacle to
successful cancer therapy. Current protocols in radio- and che-
motherapy are able to remove bulk cancer tissue. However, ther-
apy-resistant cancer stem-like cells may survive and resume
growth at a later time, leading to disease recurrence and metas-
tasis. This phenomenon, termed minimal residual disease, has
been known for many decades. Cancer stem-like cells may be
able to survive radio- and chemotherapy by adopting a non-pro-
liferative, dormant state [23,24]. Even after years, cancer stem-
like cells can be reactivated and lead to refractory disease [25,26].
Cancer stem-like cells often reside in niches within tissues where
they are shielded against the stresses of chemotherapy [27–29].
Efferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942
Hypoxic areas serve as niches, and hypoxic tumors are known to
be radio- and drug-resistant [30]. Furthermore, hypoxic areas are
less vascularized than oxygenated ones. Therefore, antiangiogen-
ic treatment approachesmay affect the niches of cancer stem-like
cells [31].
Several mechanisms of drug resistance have been found in cancer
stem-like cells:
" High expression levels of drug transporters of the ATP-binding

cassette (ABC) type, particularly ABCB1/MDR1/P-gp and
ABCG2/BCRP, especially in side populations [32–34]

" Highly efficient DNA repair [35]
" Resistance to commit programmed cell death (apoptosis) [36]
" Quiescence. Non-proliferating cells are generally more resis-

tant than proliferating ones.
" Decreased immunogenicity [36].
Activity of Natural Products On Embryonic Stem Cells
!

Several laboratories have screened small molecule libraries for
compounds that promote embryonic stem cell differentiation.
Embryonic stem cells (ESCs) are an attractive source of cells for
disease modeling in vitro and may eventually provide access to
cells/tissues for the treatment of degenerative diseases. Staupri-
mide, a staurosporine derivative, primes ESCs for efficient differ-
entiation through a mechanism that affects expression of the
transcription factor and oncogene, c-Myc [37]. Staurosporine is a
known kinase inhibitor [38].
Retinoic acid acts by binding to nuclear receptors and inducing
transcription of specific target genes during embryonic stem cell
and embryonic carcinoma differentiation. The standard murine
EC cell line F9 can be induced by retinoic acid to differentiate into
primitive, parietal, and visceral endodermal cells. Another EC cell
line, P19, differentiated into endodermal and neuronal cells upon
retinoic acid treatment [39].
Butyrate, a natural small fatty acid and histone deacetylase inhib-
itor, significantly increased the efficiency of mouse iPSC genera-
tion using the transcription factors Oct4, Sox2, Klf4, and c-Myc.
Butyrate not only changed the reprogramming dynamics by re-
ducing the frequency of partial reprogramming and transforma-
tion, but also increased the ratio of iPSC colonies to total colonies.
This effect was mediated by c-Myc during early stages of repro-
gramming [40].
Epidemiological evidence indicates that fruits and vegetables
possess chemopreventive activity against cancer. Therefore, it is
possible that natural products may selectively target cancer stem
cells and induce differentiation. Reynertson et al. [41] used an al-
kaline phosphatase stain to assay plant extracts for the ability to
induce differentiation in embryonic stem cells. Alkaline phospha-
tase is a characteristic marker of undifferentiated embryonic
stem cells. The authors investigated approximately 100 fractions
obtained from 12 species of ethnopharmacologically used plants
and found fractions from 3 species that induced differentiation,
decreasing the levels of alkaline phosphatase and pluripotency
marker transcripts (Nanog, Oct-4, Rex-1). These fractions af-
fected proliferation of murine embryonic stem cells, human em-
bryonic cells, and prostate and breast carcinoma cells in a con-
centration-dependent manner. The isolated ellagic acid and gallic
acid were cytotoxic towards cultured breast carcinoma cells.
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Effects of Natural Products On Pluripotent Adult
Stem Cells
!

Reprogramming of pluripotent adult stem cells
Vitamin C enhanced iPSC generation from both mouse and hu-
man somatic cells at least in part by alleviating cell senescence,
an important roadblock to reprogramming. In addition, vitamin
C accelerated gene expression changes and promoted the transi-
tion of pre-iPSC colonies to a fully reprogrammed state [42].

Hematopoietic stem cells in high-dose chemotherapy
Hematopoietic stem cell transplantation is employed in oncology
mainly for treatment of lymphoproliferative disorders and leuke-
mia. Multipotent hematopoietic stem cells derived from bone
marrow, peripheral blood stem cells, or umbilical cord blood are
preserved before the patient is subjected to high doses of ablative
chemotherapy in which tumor cells and normal proliferating
hematopoietic cells are destroyed. Reinfusion of hematopoietic
stem cells induces repopulation of the bone marrow and recon-
stitution of the blood.
The Kampo (Japanese herbal) extract TJ-48 accelerated recovery
from hematopoietic injury induced by radiation and the anti-
cancer drug mitomycin C. The active fraction of TJ-48 is com-
posed of free fatty acids (oleic acid and linolenic acid). Among a
panel of 27 different free fatty acids, oleic acid, elaidic acid, and
linolenic acid showed potent activity on hematopoietic stem
cells. The administration of oleic acid to mitomycin C-treated
mice enhanced spleen colony forming units (CFU‑S) counts to
twice those of the control group when counted on days 8 and
14, suggesting that the fatty acids contained in TJ-48 actively pro-
mote the proliferation of hematopoietic stem cells [43].
Bo-jung-bang-dock-tang (BJBDT) is a medicinal herbal cocktail
that has been used for cancer prevention and treatment in tradi-
tional Korean medicine. Lim et al. [44] suggested that BJBDT can
enhance hematopoiesis via the hematopoietic cytokine-mediated
JAK2/STAT5 pathway. BJBDT significantly increased expression of
the hematopoietic cytokines interleukin (IL-3), stem cell factor
(SCF), granulocyte-macrophage-colony stimulating factor
(GM‑CSF), thrombopoietin (TPO), and erythropoietin (EPO) at
the level of mRNA and secretion in hematopoietic stem cells
(HSCs). Additionally, BJBDT enhanced the phosphorylation of Ja-
nus activated kinase 2 (JAK2) and the signal transducer and acti-
vator of transcription 5 (STAT5) as well as STAT binding to γ-in-
terferon activated sites (GAS) in HSCs. Furthermore, BJBDT signif-
icantly enhanced the growth rate of granulocyte erythrocyte
monocyte macrophage colony-forming units (CFU-GEMM) and
erythroid burst forming units (BFU‑E) in vitro. Moreover, BJBDT
increased EPO at the mRNA level in the kidney and plasma. It also
increased the number of erythroid-specific antigen Ter-119(+)
erythroid cells in mice with aplastic anemia induced by 20% ben-
zene. Consistently, histochemical staining revealed that BJBDT in-
creased the bone marrow and stromal cell populations and de-
creased macrophage and adipocyte populations in bone marrow
tissue of mice with aplastic anemia.
Ka-mi-kae-kyuk-tang (KMKKT) is an Oriental herbal medicinal
cocktail that has demonstrated antiangiogenic, anticancer, and
antimetastatic activities without considerable side effects in pre-
clinical animal models. Seo et al. [45] investigated whether
KMKKT alleviated cancer chemotherapy-induced leukopenia or
other hematotoxicities in vivo using a mouse model. KMKKTwas
given orally once daily for 10 days to the mice before they were
given daily injection of cyclophosphamide (CPA) for 4 days.
KMKKT ameliorated the CPA-induced decrease in red blood cells,
hemoglobin content, and total white blood cell/leukocyte counts.
Examination of multiple organ sites involved in hematopoiesis
and lymphocyte differentiation and maturation revealed that
the changes induced by CPA had been attenuated in each and
every type of cell examined. Some cell types in the bone marrow
were fully restored. In particular, bone marrow stem cells in the
Sca-1(+), CD117(+), Sca1(+)/CD117(+), and CD34(+)/CD117(+)
mice were overstimulated, supporting a role for KMKKT in stim-
ulating hematopoietic stem cell (HSC) signaling to compensate
for CPA-induced destruction of leukocytes and other cell types.

Pluripotent stem cells of normal tissue in cancer therapy
Multiple myeloma is characterized by the accumulation of clonal
malignant plasma cells in the bone marrow, which stimulates
bone destruction by osteoclasts and reduces bone formation by
osteoblasts. In turn, the altered bone microenvironment sustains
survival of myeloma cells. A major challenge in treating multiple
myeloma is discovering drugs that target not only myeloma cells
but also osteoclasts and osteoblasts. Resveratrol promotes the ex-
pression of osteoblast markers like osteocalcin and osteopontin
in human bone marrow mesenchymal stem cells (hMSC-TERT)
in a concentration-dependent manner and stimulates their re-
sponse to 1,25(OH)2 vitamin D3 [1,25(OH)2D3] [46]. Moreover,
resveratrol upregulates the expression of 1,25(OH)2D3 nuclear
receptor in a concentration-dependent manner.
PHY906 is a formulation of four herbal compounds traditionally
used to treat nausea, vomiting, cramping, and diarrhea. Irinote-
can is an established anticancer drug, but like many anticancer
drugs, one of its major side effects is diarrhea. The administration
of PHY906 with irinotecan in a mouse model of colon cancer re-
sulted in a synergistic reduction in tumor burden, enhanced
maintenance of body weight, and stem cell regeneration in the
intestinal mucosa [47]. PHY906 did not protect against the initial
DNA damage and apoptosis triggered by irinotecan in the intes-
tine, but by 4 days after irinotecan treatment, PHY906 had re-
stored the intestinal epithelium by promoting the regeneration
of intestinal progenitor or stem cells via several Wnt signaling
components. PHY906 also potentiated Wnt3a activity in human
embryonic kidney-293 cells. Furthermore, PHY906 exhibited
anti-inflammatory effects in mice by decreasing infiltration by
neutrophils and macrophages, upregulating tumor necrosis fac-
tor-α expression in the intestine, and increasing proinflamma-
tory cytokine concentrations in plasma. Chemical constituents
of PHY906 potently inhibited nuclear factor κB (NFκB), cyclooxy-
genase-2, and inducible nitric oxide synthase. Our results show
that the herbal medicine PHY906 can counteract the toxicity of
irinotecan via several mechanisms that act simultaneously.
Effects of Natural Products On Cancer Stem-Like Cells
!

Cancer stem cells give rise to the tumor bulk through continuous
self-renewal and differentiation. Understanding the mechanisms
that regulate self-renewal of cancer stem-like cells and the points
at which there is potential for intervention by natural products is
of greatest importance in the discovery of anticancer drugs tar-
geting cancer stem cells (l" Table 1). Relapse in cancer is mostly
due to the proliferation of cancer stem cells that could not be
eliminated by standard chemotherapy.
Efferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942



Table 1 Effects of natural products towards cancer stem-like cells.

Natural product Cell type Effect Reference

Curcumin, sulforaphane, soy isoflavone, epigallo-
catechin-3-gallate, resveratrol, lycopene, piperine,
vitamin D(3)

breast cancer stem-like cells signal pathways
(Wnt/β-catenin, Hedgehog, Notch)↓

[48]

Curcumin C6 brain tumor cells
(side population)

side population↓ [58]

Resveratrol mammospheres apoptosis, DAPK2, BNIP3 and
lipid synthesis↓, fatty acid synthase↓

[52]

Resveratrol medulloblastoma stem-like cells proliferation↓, radiosensitivity [57]

Z-guggosterole murine breast cancermetastases CD44 positive cells↓,
apoptosis markers (caspase-3, ceramide)↑

[49]

Pomegranate extract murineWA4
MMTV‑Wnt-1 breast tumors

G0/G1 cell cycle arrest,
caspase-3, apoptosis

[50]

Ellagic acid, ursolic acid luteolin sulphoraphane breast cancer stem-like cells
(xenograft tumors)

proliferation and viability↓,
Wnt/β-catenin pathway↓,
aldehyde dehydrogenase-positive cells↓

[51]

All-trans retinoic acid breast cancer stem-like cells G0/G1 cell cycle arrest, cellular differentiation [53]

Clostridium perfringens enterotoxin ovarian cancer stem-like cells in
vitro and in vivo

proliferation of CD44- and claudin-4 positive cells↓ [54]

Lupeol CD133 positive hepatocellular
carcinoma cells

CD133 expression↓,
tumorigenicity in nudemice↓

[55]

Gossypol prostate cancer in vitro and in vivo DNA damage, p53 activation, apoptosis [56]

Eckol glioma stem-like cells in vitro and
in vivo

CD133 cell population↓,
PI3K/AKT and Ras/Raf/Erk signaling pathways↓,
anchorage-independent growth↓,
xenograft growth↓, drug and radio resistance↓

[59]

Parthenolide myeloma preferential toxicity to stem-like cells [60]

Grapholide stem-like cells

Cantharidin primary acutemyeloic leukemia
stem and progenitor cells in vitro

cytotoxicity [61]

Rakicidin A hypoxia-adapted chromic myeloic
leukemia stem-like cells

apoptosis,
synergistic interaction with imatinib

[62]
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Breast cancer
Several dietary compounds including curcumin, sulforaphane,
soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene,
piperine, and vitamin D(3) have been identified as having a direct
or indirect effect on self-renewal pathways (Wnt/β-catenin,
Hedgehog and Notch) [48]. Curcumin and piperine have been
demonstrated to target breast cancer stem cells. Sulforaphane
has been reported to inhibit growth of pancreatic tumor-initiat-
ing cells as well as breast cancer stem cells. These studies provide
a basis for preclinical and clinical evaluation of dietary com-
pounds for chemoprevention against cancer stem cells.
The cancer stem cells play a critical role in both initiation and re-
lapse, as they are resistant to most cytotoxic agents and are able
to proliferate indefinitely. Krishnamurthy et al. [49] found that
the bile acid sodium deoxycholate increased the number of intes-
tinal metastases generated from murine mammacarcinoma 4 T1
tumors. The metastatic nodes contained slowly dividing cancer
cells in the immediate vicinity of newly formed blood vessels.
These cells were positive for CD44, a biomarker for breast cancer
stem cells. Deoxycholate promoted survival of CD44+ cells and
concurrently reduced levels of activated caspase-3 as well as cer-
amide, a sphingolipid that induces apoptosis in 4 T1 cells.
Z-guggulsterone, an antagonist of the farnesoid-X-receptor, oblit-
erated this anti-apoptotic effect, indicating that deoxycholate in-
creased cell survival via the farnesoid-X-receptor. Deoxycholate
also increased expression of the gene coding for the vascular en-
dothelial growth factor receptor 2 (Flk-1) in tumor cells, suggest-
ing that deoxycholate enhances the initial growth of secondary
tumors adjacent to blood vessels. The authors concluded that
Efferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942
treatment with Z-guggulsterone and/or vascular endothelial
growth factor receptor 2/Flk-1 antagonists may be a promising
strategy for reducing breast cancer metastasis.
Pomegranate (Punica granatum L.) is another natural substance
known to possess anticancer activities. The effects of a standard-
ized pomegranate extract on a mouse mammary cancer cell line
(designated WA4) derived from mouse MMTV‑Wnt-1 mammary
tumors were examined [50]. The WA4 cell line has been previ-
ously characterized, and it has been found that the majority of
WA4 cells possess stem cell characteristics. The pomegranate ex-
tract inhibited the proliferation of WA4 cells in a time- and con-
centration-dependent manner due to an arrest of cell cycle pro-
gression in the G0/G1 phase. Pomegranate extract was also cyto-
toxic to quiescent WA4 cells and resulted in an increase in cas-
pase-3 enzyme activity by induction of the apoptotic pathway.
The phytochemicals ellagic acid, ursolic acid, and luteolin, de-
rived from pomegranate extract, caused a time- and concentra-
tion-dependent reduction in cell proliferation and viability, sug-
gesting that they contribute to the inhibitory effect of the extract.
The authors conclude that the effects observed in their investiga-
tion are due to inhibition of cancer stem-like cells.
Sulforaphane is a natural compound derived from broccoli and
broccoli sprouts. Sulforaphane decreased the aldehyde dehydro-
genase-positive subpopulation of cells and reduced the size and
number of primary mammospheres in tumor xenografts in a
nonobese diabetic/severe combined immunodeficient (NOD/
SCID) mouse model [51]. Sulforaphane eliminated breast cancer
stem-like cells in vivo, thereby abrogating tumor growth after re-
implantation of primary tumor cells into mice. Western blotting
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analysis and a β-catenin reporter assay showed that sulforaphane
downregulated the Wnt/β-catenin self-renewal pathway. These
findings support the use of sulforaphane for chemoprevention
against breast cancer stem cells.
Resveratrol significantly reduced cell viability and mammo-
sphere formation and subsequently induced apoptosis in cancer
stem-like cells [52]. The inhibitory effect of resveratrol was ac-
companied by a significant reduction in lipid synthesis caused
by the downregulation of the fatty acid synthase (FAS) gene fol-
lowed by the upregulation of the pro-apoptotic genes DAPK2
and BNIP3. Resveratrol-induced activation of the apoptotic path-
way in cancer stem-like cells was suppressed by TOFA and by fu-
monisin B1, suggesting that resveratrol induces apoptosis
through the modulation of fatty acid acid-mediated cell survival
signaling. Resveratrol was able to significantly suppress the
growth of cancer stem-like cells in an animal xenograft model
with no apparent toxicity.
All-trans retinoic acid (ATRA), a form of vitamin A, has also shown
potential as an anticancer agent. The inhibitory effect of ATRA
stealth liposomes was more potent in CD44+/CD24− cancer stem
cells than in cancer cells without this phenotype [53]. Its mecha-
nisms include arrest of breast cancer stem cells at the G0/G1
phase and induction of differentiation. Formation and growth of
xenografted tumors were significantly inhibited by ATRA stealth
liposomes. Combination therapy of ATRA stealth liposomes with
vinorelbine stealth liposomes produced the strongest inhibitory
effect on the tumor relapse model compared to free ATRA, and
vinorelbine stealth liposomes.

Ovarian cancer
During the characterization of CD44+ ovarian cancer stem cells,
Casagrande et al. [54] found a high rate of expression of the genes
encoding claudin-4. CD44+ ovarian cancer stem cells expressed
the claudin-4 gene at significantly higher levels thanmatched au-
tologous CD44- ovarian cancer cells. Because claudin-4, a tight
junction protein, is a natural and high-affinity receptor for Clos-
tridium perfringens enterotoxin, the authors investigated the sen-
sitivity of ovarian cancer stem cells to Clostridium perfringens en-
terotoxin treatment in vitro and in vivo. Small-interfering RNA-
mediated knockdown of claudin-3/-4 expression in CD44+ cancer
stem cells significantly protected cancer stem cells from Clostridi-
um perfringens enterotoxin-induced cytotoxicity. Multiple intra-
peritoneal administrations of sublethal concentrations of Clostri-
dium perfringens enterotoxin in mice harboring xenografts of
chemotherapy-resistant CD44+ ovarian cancer stem cells had a
significant inhibitory effect on tumor progression. In fact, all
treated animals were either cured or achieved long-term surviv-
al. Hence, Clostridium perfringens enterotoxin may represent an
unconventional but potentially highly effective strategy to eradi-
cate chemotherapy-resistant cancer stem cells.

Liver cancer
Lupeol (lup-20(29)-en-3β-ol) is a triterpene found in fruits and
vegetables that inhibited the self-renewal ability of liver tumor-
initiating cells in both hepatocellular carcinoma (HCC) cell lines
and clinical HCC samples [55]. Furthermore, lupeol inhibited tu-
morigenicity in vivo in nude mice and downregulated CD133 ex-
pression. In addition, lupeol sensitized HCC cells to chemothera-
peutic agents through the phosphatase and tensin homolog
(PTEN)-Akt-ABCG2 pathway. PTEN plays a crucial role in the
self-renewal and drug resistance of liver tumor-initiating cells
T‑ICs; downregulation of PTEN via a lentiviral-based approach
reversed the effect of lupeol on liver T‑ICs. Using an in vivo drug-
resistant HCC tumor model, lupeol dramatically decreased the
tumor volumes of MHCC‑LM3 HCC cell line-derived xenografts.
Lupeol exerted a synergistic effect when combined with estab-
lished chemotherapeutic drugs (cisplatin, doxorubicin) without
any adverse effects on body weight.

Prostate cancer
Gossypol reduced the viability of tumor initiating CD44+ prostate
cancer cell lines in vitro. Additionally, gossypol inhibited prostate
tumor-initiating cell growth in a xenograft model. The decrease
in viability was associated with increased DNA damage, activa-
tion of p53, and induction of apoptosis [56].

Brain cancer
Lu et al. [57] isolated cancer stem-like cells from medulloblasto-
ma patient samples and cultured them as three-dimensional
spheroids. They displayed enhanced self-renewal and expressed
stem-like genes (Oct-4, Nanog, Nestin, Musashi-1) and anti-apo-
ptotic genes (Bcl-2, Bcl-xL). These spheroids also showed signifi-
cant resistance to radiotherapy as compared to the parental me-
dulloblastoma cells in 2D culture. Resveratrol effectively inhib-
ited the proliferation of stem-like medulloblastoma cells and sig-
nificantly enhanced radiosensitivity.
Fong et al. [58] treated rat C6 glioma cells with curcumin and ob-
served a decrease in a specific side population of C6 cells that re-
tained less Hoechst 33342 dye after daily curcumin treatment.
Since the side population exhibited stem-like cell markers, curcu-
min may be a dietary phytochemical with the potential to target
cancer stem-like cells.
Treatment of spheroid-forming glioma cells with Eckol, a phloro-
tannin compound, effectively decreased sphere formation as well
as the CD133+ cell population, and blocked both phosphoinosi-
tide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. Eckol
treatment suppressed expression of the glioma stem-like cell
markers and the self-renewal-related proteins without causing
cell death. Moreover, Eckol significantly attenuated anchorage-
independent growth on soft agar and tumor formation in xeno-
graft mice. Importantly, Eckol treatment effectively reduced the
resistance of glioma stem-like cells to ionizing radiation and te-
mozolomide [59].

Multiple myeloma
Gunn et al. [60] tested two natural product inhibitors of NFκB,
parthenolide and andrographolide, in multiple myeloma stem-
like cells. Both compounds demonstrated preferential toxicity to-
ward cancer stem-like cells as compared to non-tumorigenic
multiple myeloma cells. Coculture with bone marrow stromal
cells in their 3D reconstructed bonemarrowmodel abrogated an-
drographolide activity while having no effect on parthenolide cy-
toxicity.

Leukemia
Cantharidin targeted primary acute myeloic leukemia stem and
progenitor cells in vitro in contrast to conventional chemothera-
peutic agents (e.g., Ara-C and daunorubicin) that mainly targeted
more differentiated leukemic cells [61]. Because of concentra-
tion-limiting toxicity in vivo, neither cantharidin nor norcanthar-
idin proved therapeutically beneficial in acute myeloic leukemia
xenograft models as a single agent. However, their potent in vitro
activity against leukemic stem-like cells and pathway targeting
Efferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942



Fig. 1 Therapeutic potential of natural products
towards stem cells.
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may still be exploited clinically with a new generation of canthar-
idin derivatives.
Treatment with Abl tyrosine kinase inhibitors drastically im-
proves the prognosis of chronic myeloic leukemia patients. How-
ever, quiescent CML cells are insensitive to tyrosine kinase inhib-
itors and can cause relapse. The hypoxic conditions in the bone
marrow allow leukemic cells that reside there to become insensi-
tive to cell death stimuli. Takeuchi et al. [62] described that raki-
cidin A, a natural product produced by a Micromonospora strain,
induced cell death in hypoxia-adapted chronic myeloic leukemia
cells with stem cell-like characteristics. Apoptosis was induced
by both caspase-dependent and ‑independent pathways. Treat-
ment with rakicidin A in combination with the tyrosine kinase
inhibitor imatinib resulted in synergistic cytotoxicity.
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Conclusion and Perspectives
!

Many natural products have been described that affect cellular
pathways relevant for stem cells and cancer stem-like cells, but
have not yet been tested in these cell types specifically. Hence,
there are a number of natural compounds to be explored in can-
cer stem cell biology. Some examples are:
" Natural small molecules such as vitamin A and retinoic acid in-

hibit cancer cell growth by induction of differentiation rather
than by cytotoxicity [39,64–67]. The potency of retinoid acids
for stem-like cell treatment is promising and needs to be fur-
ther explored.

" Numerous phytochemicals that are able to inhibit ATP-binding
cassette (ABC)-mediated multidrug resistance (for review see
[68]). ABC-transporters such as BCRP are important markers
of cancer side-population cells which resemble cancer stem-
like cells. ABC transporters contribute to the drug-resistant
phenotype of cancer stem-like cells.

" Phytochemicals that inhibit NF-κB [69,70]. NF-κB is a tran-
scription factor that mediates resistance towards apoptotic
stimuli. It promotes tumor progression and drug- and radio-
resistance. For example, parthenolide is a well-known NF-κB
Efferth T. Stem Cells, Cancer… Planta Med 2012; 78: 935–942
inhibitor that inhibits stem-like breast cancer cells [71]. Anoth-
er promising drug may be the antimalarial artesunate, which is
also active against cancer cells. It has been shown to inhibit
growth of rat embryo (stem) cells [72], to induce cellular differ-
entiation [73] and to inhibit NF-κB [74,75].

" Phytochemicals that inhibit signaling pathways of stem cells
and cancer stem-like cells. Certain pathways trigger the self-re-
newal of stem and stem-like cells. Their inhibition suppresses
self-renewal and induces cellular differentiation. Interesting
examples are:
" Cyclopamine from Veratrum californicum, which inhibited

growth of medulloblastoma cells and induced a loss of neu-
ronal stem cell-like character by neuronal differentiation in a
mouse model [76].

" ECGC from green tea (Camelia sinensis), which inhibits Wnt/
β-catenin signaling. This pathway is involved in various de-
velopmental processes, including growth inhibition in breast
cancer cells [77]. Comparable effects have been found for vi-
tamin D onWnt/β-catenin signaling in colorectal cancer cells
[78]. Artesunate also inhibits the Wnt/β-catenin signaling
[79,80].

" Resveratrol, a polyphenol in red grapes and other fruits, that
downregulates the expression of Notch [81]. The Notch sig-
naling pathway is also involved in developmental processes
and regulates tumor self-renewal in medulloblastoma [82].

Natural products may gain considerable importance in stem cell
biology for both tissue regeneration and for protection of normal
tissue against the side effects of cancer chemo- and radiotherapy
(l" Fig. 1). Established anticancer drugs kill the bulk of differenti-
ated cancer cells, but leave undifferentiated and quiescent cancer
stem-like cells untouched. This population of cancer stem-like
cells can give rise to tumor relapse even after chemotherapy has
achieved complete clinical remission of tumors [63]. The results
obtained with natural products in the past few years are promis-
ing, as several compounds have been reported to attack cancer
stem-like cells. Furthermore, many of these natural products also
improve the efficacy of chemo- and radiotherapy, making them
ideal partners for combination therapy regimens. The field of



941Reviews
treating cancer stem-like cells with natural products is still in its
infancy, but it can be expected to develop into a rapidly growing
area of research.
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