Horm Metab Res 2012; 44(13): 931-937
DOI: 10.1055/s-0032-1316343
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Biphasic Action of Aldosterone on Akt Signaling in Cardiomyocytes

T. Nagoshi
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
T. Date
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
M. Fujisaki
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
T. Yoshino
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
H. Sekiyama
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
K. Ogawa
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
Y. Kayama
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
K. Minai
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
K. Komukai
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
T. Ogawa
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
,
M. Yoshimura
1   Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
› Author Affiliations
Further Information

Publication History

received 13 February 2012

accepted 31 May 2012

Publication Date:
04 July 2012 (online)

Abstract

Both aldosterone and Akt signaling play pivotal roles in the pathogenesis of heart failure. However, little is known about the correlation between them. We herein investigated whether aldosterone interacts with Akt signaling in a coordinated manner in cardiomyocytes. Neonatal rat cardiomyocytes were stimulated with aldosterone for either a short (10-min) or long (24-h) time. The phosphorylation of Akt and its downstream effector, GSK3β, were transiently increased after short-term stimulation, which was blocked by either PI3K or Na+/H+ exchanger inhibitors, but not by the mineralocorticoid receptor antagonist, eplerenone. Long-term stimulation also significantly increased Akt-GSK3β phosphorylation and this effect was reduced by eplerenone. Thus, these results suggest that aldosterone activates Akt signaling via a biphasic reaction that occurs through different cascades. To understand the significance of the rapid action of aldosterone, cardiomyocytes were exposed to hydrogen peroxide for from 10 to 60 min. A short-term aldosterone stimulation (for up to 30 min) significantly protected cardiomyocytes from oxidative stress-induced cellular damage. Eplerenone did not abrogate this beneficial effect, while a PI3K inhibitor did. Therefore, during the early phase, aldosterone has favorable effects on cardiomyocytes, partly by acute activation of a mineralocorticoid receptor-independent cascade through the Na+/H+ exchanger, PI3K, and Akt. In contrast, its persistent activity produces pathological effects partly by chronic Akt activation in a mineralocorticoid receptor-dependent manner.

 
  • References

  • 1 Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med 1999; 341: 709-717
  • 2 Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309-1321
  • 3 Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011; 364: 11-21
  • 4 Rude MK, Duhaney TA, Kuster GM, Judge S, Heo J, Colucci WS, Siwik DA, Sam F. Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 2005; 46: 555-561
  • 5 Mihailidou AS, Loan Le TY, Mardini M, Funder JW. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 2009; 54: 1306-1312
  • 6 Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 2009; 54: 537-543
  • 7 Funder JW. Reconsidering the roles of the mineralocorticoid receptor. Hypertension 2009; 53: 286-290
  • 8 Fujita T. Mineralocorticoid receptors, salt-sensitive hypertension, and metabolic syndrome. Hypertension 2010; 55: 813-818
  • 9 He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, Koval OM, Kutschke W, Allamargot C, Yang J, Guan X, Zimmerman K, Grumbach IM, Weiss RM, Spitz DR, Sigmund CD, Blankesteijn WM, Heymans S, Mohler PJ, Anderson ME. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 2011; 17: 1610-1618
  • 10 Catena C, Colussi G, Marzano L, Sechi LA. Aldosterone and the heart: From basic research to clinical evidence. Horm Metab Res 2012; 44: 181-187
  • 11 Mizuno Y, Yoshimura M, Yasue H, Sakamoto T, Ogawa H, Kugiyama K, Harada E, Nakayama M, Nakamura S, Ito T, Shimasaki Y, Saito Y, Nakao K. Aldosterone production is activated in failing ventricle in humans. Circulation 2001; 103: 72-77
  • 12 Nakamura S, Yoshimura M, Nakayama M, Ito T, Mizuno Y, Harada E, Sakamoto T, Saito Y, Nakao K, Yasue H, Ogawa H. Possible association of heart failure status with synthetic balance between aldosterone and dehydroepiandrosterone in human heart. Circulation 2004; 110: 1787-1793
  • 13 Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JM, Danser AH. Genomic and nongenomic effects of aldosterone in the rat heart: Why is spironolactone cardioprotective?. Br J Pharmacol 2005; 145: 664-671
  • 14 Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 2011; 57: 442-451
  • 15 Alzamora R, Michea L, Marusic ET. Role of 11beta-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 2000; 35: 1099-1104
  • 16 Grossmann C, Gekle M. New aspects of rapid aldosterone signaling. Mol Cell Endocrinol 2009; 308: 53-62
  • 17 Wakabayashi S, Shigekawa M, Pouyssegur J. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 1997; 77: 51-74
  • 18 Karmazyn M, Kilic A, Javadov S. The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol 2008; 44: 647-653
  • 19 Karmazyn M, Liu Q, Gan XT, Brix BJ, Fliegel L. Aldosterone increases NHE-1 expression and induces NHE-1-dependent hypertrophy in neonatal rat ventricular myocytes. Hypertension 2003; 42: 1171-1176
  • 20 Matsui S, Satoh H, Kawashima H, Nagasaka S, Niu CF, Urushida T, Katoh H, Watanabe Y, Hayashi H. Non-genomic effects of aldosterone on intracellular ion regulation and cell volume in rat ventricular myocytes. Can J Physiol Pharmacol 2007; 85: 264-273
  • 21 Bandulik S, Penton D, Barhanin J, Warth R. TASK1 and TASK3 potassium channels: Determinants of aldosterone secretion and adrenocortical zonation. Horm Metab Res 2010; 42: 450-457
  • 22 De Giusti VC, Nolly MB, Yeves AM, Caldiz CI, Villa-Abrille MC, Chiappe de Cingolani GE, Ennis IL, Cingolani HE, Aiello EA. Aldosterone stimulates the cardiac Na+/H+ exchanger via transactivation of the epidermal growth factor receptor. Hypertension 2011; 58: 912-919
  • 23 Yamamuro M, Yoshimura M, Nakayama M, Abe K, Shono M, Suzuki S, Sakamoto T, Saito Y, Nakao K, Yasue H, Ogawa H. Direct effects of aldosterone on cardiomyocytes in the presence of normal and elevated extracellular sodium. Endocrinology 2006; 147: 1314-1321
  • 24 Matsui T, Nagoshi T, Rosenzweig A. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2003; 2: 220-223
  • 25 Matsui T, Nagoshi T, Hong EG, Luptak I, Hartil K, Li L, Gorovits N, Charron MJ, Kim JK, Tian R, Rosenzweig A. Effects of chronic Akt activation on glucose uptake in the heart. Am J Physiol Endocrinol and Metabol 2006; 290: E789-E797
  • 26 Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999; 100: 2373-2379
  • 27 Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, Komuro I. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 2000; 102: 2873-2879
  • 28 Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001; 104: 330-335
  • 29 Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001; 103: 670-677
  • 30 Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, Ogawa W, Del Monte F, Gwathmey JK, Grazette L, Hemmings B, Kass DA, Champion HC, Rosenzweig A. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest 2005; 115: 2128-2138
  • 31 Liu SL, Schmuck S, Chorazcyzewski JZ, Gros R, Feldman RD. Aldosterone regulates vascular reactivity: Short-term effects mediated by phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation. Circulation 2003; 108: 2400-2406
  • 32 Holzman JL, Liu L, Duke BJ, Kemendy AE, Eaton DC. Transactivation of the IGF-1R by aldosterone. Am J Physiol Renal Physiol 2007; 292: F1219-F1228
  • 33 Bunda S, Wang Y, Mitts TF, Liu P, Arab S, Arabkhari M, Hinek A. Aldosterone stimulates elastogenesis in cardiac fibroblasts via mineralocorticoid receptor-independent action involving the consecutive activation of Galpha13, c-Src, the insulin-like growth factor-I receptor, and phosphatidylinositol 3-kinase/Akt. J Biol Chem 2009; 284: 16633-16647
  • 34 Hitomi H, Kiyomoto H, Nishiyama A, Hara T, Moriwaki K, Kaifu K, Ihara G, Fujita Y, Ugawa T, Kohno M. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension 2007; 50: 750-755
  • 35 Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and irs2 via a reactive oxygen species-mediated pathway in 3t3-l1 adipocytes. Endocrinology 2009; 150: 1662-1669
  • 36 Date T, Taniguchi I, Inada K, Matsuo S, Miyanaga S, Yamane T, Abe Y, Sugimoto K, Mochizuki S. Nicorandil inhibits serum starvation-induced apoptosis in vascular endothelial cells. J Cardiovasc Pharmacol 2005; 46: 721-726
  • 37 Wu KL, Khan S, Lakhe-Reddy S, Jarad G, Mukherjee A, Obejero-Paz CA, Konieczkowski M, Sedor JR, Schelling JR. The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J Biol Chem 2004; 279: 26280-26286
  • 38 Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E, Kuhn M. Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 2005; 112: 2307-2317
  • 39 Darmellah A, Baetz D, Prunier F, Tamareille S, Rucker-Martin C, Feuvray D. Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the goto-kakizaki rat model of type 2 diabetes: Critical role of Akt. Diabetologia 2007; 50: 1335-1344
  • 40 Snabaitis AK, Cuello F, Avkiran M. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1. Circ Res 2008; 103: 881-890
  • 41 Mano A, Tatsumi T, Shiraishi J, Keira N, Nomura T, Takeda M, Nishikawa S, Yamanaka S, Matoba S, Kobara M, Tanaka H, Shirayama T, Takamatsu T, Nozawa Y, Matsubara H. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation 2004; 110: 317-323
  • 42 Messaoudi S, Milliez P, Samuel JL, Delcayre C. Cardiac aldosterone overexpression prevents harmful effects of diabetes in the mouse heart by preserving capillary density. FASEB J 2009; 23: 2176-2185
  • 43 Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005; 115: 2108-2118
  • 44 Freel EM, Tsorlalis IK, Lewsey JD, Latini R, Maggioni AP, Solomon S, Pitt B, Connell JM, McMurray JJ. Aldosterone status associated with insulin resistance in patients with heart failure – data from the aloft study. Heart 2009; 95: 1920-1924
  • 45 Nagoshi T, Yoshimura M, Rosano GM, Lopaschuk GD, Mochizuki S. Optimization of cardiac metabolism in heart failure. Curr Pharm Des 2011; 17: 3846-3853