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Introduction

The olfactory mucosa is the part of the nasal mucosa that
carries the specialized sensory organ for the modality of
smell. Its structure, function, and physiology are unique yet
poorly understood. Diseases associated with the olfactory
system lead to an array of complex secondary presentations
that are also not well understood including complaints of
quality of life, mood changes, and depression.1

It is well known that the olfactory system is one of the two
areas in the central nervous system (CNS)—the other being the
hippocampus—where neuronal regeneration occurs. Yet in the
clinical setting, the physician is still unable to exploit this
exceptional characteristic for the patient’s benefit. Furthermore,
the lack of understanding of the olfactory mucosa renders the
differential diagnosis for anosmia to range from entorhinal
disease to complex CNS disorders such as Parkinson disease
and Alzheimer disease. A better understanding of the olfactory
mucosa is necessary for olfactory function to translate into
accurate, useful clinical indicators for pathologic processes.

The olfactory mucosa has recently come under scrutiny as
a potential source for cells that might be used for human
tissue repair, and several groups have transplanted cell
derivatives of the mucosa into injury models, often without
really understanding the true constituents of the mucosa and

transplant. Olfactory ensheathing cells in particular have
attracted much attention, due to promising results in animal
models of spinal cord repair2,3 and the preliminary confir-
mation of safety in patients.4 However, it is important to
better understand the cellular components of cell cultures
derived from the mucosa, and this in turn requires a better
understanding of the olfactory mucosa itself.

Clinical and Developmental Anatomy

Gross and Clinical Anatomy
Upon gross examination, the human olfactory mucosa ap-
pears slightly yellow and without a distinctive hue as seen in
rodents. It is generally agreed that it is located high in the
nasal cavity, and specifically, it has been suggested to be
concentrated in the posterosuperior aspect of the nasal
cavity, in the two clefts formed superiorly by the cribriform
plate, medially by the nasal septum, and laterally by the
superior meatus.5 Laterally, it can also be found in the
posterior aspect of the superior turbinate and as far anteriorly
as above and below the middle turbinate.6,7

In the clinical setting, gross examination of the olfactory
mucosa may lack diagnostic value. First, the distribution of
the olfactory mucosa is heterogeneous, thus making it diffi-
cult to distinguish from respiratory mucosa.8 Second,
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throughout life, respiratory epithelium gradually expands
and replaces olfactory epithelium (OE).8 And third, the olfac-
tory tissue possesses multiple pathways for defense and
regeneration9 that makes morphological evaluation at any
one point in time uninformative of overall mucosal health.
The retrospective study conducted by Holbrook et al strongly
implicated that rather than evaluating the morphological
status of the OE, it is muchmore useful to examine the health
of olfactory axons to determine the overall olfactory
function.10

Developmental Anatomy
The OE is formed by two olfactory placodes that are ectoder-
mal thickenings in the rostrolateral region of the embryonic
head.11–16 In humans, the OE is well delineated by day 37
postconception (pc).17 The olfactory receptor neurons (ORNs)
undergo ciliogenesis during 9 weeks pc, and by 11 weeks pc,
there is complete morphological differentiation of ORNs and
development of Bowman glands.18 Olfactory marker protein
(OMP) can first be detected in ORNs at 24 weeks pc19 and in
the olfactory bulbs (OBs) at 32 weeks pc,20 but it has been
reported that preterm infants born at 29 weeks pc exhibit
clear behavioral responses to strong odorants.21,22 In rodents,
OMP is generally accepted as a marker of maturity due to its
presence in differentiated ORNs,23,24 but this criterion is
obviously unsuitable for humans. The OE continues to devel-
op after organogenesis and becomes morphologically identi-
cal to adult epithelium at late gestation.25

The physiology of fetal OE is worth mentioning here. Gu
et al26 found high levels of cytochrome P450 enzymes in the
olfactory mucosa of developing human fetal tissue. High
expression of these enzymes suggests that the olfactory
mucosa may be deeply and intricately involved in the metab-
olism of maternally derived compounds; specifically, the
olfactory mucosa may be a preferred target of certain toxic
compounds. The recent quantitative analysis of the spatial
distribution of UDP-glucuronosyltransferases, enzymes in-
volved in detoxification, in mouse neuro-olfactory tissue
further implies the role of OE in detoxification.27 In addition
to playing importantmetabolic roles, fetal olfactory tissuehas
been implicated to have immunologic functions by the dis-
covery of Iba1- and annexin A3-immunopositive cells in the
peripheral olfactory nerves of adult rats and adult cats.28

Iba1- and annexin A3-immunopositivity suggests the pres-
ence of microglia/macrophages. These cells may be important
in immunologic protection of the brain from infectious and
toxic agents.28

Histology

The tissue lining the nasal cavity is composed of four types of
epithelium. From outermost to innermost, they are (1) strati-
fied squamous epithelium with numerous hair follicles, (2)
transitional, cuboid, or columnar epithelium with no hair
follicles, (3) ciliated pseudostratified columnar epithelium,
and finally, (4) respiratory epithelium that consists of ciliated
columnar cells, mucus-secreting goblet cells, and small baso-
philic cells believed to be stem cells.29–31 Upon microscopic

examination, one finds that healthy olfactory mucosa is
generally thicker and more cellular than respiratory
mucosa.32

The olfactory mucosa is composed of three primary com-
ponents: epithelium, basement membrane, and lamina prop-
ria. Adult OE can be identified using antibodies against trace
amine-associated receptors and OMP; developing epithelial
markers include epidermal growth factor receptors, trans-
forming growth factor α, and nerve growth factor β.33,34 The
basal lamina, or basement membrane, lies beneath the epi-
thelium and is usually a well-defined homogeneous struc-
ture.35 On the other side of the basement membrane lies a
thick lamina propria that contains mucous and serous cells,
nerve fascicles, pigment cells, lymphoid cells, and blood
capillaries (►Fig. 1).36–38

Before moving on to the discussion of different cell types,
one other tissue structure worth specific mention is the
olfactory pit, formed from invagination of OE into the under-
lying connective tissue. These structures vary from 150 to
200 µm in depth and 50 to 100 µm in diameter.39 They are
hypothesized to prolong odorant association with receptors
by creating a pouched environment or to provide specific
niches for specialized neurons that have yet to be discov-
ered.39 Like Bowman glands, olfactory pits are confined to the
OE and are thus useful markers for distinction from respira-
tory epithelium.40

Fig. 1 Light micrograph thick section (1 µm) of human olfactory
mucosa. The olfactory epithelium contains supporting (S), receptors
(O), and basal (B) cells. The lamina propria contains olfactory axon
fascicles (Ax) and Bowman glands (G), whose secretory ducts open to
the mucosal surface (arrows). �450. (Reprinted with permission from
Morrison EE, Costanzo RM. Morphology of olfactory epithelium in
humans and other vertebrates. Microsc Res Tech 1992;23(1):49–61.)
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Cell Types in the Olfactory Mucosa

Epithelium
The OE is composed of five principal cell types: olfactory
receptor neurons, sustentacular cells, basal cells, microvillar
cells, and fingerlike microvilli cells.30,41–44

Olfactory Receptor Neurons
It is well known that ORNs are sensory cells specialized for
detecting odorants. In humans, ORNs can be found at various
stages of maturity and are interspersed with sustentacular
cells.45 The nuclei of ORNs are elliptical and usually darkly
stained, the cell bodies are round or oval, � 4 to 6 µm in
diameter, and the dendrites ascend in between sustentacular
cells to terminate in a knob-bearing olfactory cilia, with each
receptor cell having 10 to 20 cilia.46–48 Gap junctions are
present between ORNs, and they are believed to play a role in
facilitating the development and turnover of tissue.49 The
morphology of the knob is flat or dome-shaped, not bulb-
like. And cilia lie in the long axis of the olfactory cell,
perpendicular to the epithelial surface rather than parallel
as described in some nonhuman species.41 Olfactory knobs
and cilia in a nonparallel orientation under electron micros-
copy can be used to determine the presence of ORNs within
the OE.6

Olfactory sensory cells can be marked by growth-associat-
ed protein-43),50 β-tubulin 3,6,51,52 MAP-1B,53 neuron-spe-
cific enolase,54 neurofilament protein,54 neural cell adhesive
molecule (NCAM),55 neuron-specific tubulin,56 PGP 9.5,57,58

and OMP.59–61 MAP-1B and NCAM identify dendrites and
axons of ORNs and label nerve bundles intensely.53 Carno-
sine-like immunoreactivity has also been demonstrated in
ORNs.62

Sustentacular Cells
Sustentacular cells are irregular columnar cells with large
vertically elongated euchromatic nuclei and multiple long
microvilli.41,63 Most sustentacular cells lie superficial to the
soma of ORNs, and their cytoplasm contains manymitochon-
dria, granular and agranular endoplasmic reticulum.63 Many
findings suggest that sustentacular cells play an important
role in the regulation of ORN homeostasis and proliferation
including the discovery of tight junctions between susten-
tacular cells and ORNs and complex calcium signaling in
mouse sustentacular cells.31,46,64

SUS-1 and SUS-4 have been described as useful antibodies
for labeling sustentacular cells in the rat.65,66 Using electron
microscopy, Pixley et al67 found that 1F4, an immunoglobulin
(Ig)M kappa monoclonal antibody, selectively labeled the
microvilli of sustentacular cells and ductal cells of Bowman
glands in the rat. They also bind to the microvilli and cilia of
ciliated but not secretory cells in the respiratory epithelium.67

More recently, Minovi et al68 found that nestin expression is
constantly detectable in the apical protuberances of susten-
tacular cells in healthy adults. But in the decline of olfactory
function, nestin expression can be decreased.68 These results
suggest the possibility of nestin and 1F4 as markers for
sustentacular cells and indicator of OE.

Bowman glands
It is known that Bowman glands are branched tubuloal-
veolar structures that lie beneath the OE and secrete onto
the epithelial surface through narrow ducts.31 In addition
to bathing the dendritic endings and cilia of ORNs, thus
allowing odorant diffusion to sensory receptors, the se-
cretion is suggested to play important immunologic func-
tions. Constituents of the secretory immune system
including IgA, IgM and J chain, have been localized in
the acinar and duct cells of Bowman glands and in the
mucociliary complex.69 Lactoferrin and lysozyme, two
antimicrobial proteins, have also been found.69

Olfactory ensheathing cells
Olfactory ensheathing cells were first described by Golgi
and by Blanes when they observed the glial populations in
the olfactory bulbs of mammals.70,71 In addition to resid-
ing in the first two layers of the OB, these cells are found in
the OE, where the mesaxon of each ensheathing cell
encloses densely packed bundles of unmyelinated axons
(fila olfactoria) projecting from ORNs to the OBs.12,14,72–76

Although OECs are found in the interstices between glo-
meruli in the OB, their processes never extend into the
glomeruli.72,77

As mentioned previously, the OE develops from the
olfactory placodes. The olfactory bulbs, in contrast, develop
from the neural tube. Because of the dual developmental
origin of the structures containing OECs, the origin of OECs
is still debated. There is increasing evidence today that the
OECs develop from the olfactory placodes. As they mature,
OEC progenitor cells accompany ORN axons toward the OB
by following a gradient created by soluble factors secreted
by the target tissue. This idea is further supported by the
nonimmunopositivity of OECs for A4 antibody.

Morphologically, olfactory ensheathing cell progenitors
can be clearly distinguished by their dark round appear-
ance, mode of association with axons, and ultrastructural
characteristics.14–16,73,78 Their lobulated nucleus contains
patchychromatin beneath the nuclear envelope and one or
two nucleoli. As they mature, they acquire an elongated
morphology with thin laminar processes that enfold small
axonal bundles.16 In the adult, OECs have a fusiform
morphology with the perikarya aligned along olfactory
fascicles.73,78 Their nuclei are indented with uniformly
distributed, yet slightly clumped chromatin below the
nuclear membrane. In the cytoplasm, free ribosomes and
large inclusion bodies are abundant. In comparison with
astrocytes, OECs are electron denser and have intermedi-
ate filaments that are scattered rather than arranged in
bundles.74,79,80 The plasma membrane at the terminal
ends of processes also lack the orthogonal arrays of intra-
membranous particles that are observed in those of
astrocytes.73,74,76,81,82

To identify OECs, numerous markers have been sug-
gested: platelet-derived growth factors,83 neuropeptide
Y,84 S100,85,86 glia-derived nexin (a neurite-promoting
molecule),87,88 L1 (cell adhesion molecule),89 laminin,90–92

polysialic acid-containing molecule,93 NCAM,89 and
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p75NGFR. The expression of p75NGFR is stronger in neo-
natal OECs and almost undetectable, but not absent, in the
adult.86,93–95 Also, it has been found that NCAM and L1 are
exclusively present in the part of glial membrane that
associates with axons.89 To distinguish OECs from Schwann
cells, Boyd et al96 reported that OECs exclusively express
calponin. Tomé et al,97 however, found calponin to be
heterogeneously expressed by neonatal mucosal connec-
tive tissue but not neonatal OECs, embryonic OECs, and
neonatal Schwann cells.

In recent years, olfactory ensheathing cells (OECs) have
received much attention from the scientific community
due to their application in regenerative medicine. It was
suggested a few years ago that OECs from OE differ from
those obtained from olfactory bulbs.98 Notably, OECs from
olfactory mucosa overexpress genes characteristic of
wound healing and regulation of extracellular matrix,
whereas OECs from olfactory bulbs express genes sugges-
tive of nervous system development.98 Within the popu-
lation of OECs from olfactory bulbs, two subpopulations
different in biophysical property and gap junction connec-
tivity have also been found.99

In vivo, OECs form a matrix of cellular projections
surrounding axons, unique among glia, and express high
levels of connexin-43.99 In the transitional zone between
the peripheral nervous system and CNS, OECs have been
found to interact freely with astrocytes and not to induce
astrocytosis, which is a major difference between OECs
and Schwann cells.100,101 This property has been sug-
gested to contribute to the ability of OECs to promote
neural regeneration.100 It has recently been found that
OECs also secrete neurotrophic factors (e.g., NGF 74 and
75) that promote neurite growth.102,103

Basal Cells
It is believed that steady loss and replacement of ORNs and
sustentacular cells throughout life is a normal process, and
basal cells that lie above the basement membrane are the
stem cells in the OE that divide to give rise to new neural and
supporting cells.104–107 In the rat it is well known that there
are two basal cell types, (small) globose basal cells (GBCs) and
horizontal basal cells (HBCs), and that mature and immature
ORNs are organized in a highly laminar fashion with mature
cells closer to the apical surface. In thehuman, however, there
appears to exist only one basal cell type that morphologically
resembles the GBCs in the rat.53 These cells are usually 5 to
7 µm in diameter and have a rough cellular surface upon
examination by electron microscopy.46

Intermediate filament proteins have been markers of
interest in the past. It was previously assumed that nestin,
one type of intermediate filament protein, was a specific
marker for OE stem cells.108,109 Using a bank of antibodies,
Doyle et al110 found that nestin is actually expressed in the
axonal ends and inferior processes of OE sustentacular cells in
the basal compartment of the epithelium. Hahn et al53 further
investigated the expression of cytokeratin-5, another class of
intermediatefilament proteins, in human OE, but disappoint-
ingly, the staining showed that cytokeratin is expressed not

only in the first layer of basal cells closest to the basal lamina
but also in the cells above them.

It has been suggested that Ki-67, a cell cycle marker, be
used as criterion for putative neural precursors in human
OE.53 The limitation of this marker is that 20% of the labeled
cells reside in layers above the basal one, and not all cells
positive for Ki-67 are positive for p75NGFR, a protein known
to be expressed in basal cells as well as OECs.53,111,112

Currently, there is still no known marker that exclusively
labels human OE stem cells.

Whether HBCs or GBCs are the stem cells in the rat that
give rise to the other or to the neural and nonneural cells in
the OE has been a subject of debate.104,113–118 The following
section reviews the histology and proposed function of these
two cell types.

Horizontal Basal Cells
Horizontal basal cells (HBCs) lie deepest in the OE and
closest to the basement membrane, and they maintain a
flat morphology.119 They are relatively quiescent and are
thought to divide only occasionally to give rise to GBCs,
which are assumed to then give rise to ORNs and susten-
tacular cells.114,120,121 In the event of severe damage to the
OE,HBCs havebeen found to dividemore frequently to give
rise to multiple cell types.114,120 This also potentially
accelerates tissue repair. It has been suggested that HBCs
can give rise to OECs.113

Globose Basal Cells
Globose basal cells (GBCs) lie above the HBCs and have a
rounder morphology.119 They can be labeled using cyto-
keratin, p75NGFR, and GBC-1, a monoclonal antibody that
exclusively labels GBCs.66,68,122 In animalmodels, GBCs are
found to be necessary for regeneration of OE after
lesion.123 Their ability to give rise to either neurons, non-
neurons, or both cell types in the OE proves that they are
multipotent cells.124

Microvillar Cells
Microvillar cells are located near epithelial surface.42 Although
they are flask-shapedwith a tuft of blunt microvilli that extends
into the mucus layer of the epithelium, a thin axon-like cyto-
plasmic process extends from the basal pole of these cells and
travels through the epithelium toward the lamina propria,
rendering a bipolar morphology.42 Microvillar cells are positive
for spot-35proteins, a typeof neuron-specificprotein.125Experi-
ments tracing theflowof enzymes further show these cells to be
connected to the olfactory bulbs.126 Microvillar cells may very
well represent a secondmorphologically distinct class of chemo-
receptors in the olfactory mucosa.42,125,126 But it has also been
demonstrated that a loss of microvillar cells does not affect
olfactory function.127

Fingerlike Microvilli Cells
One report fromOta44described afifth type cell in the OE, and
this cell type was found only after the disappearance of the
olfactory cilial mat following resection of the olfactory bulbs.
Transmission electron microscopy observation reveals that

Journal of Neurological Surgery—Part B Vol. 75 No. B5/2014

Olfactory Mucosa: A Review Chen et al.296

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



themicrovilli of these cells are characterized by a specific core
structure consisting of microfilament bundles absent in the
microvillar cells. Observing a disconnection between these
cells and the postganglionic fibers of the trigeminal nerve and
the olfactory bulbs, the author suggests that the fifth type cell
could be a mechanoreceptor for a sensory system that is
nonolfactory.

Lamina Propria
The lamina propria of the olfactory mucosa contains numer-
ous cell types and structures including endothelial cells that
make up the blood vessels, Schwann cells that myelinate
processes of sensory neurons, glandular cells of Bowman
glands, and stem cells, which have become of significant
interest in recent years.

Lamina propria–derived stem cells (LPSCs) have been
shown to grow in large numbers and to differentiate into
neural and nonneural cell types both in vitro and in vivo.128

This is a feature not observed in neurosphere-derived stem
cells.129 Immunomarkers and flow cytometry also suggest
that these cells have little in common with neural stem cells
and hematopoietic stem cells.129

Studies have shown that LPSCs may have vast replicative
potential because they can generate dopaminergic cells after
transplantation in a rat model of Parkinson disease and can
also give rise to mesodermal cell types.128,130 For this reason,
these residents of lamina propria have been referred to as
mesenchymal(-like) stem cells.

Olfactory Mucosa in Culture

In explant cultures of human OE, two cell types are found to
have p75NGFR immunoreactivity.53 The first type is found to
have a round to polygonal morphology, and they are immu-
nopositive for Ki-67 and negative for glial fibrillar acidic
protein (GFAP). These cells are hypothesized to be equivalent
to OE basal cells. The other type is spindle-shaped and
immunopositive for GFAP. Interestingly, these cells are found
around the edges of the epithelial sheets that grow out of the
explants.53

Cells positive for OMP have round or oval cell bodies and
possess a bipolar morphology, as do in vivo ORNs. It has been
demonstrated that ORNs in dissociated cultures can respond
to odorant stimulation by changes in intracellular calcium
even if their cellular morphologies appear immature.131

In vitro, neonatal human OECs fromOB have been found to
express the glial markers S100, GFAP, p75NGFR, ErbB1–2-3
receptors, but not ErbB4, and neuregulin (NRG)-1.132 De-
pending on the isoform, NRG-1 can be found either in the
nucleus or cytoplasm.133

The ultrastructure of OECs remains the same in vivo and
in vitro, but in animal models, the morphology of OECs can
vary tremendously depending on the age of the tissue donor
and the presence or absence of serum in the culture medi-
um.74,134,135When cultured frommouse embryos and grown
in medium with serum, they appear flat, bipolar, or tripolar.
In chemically defined medium, cells change from flat to
bipolar spindly, tripolar, or stellate.135 When cultured from

neonatal rodent epithelium in serum-containing medium,
most of the cells are flat with extended cytoplasm; the rest
are bipolar or tripolar with long and thin processes.74,136,137

Moving these cells to a serum-free media results in an
increase of cells with a bipolar or multiprocess appear-
ance.137,138 Experiments using culture of OECs from rat OB
have also been done. Most of these cells (> 94%) are flattened
and exhibit a fibroblast-like morphology when cultured in
serum-containing medium.93,94 When moved to a serum-
free environment, a new population with a spindly morphol-
ogy emerges.93,94

Coculturing with neurons also changes the morphology of
OECs, but the change depends on axonal contact and seems to
be independent of age of tissue donor and culture conditions.
In the presence of axonal contact, OECs acquire a bipolar
spindly appearance and are able to ensheathe individual
axons.139–142 Interestingly, when coculturedwithmyelinated
dorsal root ganglion neurons, OECs form myelin sheaths
around the axons of these cells.140

Conclusion

The olfactory mucosa is a highly organized tissue, unique and fit
for its purpose. It is possible to isolate many different types of
cells including stem cells and olfactory ensheathing cells, and
culture them for possible applications in tissue repair. However,
it is clear that there are major differences in the numbers and
types of cells that can be obtained from cultures of human and
rodent samples of mucosa, and we need to study these differ-
encesmore closely in invitro tissue culture and in invivomodels.
We need to study how cell culture yield changes with patient
age, smoking, pollution, and the presence of chronic inflamma-
tory diseases of the nose, as well as to validate culture to good
manufacturing practices standards. The positive experimental
models of repair using cell therapies are outside the scope of this
article, but many show promise, and it is necessary therefore to
turn the spotlight on the nature of the cells we are using for
cellular therapies derived from olfactory mucosa.
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