
Abstract
!

Indirubins represent a small category of com-
pounds with significant pharmacological activity
focusing on the inhibition of protein kinases. A se-
ries of derivatives has been developed during the
last 15 years aiming the investigation and amelio-
ration of the indirubin scaffold in terms of activ-
ity, selectivity, and drug-likeness. The current ar-
ticle focuses on the naturally brominated indiru-
bins present in the famous historic dye of Tyrian
purple, attempting to gather all available litera-
ture regarding biosynthesis, isolation, and syn-
thesis of related analogues. Halogenated indiru-
bins are by far one of the most important subcate-

gories of indirubins, with its main representatives
6-bromoindirubin (6BI) and 6-bromoindirubin-
3′-oxime (6BIO) possessing an increased selectiv-
ity against GSK-3. This review attempts to sum-
marize concisely structure/activity relationships
among closely related halogenated analogues in
terms of protein kinase inhibition and selectivity,
while it also focuses on the various biological ap-
plications arising from the interactions of halo-
genated indirubins with molecular targets. Those
include effects of halogenated indirubins on stem
cells, cardiac, renal, and pancreatic cells, on leuke-
mia and solid tumors, and on neurodegeneration.
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Introduction – Tyrian purple
!

Indirubin (1), indigo (2), and isoindigo (3) are the
core representatives of a rather small category of
bisindole alkaloids referred to as indigoids
(l" Fig. 1). Their fascinating history begins before
even their exact chemical structure was eluci-
dated. These compounds are the colored constitu-
ents of the natural dyes indigo and the famous
molluscan Tyrian purple, used throughout the
centuries for textile dying and so providing a sig-
nificant commercial benefit to communities
which produced it.
Indigo dye was used as a blue natural dye from
the Bronze Age (~ 7000). It has been established
that the treatment of indigo bearing plants (Bras-
sicaceae, Polygonaceae, Fabaceae) for the produc-
tion of the blue dye was a common practice in the
past, almost worldwide. In Europe, indigo was
predominantly produced from the woad of Isatis
tinctoria (Brassicaceae) [1]. According to Pliny
the Elder, the inhabitants of Britain used to paint
their faces with a blue dye (indigo) in order to ap-
pear more intimidating to the enemy. The cultiva-
tion and process of woad and the trading of indigo
Vougogiannopoulou K and Skaltsounis
were extremely vital economical elements of the
renaissance commerce. The main production and
trade centers were Albi/Toulouse in France, Som-
erset in Great Britain, Thüringen in Germany, and
Florence in Italy.
In India, Pakistan, South America, and Africa, Indi-
gofera tinctoria (Fabaceae) was cultivated and
processed for the production of indigo dye [2]
while the Mayas have combined indigo and natu-
ral clays to prepare the pigment Maya blue [3]. In
China, Korea, and Japan, Polygonum tinctorium
(Polygonaceae) was used for the preparation of
indigo dye, although the species was considered
poor in terms of indigo content [4].
While indigo was considered to be a «dye of the
poor», Tyrian purple was used widely to declare
prestige and social status. Its extensive use from
the Persians dates back to 560 BC, and up to date
it is one of the oldest ancient pigments found on
objects of cultural significance. Roman and Byz-
antine emperors used it to color ceremonial robes
while a variation of Tyrian purple [5], the blue Te-
khelet is mentioned in the Jewish bible as the dye
used in the clothes of the High Priest [6]. The old-
est application of molluscan purple dye dates
A-L. From Tyrian Purple… Planta Med 2012; 78: 1515–1528



Fig. 1 Structures of indirubin (1), indigo (2), and isoindigo (3). The Tyrian
purple producing mollusk Hexaplex trunculus (Muricidae) and details of the
fresco entitled “The Saffron Gatherers” located in the archaeological site of
Akrotiri, Thera, Greece.
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back to the Late Bronze Age, as proven by the analysis of purple
dyestuff found on the wall paintings at the archaeological site of
Akrotiri, Thera, Greece (l" Fig. 1) [7]. Recently, in Church Made-
leine, Manas, France, Tyrian purple was identified on the mural
paintings, the pigment being probably transported to France
from the Mediterranean basin after the Third Crusade. This act
is indicative of howmuch appreciated this pigment was through-
out the centuries [8].
The highly prized purple reddish dye was obtained in the Medi-
terranean basin mainly from the gastropods Hexaplex trunculus
and Bolinus brandaris (Muricidae) and considered to be an im-
portant trade good in Crete, Phoenicia, Greece, and Rome. On
the coasts of North Atlantic, the purple dye was produced from
Nucella lapillus (dog whelk) [9] while on the Pacific coasts of Latin
America, other species were used such as Plicopurpura pansa
[10].
In contrast with indigo dyes, the major constituents of molluscan
purple dyes are brominated indigoids. The purple color of Tyrian
purple is attributed both to the presence of indirubin derivatives
giving a red hue and also to the fact that brominated indigos in
solid state are in fact purple instead of blue. The variety of indi-
goids present and therefore the vast achievable color palette, as
well as the limited quantity of mollusks available for processing,
were the main reasons due to which Tyrian purple was more ap-
preciated than the indigo dye.
Nowadays, the use of natural dyes is very limited due to their re-
placement with cheaper synthetic dyes. Nevertheless, indigoids
and especially indirubins have come to the forefront due to the
vast range of biological activities, which in many cases have their
origin in traditional medicine. Chronic myeloid leukemia (CML)
Vougogiannopoulou K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012;
has been treated in the traditional Chinese medicine with the
recipe Danggui Longhui Wan, a mixture of 11 herbal medicines.
The active ingredient was found to be a dark blue powder, Qing
Dai, prepared from the leaves of indigo producing plants. Eventu-
ally, the antileukemic activity was attributed to indirubin, which
was detected in the mixture of Danggui Longhui Wan as a minor
constituent [11].
Since then, indirubin and its halogenated analogues have exerted
a vast range of biological effects in stem cells [12], cardiac, renal,
and pancreatic cells. In addition, brominated indirubins have
been utilized as tools for the exploration of neurodegeneration,
cancer, and as potential therapeutic agents for parasitic diseases.
Inmost of the cases, all of the above effects can be associatedwith
the interaction of indirubins with important molecular targets
such as members of the family of protein kinases (GSK-3 [13],
CDKs [14], and Aurora kinases [15]) and the aryl hydrocarbon re-
ceptor [16,17], placing them among the most promising nature-
derived drug candidates [18].
Chemistry of Halogenated Indirubin Analogues
!

Natural sources
The name “indirubin” was first introduced in 1855 by Edward
Schunck [19] to describe a red coloring ingredient present in in-
digo producing plants. Extensive studies performed thereafter,
have proven that indirubin is present in diverse natural sources
such as the indigo producing plants of Isatis spp. [20], Indigofera
spp., and Polygonum spp., recombinant bacteria, [21] mammalian
– including human – urine [22], and Tyrian purple producingma-
rine mollusks [23] (l" Fig. 2).
The pigments present in the plant-derived indigo dye are formed
with the dimerization of indole glucosidic precursors, under the
treatment of the plant for the production of the dye [24]. The
main precursors involve indican (4), isatan A (5), and isatan B (6)
[25], while their presence prior to the production of the dye is
largely dependent on the post-harvest treatment of the plant
[24]. Indirubin has been successfully isolated from the leaves of
Isatiswith the use of “green” techniques as supercritical fluid ex-
traction (SFE) [26].
On the other hand, indirubins of molluscan origin are present in
the purple pigment of Tyrian purple which is produced by organ-
isms of the Muricidae family. The simultaneous presence of non-
brominated and brominated indigoids in Tyrian purple was re-
ported for the first time in 1909 with the isolation of 6,6′-dibro-
moindigo (7) from Hexaplex trunculus [27]. The predominant in-
digoid ingredient of the dye depends greatly on the species used
for the production as well as the conditions under which it was
produced. Among the most commonly used mollusks for the
production of the dye, Hexaplex trunculus was found to possess
the greatest variety of brominated indigoids: indigo, 6-bromoin-
digo (8), 6,6′-dibromoindigo (7), as well as indirubin (2), 6-
bromoindirubin (9, 6BI), 6,6′-dibromoindirubin (10), and 6′-bro-
moindirubin (11) are all present in the DMF extract thereof [28].
Interestingly, indigoids are not present in the mollusk itself
rather than being synthesized in the procedure of dye produc-
tion, which involves alkaline treatment of the mollusk and expo-
sure to sunlight. This process was later on partially elucidated
with the isolation from Dicathais orbita of the colorless ultimate
precursor tyrindoxyl sulfate (12) [29,30] as well as several inter-
mediates from this species and other Muricidae such as tyrindox-
yl (14), tyrindoleninone (15), and tyriverdin (16) [31–33]. In H.
78: 1515–1528



Fig. 2 Main biosynthetic precursors of indirubin,
indigo, and brominated analogues in plants, mol-
lusks, and bacteria.
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trunculus, which for the moment exhibits the greatest variety of
indigoids, indoxyl sulfate (13) has also been proposed as another
ultimate precursor, [34] a fact that is reflected upon its variety of
non-, mono- and dibrominated indigoids. Nowadays, we can at-
tribute the formation of the marine indigoids to a series of oxida-
tive, photochemical, enzymatic transformations and dimeriza-
tions, although a concise concept of their genesis is yet to be clari-
fied. Recent advances suggest that their origin is likely to be sex–
specific and related to reproduction [35], as purple pigmentation
has been detected in the egg masses of several gastropods [36,
37].

Bioguided isolation of brominated indirubins and
precursors
The general interest in indirubin scaffolds due to their use in tra-
ditional medicine and their identification as kinase inhibitors led
to the investigation of brominated indirubins as bioactive agents.
The isolation of natural mono- and dibrominated indirubins,
along with indirubin, has been performed from the whole body
mass of H. trunculus after exposure to light and oxygen, lyophili-
zation, and extractionwith dichloromethane. Removal by precip-
itation of the insoluble indigo derivatives affords an indirubin–
enriched dichloromethane extract (0.25mg of indirubin content
in 1 kg of driedmollusks), of whichwith the aid of MPLC fraction-
ation four fractions corresponding to indirubin and the afore-
mentioned derivatives can be obtained [38].
Vougogiannopoulo
After screening of the fractions representing indirubin and the
natural 6-brominated analogues on a set of 3 kinases (CDK1/cy-
clinB, CDK5/p35, and GSK-3β), 6-bromoindirubin (9, 6BI) was
identified as a potent and selective GSK-3 inhibitor [39]. It was
the first time 6BI was isolated from a natural source as a minor
indirubin constituent of Tyrian purple, although it has been de-
tected numerous times in Muricidae extracts and artifacts dyed
with Tyrian purple via chromatographic analytical techniques
[40,41].
On the other hand, the interest in indirubin percursors focuses
not on kinase inhibition but strong antimicrobial activity. Under
this scope, organic solvent extracts of the egg masses of D. orbita
were examined for their bacteriostatic activity against human
andmarine pathogens (E. coli, S. aureus, P. aeruginosa). Bioguided
isolation of the precursors led to the isolation and identification
of tyriverdin (16) as a strong antimicrobial agent at a concentra-
tion of 1–0.5 µg/ml [42]. Moreover, tyrindoleninone (15) and its
oxidation product 6-bromoisatin (17) are identified as anticancer
agents [43] while extracts containing indole Tyrian purple pre-
cursors have a potential chemopreventive role in colorectal can-
cer [44].
u K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012; 78: 1515–1528
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Total synthesis of halogenated indirubins and related
analogues
Total synthesis of indirubin was performed for the first time in
1881 by A. Baeyer [45], a few years after its isolation from indigo
dye. The original method was based on the reaction of indoxyl
with isatin under alkaline conditions, while during the 20th cen-
tury the procedure was modified by the use of the more stable
acetoxyindole [46]. Even though many analogues of indirubin
have been reported, the basic synthetic preparation has been to
a large extent conserved. Synthesis of 6BI [47] is based on the
combination under mild alkaline conditions of acetoxyindole
with 6-bromoisatin (17), the latter being easily prepared from 6-
bromoaniline (18) through the 2-step Sandmeyer synthesis [48].
First, the aniline is converted to the corresponding isonitrosoace-
tanilide (19) under treatment with chloral hydrate and hydroxyl-
amine, while in the second step the acetanilide undergoes cycli-
zation in concentrated sulfuric acid resulting in the formation of
the isomeric 6-bromoisatin and 4-bromoisatin, which are sepa-
rated under fractional precipitation in an acidic environment.
Shifting of the 6BI bromine atom to positions 5 and 7, results in
the formation of 5-bromoindirubin (20, 5BI) and 7-bromoindiru-
bin (21, 7BI), synthesized similarly to 6BI from 5-bromoisatin and
7-bromoisatin, respectively. Five and 7 bromosubstituted indiru-
bins are not naturally derived in terms of the bromine position, as
no report of them as natural products is present in current liter-
ature.
A large series of indirubin analogues bearing halogens or simple
substituents on the benzene rings has been achieved with the
aforementioned procedure (l" Fig. 3), starting from the corre-
sponding isatins and acetoxyindoles [49–51]. Those analogues
involve methoxylated indirubins [52], 5,7-bisubstituted aniline
analogues [53], 5-nitro analogues [54,55], 5-carbamates bearing
unsaturated and aromatic side chains [56], and 5,5′ bisubstituted
analogues with halogenated and hydroxylated substituents [57,
58].
One of the most promising modifications performed on the indi-
rubin core, so far concerning the modulation of activity and solu-
bility properties, is the conversion of the 3′ carbonyl group into
an oxime group (l" Fig. 3). Thus, in the case of indirubin and the
brominated 5BI, 6BI, and 7BI, treatment with hydroxylamine hy-
drochloride in pyridine results in the formation of the corre-
sponding oximes, namely indirubin-3′-oxime (22, IO), 5-bromo-
indirubin-3′-oxime (23, 5BIO), 6-bromoindirubin-3′-oxime (24,
6BIO), and 7-bromoindirubin-3′-oxime (25, 7BIO), molecules
with a vast range of biological activity and in the case of 6BIO, en-
hanced potency and selectivity towards GSK-3β [51].
Several analogues of halogenated indirubins have been devel-
oped aiming the improvement of biological properties on the
one hand and enhanced drugability on the other, given the fact
that simple indirubin analogues are characterized by low solubil-
ity. LogD values of 6BIO (2.59) [59], 5BI, and indirubin (3.7 and
2.5, respectively) [61] reflect the low hydrophilicity of simple in-
dirubins despite the presence of an oxime group. A series of 6BIO
analogues possessing amino-aliphatic chains on the 3′ oxime
group exerted selectivity against GSK-3β and also a more favor-
able solubility in water with logD values varying from 1.90 (36)
to − 0.87 for the simple piperazine analogue (33) (l" Fig. 4, prod-
ucts 27–37) [59,60]. The introduction of those hydrophilic chains
is achieved through the intermediate formation of the 3′-oxime
ether bearing a terminal bromine atom (26), which is afterwards
substituted with commercially available secondary amines. Simi-
larly, 7BIO analogues of the same type have been synthesized
Vougogiannopoulou K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012;
bearing varying long hydrophilic chain substituents on position
3′ [61].
Under the same perspective of enhancing the solubility of bioac-
tive indirubins, sugar moieties have been introduced to the basic
core. Retaining the synthetic methodology of dimerization, sugar
moieties have been incorporated in positions 1 and 1′, originating
from glycosylated isatins and indoxyls, respectively [62,63]. Fi-
nally, one of the most radical interventions performed so far to
indirubin has been the introduction of a heterocyclic nitrogen
atom to the benzene ring originating from isatin. This attempt to
simulate the presence of a bromine atom in position 7 resulted in
the synthesis of 7-azaindirubin, an isostere of the natural indiru-
bin with antiproliferative properties [64,65].
For the class of 5-brominated indirubins, more soluble 5-substi-
tuted analogues have been developed simulating the brominated
core, with the main representatives indirubin-5-sulfonate (38,
E622) and 5-carboxyindirubin (39) being the lead compounds in
a series of 5-substituted analogues [60]. On this basis, com-
pounds bearing polar hydroxylated chains on position 3′, basic
sulfonamide (l" Fig. 4, products 40–44), and carboxamide
(l" Fig. 4, products 45-55) groups on position 5 have been devel-
oped with remarkable water solubility (logD − 2.1 for E622) and
significant cytotoxicity [66]. Finally, a series of 5-substituted non-
planar indirubins has been developed via the transformation of
the 3′ carbonyl group into a quaternary carbon (l" Fig. 4, products
56–57), a change very effective in terms of solubility [60].
Biological Properties of Halogenated Indirubins and
Analogues
!

Protein kinase inhibition
Protein kinases (PKs) consist in a vast group of enzymes catalyz-
ing the reversible phosphorylation of protein substrates [67]. Due
to this vital function, they have been found to participate in most
of the signal transduction processes in the eukaryotic cell [68],
while their deregulation has been established in a number of dis-
eases such as cancer [69], neurodegeneration, and protozoan in-
fections [70]. Indirubins are considered ATP-competitive PK in-
hibitors, while screening of 85 kinases of the ProQinase “selectiv-
ity panel” revealed a selectivity trend for IO, 5BIO, 6BIO, and 7BIO
[71].
A very important group of the human kinome (as the sum of the
kinases expressed from humans is referred [72]) is represented
by the CDKs (cyclin dependent kinases). They are serine/threo-
nine kinases which are to a large extent conserved, and require
the binding with a cofactor for their activation (e.g., cyclins). They
play a vital role in the cell cycle by controlling its progression
through a succession of activation and deactivation events [73,
74]. Most of the CDKs have been associated to various forms of
cancer, thus making the discovery of new and specific inhibitors
an intriguing target during the past years [75,76]. Indirubins in
general are considered to be inhibitors of CDK1, CDK2, and
CDK5 [77], the former being of uttermost importance to the gen-
eral cell cycle progression while the latter is expressed mostly in
neurons [78].
GSK-3 (glycogen synthase kinase), although originally discovered
for its implication in diabetes through phosphorylation of glyco-
gen synthase [79], has been brought to attention due to its abun-
dance in brain cells and neurons and its ability to abnormally
phosphorylate tau protein in the Alzheimerʼs disease (AD) path-
way [80]. Tauʼs aggregation is responsible for the formation of the
78: 1515–1528



Fig. 3 Simple substituted indirubin analogues bearing at least one halogen
atom in their core and inhibitory activity against CDK1/cyclin B, CDK2/cyclin
E, GSK-3α/β, CDK5/p25, Auroras A, B, C, and FLT3. The colour scale repre-

sents the range of activity indicated in the bottom. Data gathered from lit-
erature cited: [13–15,17,38,51,53,54,57,58,60,61,71,162].
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Fig. 4 Synthesis of 6-bromoindirubin and related substituted analogues.
a Chloral Hydrate, Na2SO4, NH2OH·HCl, H2O, H+, b conc. H2SO4, c 3-ace-
toxyindole, Na2CO3, MeOH, d NH2OH·HCl, py, reflux, e 1,2-dibromoethane,
Et3 N, DMF, RT [51]. For the preparation of the 6-Br amine analogues: f DMF,
RT, secondary amines namely, dimethylamine (27), diethylamine (28), di-
ethanolamine (29), 3-(methylamino)propane-1,2-diol (30), morpholine (31,
6-BIMYEO), pyrrolidine (32), piperazine (33), 1-methylpiperazine (34), 1-(2-
hydroxyethyl)piperazine (35), 1-(2-methoxyethyl)piperazine (36), 1-[2-(2-
hydroxyethoxy)ethyl]piperazine (37) [59]. For the preparation of the 5-sul-
fonamide analogues: g 2 steps, SOCl2, 80 °C and DMAP (cat) with amines
namely, dimethylamine (40), diethanolamine (41), 4-hydroxypiperidine (42),

4-dimethylaminopiperidine (43), N,N,N′-trimethylethylenediamine (44) [60].
For the preparation of the 5-carboxamide analogues: i two steps, PFF-tri-
fluoroacetate, DMAP, py, DMF, and DMAP, dioxane with the appropriate
amine namely, piperazine (45), 1-methylpiperazine (46), ethanolamine (47),
diethanolamine (48), N,N,N'-trimethylethylenediamine (49), N,N-dimethyl-
ethane-1,2-diamine (50), N,N-dimethyl-2-(4-methyl-1-piperazinyl)ethan-
amine (51), N,N-dimethyl-p-phenylenediamine (52), 3-aminopyridine (53),
4-(4-methyl-1-piperazinyl)aniline (54), 1-amino-1-deoxy-D-glucitol (55)
[66]. For the preparation of the 3′-quaternary analogues: h Grigniard reac-
tions in THF or py, ‑20°C, with alkyl-magnesium bromides, namely methyl-
magnesium bromide (56), allylmagnesium bromide (57) [60].

1520 Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
neurofibrillary tangles (NFTs) and the β-amyloid deposition ob-
served in AD [81], while the role of GSK-3 in inflammation pa-
thology of AD is under investigation [82].
The beta-isoform of GSK-3 (GSK-3β) is found to be associated
through various signaling pathways with mood disorders [83]
and schizophrenia [84], osteoporosis [85] and cancer (Wnt sig-
naling) [86], atherosclerosis, cardiac hypertrophy, hypertension
[87], and signal transduction [88]. The natural 6BI and its semi-
synthetic analogue 6BIO are both potent and selective GSK-3β in-
Vougogiannopoulou K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012;
hibitors, a fact that gave rise to the commercialization of 6BIO
under the name “BIO” and “GSK-3 inhibitor IX” [89] and the de-
velopment of analogues with a vast range of biological applica-
tions.
Apart from the aforementioned kinases, indirubins also target
the Aurora kinases [15], FLT3 (Fms-like tyrosine kinase 3) [58,
90], JAKs (Janus kinases) [91], and according to molecular model-
ing studies PDK1 (pyruvate dehydrogenase kinase 1), with speci-
ficity and potency depending on their chemical structure [92]. Fi-
78: 1515–1528



1521Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
nally, it is worth mentioning that Leishmania sp. possesses pro-
tein kinases sharing certain homology to the mammalian ones
(CRK3, LdGSK-3, and protozoan MAPKs), whose functional role
in the life cycle of parasites can be even more important than in
mammalian cells [70].
Interaction of indirubins with molecular targets such as the PKs
causes the modulation of various physiological pathways. Inhibi-
tion of GSK-3 affects the progression of parental pathways Wnt
and Hedgehog (Hh) [93]. Wnt is a signal transduction pathway
controlling differentiation in the stage of embryonic develop-
ment, stem cell fate in adults, neuronal development, and neuro-
protection [94]. GSK-3 has been found to phosphorylate several
components ofWnt, with β-catenin being one of the most impor-
tant. In canonical Wnt signaling and in the absence of Wnt pro-
teins, β-catenin is phosphorylated by GSK-3 and thus degraded
by the proteasome. Inhibition of GSK-3 leads to β-catenin intra-
cellular accumulation/stabilization and through a series of intra-
cellular events triggers the transcription of target genes associ-
atedwith apoptosis and cell proliferation [95]. Furthermore, inhi-
bition of GSK-3β by indirubins, through its implication in the
phosphatidylinositol 3-kinase Akt signaling pathways (PI3K/
Akt), is capable of modulating the expression of factors associ-
ated with hypoxia and ischemia [96] and apoptosis in serum-de-
prived conditions [97].
GSK-3 is also relevant to the effect of indirubins on Notch-1 sig-
naling, a pathway participating in cell cycle progression, invasion,
migration, and apoptosis. Deregulation of Notch is observed in
many types of human cancers and tumorigenesis. IO has been
found to suppress Notch-1 signaling through downregulation of
GSK-3 [98], while 5′-nitroindirubin-3′-oxime induces cell cycle
arrest possibly through blockage of Notch-1 signaling [99].
Finally, a less studied but very promising field for the implication
of indirubins in biological processes involves the regulation of
STAT3 signaling. STAT3 is a family of different transcription fac-
tors playing an important role in tumor survival/proliferation
and inflammatory responses [100]. In STAT3, JAKs phosphorylate
STAT3 and activate signaling for the transcription of specific tar-
get genes. Except JAKs, many other PKs implicate the activation of
STAT3, like members of the Src family, PKC, EGFR, etc. [101]. In-
dirubin and derivatives such as IO and 5IIO have been found to
block STAT3 signaling through the inhibition of implicated PKs
[102–104]. Recently, it has been shown that STAT3 activation is
highly dependent on GSK-3β, as specific inhibitors of the latter
block the STAT3 DNA binding ability [105].

Structural diversity and selectivity
Since the identification of indirubin as a protein kinase inhibitor,
several analogues have been designed and synthesized targeting
the kinome. After several years of research, the vast range of ana-
logues existing allows for structure/activity relationships to be
established. Halogenated indirubins share a special place among
those analogues as they offer a versatile tool for the exploration
of specific kinase inhibition [106], and also a matrix upon more
selective and active analogues was later on developed (l" Fig. 3).
By reviewing the literature existing so far on indirubins and ki-
nase inhibition, the shifting from the mediocrely active and non-
specific indirubin to variably substituted indirubins with en-
hanced kinase inhibition involves the identification of natural
6BI as a GSK-3β specific inhibitor [39]. Earlier reports on syn-
thetic 5-halogenated indirubins indicated an antitumor activity
[107], although this was not correlated to kinase inhibition until
Vougogiannopoulo
indirubins were collectively acknowledged as kinase inhibitors
[15].
During the last decade, lead indirubins have been established for
the most important PK targets identified, namely 6BIO for GSK-
3β inhibition [38] and indirubin-5-sulfonate for CDK2 (E622)
[65], focusing on two different axes targeting cell proliferation
on the one hand and neurodegeneration on the other. It is also
worth mentioning that although E622 is not halogenated, its de-
sign was based on 5-halogenated indirubins with antitumor
properties, with the halogen being replaced by a group giving-
enhanced druggability to the scaffold. The latter is also the case
with 3′ oxime analogues and 6BIO, which were developed in
terms of rendering the indirubin scaffold more soluble.
l" Fig. 3 provides a quick overview on the kinase inhibitory prop-
erties of simple substituted indirubins, which possess at least one
halogen atom in their core. For indirubin itself, the nonspecificity
especially among the examined CDKs is evident. Substitution on
position 5 generally enhances the PK inhibition potency,
although it eliminates selectivity. This is particularly true for 5-
iodo analogues, which exhibit nanomolar range activity both in
CDKs and GSK-3β. Recently, a series of new 5,5′ bisubstituted
analogues were developed showing great potency towards
CDK2 [57].
As substitution is shifting towards position 6, greater selectivity
towards GSK-3β is accomplished peaking for 5,6 bisubstituted
analogues with the bromine atom on position 6. The affinity of
6-bromo-substituted indirubins and 6BIO in particular, with
GSK-3β in comparison with CDKs, was elucidated with the crys-
tallographic studies of the complex 6BIO/GSK-3β [51], taking into
account the previous X‑ray structures of indirubin-5-sulfonate
(E226) with CDK2 [15] and the complex CDK2/cyclin A [108] and
indirubin-3′-oxime with CDK5/p25 [39]. Further crystallographic
data [109] confirm the pharmacophore of the indirubin scaffold
in most of the analogues due to the fact that PKs are to a large ex-
tent conserved.
The pharmacophore of the indirubin scaffold consists of the lac-
tam amide nitrogen, lactam amide oxygen, and cyclic pyrole ni-
trogen (l" Fig. 5B). In the case of E226 and CDK2 (both inactive
and activated by cyclin A), the lactam and pyrrole nitrogen atoms
act as hydrogen bond donors to the oxygen atoms of Glu81 and
Leu83, respectively, while the amine group of Leu83 forms an ad-
ditional bond with the scaffoldʼs lactam oxygen. In the case of IO
and CDK5/p25, the corresponding amino acid residues are Glu81
and Cys83, while for 6BIO and GSK-3β, they correspond to
Asp133 and Val135. In all of the tested kinases, the indirubin scaf-
fold is inserted into the ATP binding pocket located between the
two lobes of the enzyme. For analogues methylated on the lac-
tame nitrogen (N-methylindirubins), PK inhibitory activity is
lost, due to its incapability to act as a hydrogen bond donor, and
therefore such analogues are used as negative controls for indiru-
bin kinase inhibition (l" Fig. 5B).
As proposed from crystallographic studies and molecular model-
ing studies, the selectivity of 6BIO to GSK-3β versus CDKs is re-
lated to minor differences in the binding pocket of the enzymes.
GSK-3β with the relatively small Leu132 provides a more spa-
cious environment for the bromine atom to be inserted in the
back of the cavity, whereas in CDKs 1, 2, and 5, this area is re-
stricted due to the bulkier Phe80 (l" Fig. 5A). By taking into ac-
count the topology of the binding pockets, the results of l" Fig. 3
can be rationalized for all indirubin analogues discussed. The
highly unspecific 5-halogenated indirubins are able to associate
with all of the competitive kinases to some extent, as the 5-sub-
u K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012; 78: 1515–1528



Fig. 5 A Comparative representation of 5-, 6-, and 7-substituted indirubin
analogues into the binding cavities of CDKs and GSK-3. B Steric hindrance in

the binding cavity of GSK-3 for N-methylated indirubin analogues, leading to
non-inhibition.
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stituent is directed outside of the binding pocket. 2D and
3DQSAR studies on halogenated indirubins show that affinity
with GSK-3β is enhanced with the substitution in positions 5/6
with electron-withdrawing atoms such as halogens, while simi-
lar substitution on positions 4/7 is not favorable [110]. As seen
in l" Fig. 3, 5- and 6-bromo or iodo, as well as 5,6-bisubstituted
analogues possess the greatest activity towards GSK-3β.
Astonishing is the case of 7-substituted analogues, which stand
out among halogenated indirubins as cases of no significant PK
inhibitory activity but with remarkable cytotoxicity. As seen in
l" Fig. 3, 7-halogenated indirubins inhibit Aurora kinase C [15]
and FLT3, but this fact is unlikely to be connected to the necrotic
cell death induced by 7BIO [71]. This is also supported by the low
potential of 7-brominated analogues to insert into the binding
pockets of the kinases as the substituent is directed in the less
spacious interior of the cavity (l" Fig. 5A).

Effect on stem cells and progenitors
The establishment of 6BIO as a potent and selective GSK-3 inhib-
itor was followed by a very promising discovery concerning its ef-
fect on stem cells. 6BIO was found to maintain the undifferenti-
ated phenotype of both human and mouse embryonic stem cells
(HESCs and MESCs, respectively), sustaining their pluripotency
possibly through Wnt activation [111], and also to decrease
MESCs proliferation rates, not due to apoptosis but rather accu-
mulation of the cells in the G1 phase [112]. Recently, it has been
proposed that this delay of the cell cycle progression is due to the
downregulation of cyclin D1 and the upregulation of p57 by 6BIO
[113]. Results from different research groups, report that 6BIO
appears to also stimulate the LIF (leukemia inducing factor) sig-
nal, which acts synergistically with Wnt activation in terms of
maintaining the undifferentiated state of MESCs [114]. In the ab-
sence of LIF/Wnt signaling, it has been proposed that ESCs re-
newal could be a result of elevated myc levels and subsequent
stem cell stability [115].
GSK-3 function is also a key factor in hematopoiesis and the ex-
pansion of hematopoietic stem cells into mature blood cells. 6BIO
has been found to promote and inhibit the ex vivo expansion of
umbillical cord blood hematopoietic stem cells (UCB HSCs) in
low and high concentrations, respectively [116,117]. GSK-3 inhi-
bition by 6BIO also causes a decrease in proliferation of adult ol-
factory epithelial human neural precursors accompanied by an
Vougogiannopoulou K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012;
increase of differentiation markers, thus suggesting the promo-
tion of early neuronal differentiation [118].
Similarly, human mesenchymal stem cells (hMSCs) from bone
marrow are regarded as putative osteoblast progenitors differen-
tiating into osteoblasts in vitro. 6BIO induces the cell cycle inhibi-
tion of hMSCs while enhancing the early stage of osteogenesis, as
mineralization is observed after treatment [119]. In particular
with osteoblasts, the latter is supported by in vivo experiments
on bone mass loss after extensive glucocorticoid treatment, dur-
ing which treatment with 6BIO resulted in the attenuation of
bone mineralization loss [120].
Despite the vaguemechanism of action concerning stem cells and
progenitors, 6BIO was found to inhibit the differentiation of T
cells while arresting the development of CD8+ T cells into effector
cells [121] and also inhibit the proliferation of HMADSCs (human
adipose derived stem cells) and their adipogenic differentiation
[122]. Furthermore, 6BIO significantly enhances the ability of
ESCs to reprogram somatic cells after fusion thus allowing the
dedifferentiation of the hybrids [123]. Finally, 6BIO prevents the
process of epithelial to mesenchymal spontaneous transition
(EMT) of HESCs when cultured also under feeder–free conditions,
although it was not able to expand HESCs in a long–term culture
system [124]. Paradoxically, 6BIOwas found to be associatedwith
reduced cell proliferation of human islet–derived precursor cells
(HIPCs), which are characterized as mesenchymal stem cells, able
to differentiate into islet–like structures [125].
Another interesting application of 6BIO discovered recently is the
ability to facilitate the derivation of ESCs from blastocysts when
used alone or in combination with LIF [126,127]. When an inner
cell mass of blastocysts (ICM) able to provide ESCs is incubated
with 2 μM 6BIO, all of the formed colonies provide ESCs giving a
4-fold increase in the efficiency of the derivation. Recent studies
report a fivefold increase of ESCs derivation when multiple fac-
tors are utilized along with 6BIO [128]. In addition, 6BIO in com-
binationwith fibroblast growth factor (FGF) can contribute in the
formation of porcine embryonic germ cells (EGCs) colonies, in-
creasing the mitosis index and maintaining the undifferentiated
state [129]. Finally, 6BIO was found to increase the expression of
genes and pluripotency markers in ESCs suggesting that upregu-
lation of stemness genes keeps the cells in a self–renewing pluri-
potent state [130].
78: 1515–1528
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Effect on leukemia and solid tumors
Anticancer properties of halogenated indirubins and related ana-
logues seem to focus on three basic concepts: inhibition of CDKs
and cell cycle arrest, restrictions on signaling pathways and espe-
cially STAT3, and the induction of non–apoptotic cell death by
7BIO and certain 7-halogenated analogues [60,131].
Potential kinase inhibition, although it is not yet established,
probably lies behind the antitumor properties of 5-carboxamide
analogues (45–55) against LXFL529L lung cancer cells, with IC50

in the low μΜ range [66]. In addition, bromo- and methoxy-indi-
rubin analogues have been examined for their capability of in-
ducing apoptosis in neuroblastoma cells, although the mecha-
nism of apoptosis is not yet clarified [52].
Furthermore, 5-substituted indirubin derivatives (E622, 40–44),
besides the potent inhibition of CDKs, have been shown to block
STAT3 signaling, inhibit Src, and finally induce apoptosis in hu-
man breast cancer cells [132]. Most importantly, 6BIO induces
apoptosis in humanmelanoma cells accompaniedwith inhibition
of STAT3 signaling while suppressing in vivo tumor growth in
xenograph human melanoma models [133]. In addition, the syn-
ergy between all these factors is possibly the cause of the inhibi-
tion of proliferation observed under treatment with 6BIO of ma-
lignant lymphoid cells [134].
GSK-3 inhibitors are still under investigation as antileukemic fac-
tors [116] since limited literature has been published on this
topic. 6BIO exerts an in vivo curative effect against leukemia ani-
mal models as well as specific cytotoxicity in vitro against rapidly
dividing leukemia blasts [135]. In addition, GSK-3β inhibition by
6BIO was found to inhibit MLL leukemia cell proliferation and
transformation [136]. An assumption of GSK-3β inhibition lead-
ing to apoptosis is made, although indirubins are also potential
inhibitors of FLT3, which is often mutated in patients with acute
myeloid leukemia (AML) [58,88]. Finally, indirubin type inhib-
itors of GSK-3 have been found to improve survival in glioma-
bearing mice [137] while 6BIO is suppressing telomerase activity
probably via GSK-3β inhibition, without showing an overt toxic-
ity [138].

Effect on cardiac cells
Results by several studies reveal that 6BIO also affects cardiac
cells, both differentiated and undifferentiated, as a potent GSK-
3β inhibitor [139]. Specifically, 6BIO enhances the survival of hu-
man cardiac stem cells (HCSCs) while stimulating their growth
kinetics [140], in addition to the fact that 6BIO treatment of post-
mitotic highly differentiated cardiac cells promoted their prolif-
eration [141,142]. 6BIO via inhibition of GSK-3β is found to ex-
pand the pivotal role of Isl1+ cardiovascular progenitors to car-
diogenesis in a dose-dependent manner without significant sup-
pression of apoptosis [143]. All those findings are of great impor-
tance concerning the repair and diversification of the heart [144].
Another aspect of the effect of halogenated indirubins on cardiac
cells is portrayed in studies concerning the neuronal or myocar-
dial damage induced by ischemia/hypoxia. 6BIO was found to
prevent ischemic neuronal death in oxygen/glucose deprivation
conditions [145], while in a similar in vitro model of neural pro-
genitors it was found to rescue neurons either as a precondition-
ing technique or as a post-injury system [146]. Moreover, treat-
ment of hypertrophied rabbit hearts with 5IIO was found to in-
crease tolerance to ischemia through GSK-3β inhibition, suggest-
ing a practical treatment in the protection of hypertrophied
hearts during open heart surgeries [147].
Vougogiannopoulo
Furthermore, under the scope of investigating how histone de-
acetylase–2 (Hdac2) deficiency attenuates cardiac hypertrophy
in mice, it was found that intraperitoneal admission of 6BIO in
mice is capable of inhibiting in vivo GSK-3β, leading to increased
heart–body weight ratios [148].

Effect on renal and pancreatic cells
6BIO through mediation in the Wnt and Akt signaling has a sig-
nificant effect on kidney and pancreatic tissues. When diabetic
Wistar rats were administered 6BIO subcutaneously, it was found
that GSK-3 signaling was modulated and apoptosis of the cells
adjacent to globeruli was reduced in the diabetic kidney followed
by reduced urinary protein secretion [149]. In addition, exposing
mouse kidney mesenchymes in 6BIO triggers nephron segrega-
tion and epithelial differentiation [150]. Finally, inhibition of
GSK-3β by 6BIO after the treatment of micewith endotaxemic re-
nal failure resulted in the reduction of nephrotoxicity and mor-
tality by sepsis [151].
6BIO also is found to promote the replication and survival of pan-
creatic beta cells [152] and the proliferation of facultative hepatic
stem/progenitor cells [153], proposing that inhibition of GSK-3
and small molecule inhibitors could have applications in regener-
ative therapies.

Effect on neurodegeneration
6BIOʼs ability to affect CNS cells derives from its most important
property of being a selective and potent GSK-3β inhibitor. Abnor-
mal phosphorylation events related to GSK-3β activity have been
established in neurodegenerative states, and those findings lead
to the further investigation of GSK-3β inhibitors as neuroprotec-
tive agents [154]. 6BIO was found to reverse okadaic acid-in-
duced multi-substrate phosphorylation [155], tau phosphoryla-
tion, and apoptosis in cultured cortical neurons, with very lim-
ited toxicity [156,157]. Most importantly, this pattern of neuro-
protection was repeated with the use of three more 6BIO 3′-sub-
stituted derivatives, even though they are not as potent GSK-3β
inhibitors as 6BIO [59,158]. GSK-3β inhibition with 5IIO has
shown a neuroprotective effect and a stress response reduction
in human neurons [159]. A similar effect is also observed with
HIV-induced neurotoxicity to human neurons where 6BIO was
found to significantly reduce the activity of proapoptotic cas-
pases 3,7 [160], and with cortical neuron cells suffering endo-
plasmic reticulum stress where 6BIO treatment resulted in at-
tenuation of CHOP expression, suggesting a role of this factor in
neuronal cell death [161]. In vivo experiments in mice suffering
from kainate acid–induced neurotoxicity have shown that bromi-
nated indirubin analogues (6BIO, 5BIO, and 5A6BI) reduce mor-
tality and striatal astrogliosis [162].
Although GSK-3β inhibition is considered a putative target for
neurogeneration, results from different research groups suggest
that strong GSK-3β inhibition from the acetoxime analogue of
6BIO, which is even more potent against GSK-3β, leads to inhibi-
tion of hippocampal axon growth [163] and neurite axon growth
[164]. This effect is observed in a dose-dependent manner, thus
leaving open the possibility of a therapeutic effect of inhibitors
in low doses.

Effect on protozoans and other parasites
The antiprotozoan properties of halogenated indirubins are to a
large extent associated with the potential of inhibiting kinases,
like the leishmanian homologues of CDK1 (CRK3), GSK-3
(LdGSK-3), and MAPKs, whose functional role in the life cycle of
u K and Skaltsounis A-L. From Tyrian Purple… Planta Med 2012; 78: 1515–1528
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the parasite can be even more important than in mammalian
cells.
After screening of a panel of indirubins, the 6-brominated ana-
logues proved to be the most effective against the growth of
amastigotes and promastigotes of Leishmania donovani, a fact at-
tributed to kinase inhibition. Interestingly, 6BIO was found to
possess greater affinity with CRK3 (leishmanian homologue of
CDK-1) than LdGSK-3 (homologue of GSK-3), while the bisubsti-
tuted 5Me6BIO (78) associated greatly with the latter [165]. On
the other hand, 5IIOwas found to inhibit the growth of promasti-
gotes and amastigotes of L. mexicana though without any signifi-
cant potency against CRK3 [166] while docking studies indicated
potential of leishmanian MAPK inhibition by 5-iodo substituted
indirubins, placing them as candidates for antileishmanian treat-
ment [167]. Indirubin analogues also have shownmodest in vitro
activity against Toxoplasma gondii tachyzoites in the micromolar
range [168].
The activity of 6BIO expands also to arachnoids of Rhipicephalus
microplus, in which the homologue of GSK-3 has been elucidated
and found to play an important role in embryonic processes. 6BIO
was found to cause a reduction in larvae hatching and oviposition
of females [169].

Interaction of indirubins with the aryl hydrocarbon
receptor
Aryl hydrocarbon receptor (AhR), also known as dioxin receptor,
is a cotranscription factor mediating the toxicological and biolog-
ical properties of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin),
PAHs, and HAHs (polyciclic and halogenated aromatic hydrocar-
bons) [170]. Binding of the ligand to the receptor is essential for
the manifestation of toxicological response including hepatotox-
icity, immunotoxicity, and tumor promotion [171]. It remained
an orphan receptor without an endogenous ligand being identi-
fied, up to 2001, when indirubin identified in human urine was
found to contribute to the activity of the AhR [16,172,173]. Para-
doxically, while long-term exposure to xenobiotics leads to an in-
creased risk of malignancies [174], acute TCDD toxicity has been
found to inhibit solid tumor proliferation through upregulation
of endogenous CDK inhibitors [175]. The role of AhR in tumori-
genesis is still to a large extent unidentified and under consider-
able investigation [176].
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Conclusion
!

Indirubins represent a very robust scaffold among naturally de-
rived compounds and exhibit an outstanding versatility both as
biological tools and bioactive factors. Small variations on the ba-
sic skeleton, as in the case of halogenated indirubins, have been
proven to modulate significantly biological activity, leading to
more active and selective PK inhibitors with fascinating applica-
tions as in the field of stem cells. All of the above, along with their
charming history through the ages of natural product research
and development, places them in the front line of nature-inspired
drug discovery.
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