Semin Liver Dis 2014; 34(03): 265-272
DOI: 10.1055/s-0034-1383726
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Environmental Factors in Primary Biliary Cirrhosis

Brian D. Juran
1   Division of Gastroenterology and Hepatology, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota
,
Konstantinos N. Lazaridis
1   Division of Gastroenterology and Hepatology, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2014 (online)

Abstract

The etiology of the autoimmune liver disease primary biliary cirrhosis (PBC) remains largely unresolved, owing in large part to the complexity of interaction between environmental and genetic contributors underlying disease development. Observations of disease clustering, differences in geographical prevalence, and seasonality of diagnosis rates suggest the environmental component to PBC is strong, and epidemiological studies have consistently found cigarette smoking and history of urinary tract infection to be associated with PBC. Current evidence implicates molecular mimicry as a primary mechanism driving loss of tolerance and subsequent autoimmunity in PBC, yet other environmentally influenced disease processes are likely to be involved in pathogenesis. In this review, the authors provide an overview of current findings and touch on potential mechanisms behind the environmental component of PBC.

 
  • References

  • 1 Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353 (12) 1261-1273
  • 2 Hirschfield GM, Chapman RW, Karlsen TH, Lammert F, Lazaridis KN, Mason AL. The genetics of complex cholestatic disorders. Gastroenterology 2013; 144 (7) 1357-1374
  • 3 Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 2013; 8: 303-330
  • 4 Selmi C, Mayo MJ, Bach N , et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127 (2) 485-492
  • 5 Lazaridis KN, Juran BD, Boe GM , et al. Increased prevalence of antimitochondrial antibodies in first-degree relatives of patients with primary biliary cirrhosis. Hepatology 2007; 46 (3) 785-792
  • 6 Jones DE, Watt FE, Metcalf JV, Bassendine MF, James OF. Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol 1999; 30 (3) 402-407
  • 7 Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and Sjögren's syndrome: autoimmune epithelitis. J Autoimmun 2012; 39 (1-2) 34-42
  • 8 Hirschfield GM, Liu X, Han Y , et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 2010; 42 (8) 655-657
  • 9 Hirschfield GM, Liu X, Xu C , et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009; 360 (24) 2544-2555
  • 10 Juran BD, Hirschfield GM, Invernizzi P , et al; Italian PBC Genetics Study Group. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 2012; 21 (23) 5209-5221
  • 11 Liu JZ, Almarri MA, Gaffney DJ , et al; UK Primary Biliary Cirrhosis (PBC) Consortium; Wellcome Trust Case Control Consortium 3. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 2012; 44 (10) 1137-1141
  • 12 Liu X, Invernizzi P, Lu Y , et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42 (8) 658-660
  • 13 Mells GF, Floyd JA, Morley KI , et al; UK PBC Consortium; Wellcome Trust Case Control Consortium 3. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 2011; 43 (11) 1164
  • 14 Nakamura M, Nishida N, Kawashima M , et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 2012; 91 (4) 721-728
  • 15 Hamlyn AN, Macklon AF, James O. Primary biliary cirrhosis: geographical clustering and symptomatic onset seasonality. Gut 1983; 24 (10) 940-945
  • 16 Prince MI, Chetwynd A, Diggle P, Jarner M, Metcalf JV, James OF. The geographical distribution of primary biliary cirrhosis in a well-defined cohort. Hepatology 2001; 34 (6) 1083-1088
  • 17 McNally RJ, James PW, Ducker S, James OF. Seasonal variation in the patient diagnosis of primary biliary cirrhosis: further evidence for an environmental component to etiology. Hepatology 2011; 54 (6) 2099-2103
  • 18 Abu-Mouch S, Selmi C, Benson GD , et al. Geographic clusters of primary biliary cirrhosis. Clin Dev Immunol 2003; 10 (2-4) 127-131
  • 19 Ala A, Stanca CM, Bu-Ghanim M , et al. Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites. Hepatology 2006; 43 (3) 525-531
  • 20 Boonstra K, Kunst AE, Stadhouders PH , et al; the Epi PSC PBC study group. Rising incidence and prevalence of primary biliary cirrhosis: a large population-based study. Liver Int 2014;
  • 21 Corpechot C, Chrétien Y, Chazouillères O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010; 53 (1) 162-169
  • 22 Gershwin ME, Selmi C, Worman HJ , et al; USA PBC Epidemiology Group. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005; 42 (5) 1194-1202
  • 23 Howel D, Fischbacher CM, Bhopal RS, Gray J, Metcalf JV, James OF. An exploratory population-based case-control study of primary biliary cirrhosis. Hepatology 2000; 31 (5) 1055-1060
  • 24 Lammert C, Nguyen DL, Juran BD , et al. Questionnaire based assessment of risk factors for primary biliary cirrhosis. Dig Liver Dis 2013; 45 (7) 589-594
  • 25 Liang Y, Yang Z, Zhong R. Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: a meta-analysis. Hepatol Res 2011; 41 (6) 572-578
  • 26 Mantaka A, Koulentaki M, Chlouverakis G , et al. Primary biliary cirrhosis in a genetically homogeneous population: disease associations and familial occurrence rates. BMC Gastroenterol 2012; 12: 110
  • 27 Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the United States. Hepatology 2001; 33 (1) 16-21
  • 28 Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 2010; 59 (4) 508-512
  • 29 Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 2012; 56 (5) 1181-1188
  • 30 Kim WR, Lindor KD, Locke III GR , et al. Epidemiology and natural history of primary biliary cirrhosis in a US community. Gastroenterology 2000; 119 (6) 1631-1636
  • 31 Metcalf JV, Bhopal RS, Gray J, Howel D, James OF. Incidence and prevalence of primary biliary cirrhosis in the city of Newcastle upon Tyne, England. Int J Epidemiol 1997; 26 (4) 830-836
  • 32 Chong VH, Telisinghe PU, Jalihal A. Primary biliary cirrhosis in Brunei Darussalam. Hepatobiliary Pancreat Dis Int 2010; 9 (6) 622-628
  • 33 Watson RG, Angus PW, Dewar M, Goss B, Sewell RB, Smallwood RA. Melbourne Liver Group. Low prevalence of primary biliary cirrhosis in Victoria, Australia. Gut 1995; 36 (6) 927-930
  • 34 Simpson Jr S, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 2011; 82 (10) 1132-1141
  • 35 Triger DR. Primary biliary cirrhosis: an epidemiological study. BMJ 1980; 281 (6243) 772-775
  • 36 Vine MF, Stein L, Weigle K , et al. Effects on the immune system associated with living near a pesticide dump site. Environ Health Perspect 2000; 108 (12) 1113-1124
  • 37 Carpenter DO, Shen Y, Nguyen T, Le L, Lininger LL. Incidence of endocrine disease among residents of New York areas of concern. Environ Health Perspect 2001; 109 (Suppl. 06) 845-851
  • 38 Amano K, Leung PS, Rieger R , et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 2005; 174 (9) 5874-5883
  • 39 McNally RJ, Ducker S, James OF. Are transient environmental agents involved in the cause of primary biliary cirrhosis? Evidence from space-time clustering analysis. Hepatology 2009; 50 (4) 1169-1174
  • 40 Hézode C, Lonjon I, Roudot-Thoraval F , et al. Impact of smoking on histological liver lesions in chronic hepatitis C. Gut 2003; 52 (1) 126-129
  • 41 Tsochatzis E, Papatheodoridis GV, Manolakopoulos S, Tiniakos DG, Manesis EK, Archimandritis AJ. Smoking is associated with steatosis and severe fibrosis in chronic hepatitis C but not B. Scand J Gastroenterol 2009; 44 (6) 752-759
  • 42 Corpechot C, Gaouar F, Chrétien Y, Johanet C, Chazouillères O, Poupon R. Smoking as an independent risk factor of liver fibrosis in primary biliary cirrhosis. J Hepatol 2012; 56 (1) 218-224
  • 43 Zein CO, Beatty K, Post AB, Logan L, Debanne S, McCullough AJ. Smoking and increased severity of hepatic fibrosis in primary biliary cirrhosis: A cross validated retrospective assessment. Hepatology 2006; 44 (6) 1564-1571
  • 44 Bluhm AL, Weinstein J, Sousa JA. Free radicals in tobacco smoke. Nature 1971; 229 (5285) 500
  • 45 Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91 (14) 1194-1210
  • 46 Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 1993; 686: 12-27 , discussion 27–28
  • 47 Thielen A, Klus H, Müller L. Tobacco smoke: unraveling a controversial subject. Exp Toxicol Pathol 2008; 60 (2-3) 141-156
  • 48 Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010; 34 (3) J258-J265
  • 49 Glossop JR, Dawes PT, Mattey DL. Association between cigarette smoking and release of tumour necrosis factor alpha and its soluble receptors by peripheral blood mononuclear cells in patients with rheumatoid arthritis. Rheumatology (Oxford) 2006; 45 (10) 1223-1229
  • 50 Lee SH, Goswami S, Grudo A , et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007; 13 (5) 567-569
  • 51 Shan M, Cheng HF, Song LZ , et al. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Sci Transl Med 2009; 1 (4) 4-10
  • 52 Bernuzzi F, Fenoglio D, Battaglia F , et al. Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 2010; 35 (3) 176-180
  • 53 Harada K, Van de Water J, Leung PS , et al. In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: predominance of the Th1 subset. Hepatology 1997; 25 (4) 791-796
  • 54 Shimoda S, Ishikawa F, Kamihira T , et al. Autoreactive T-cell responses in primary biliary cirrhosis are proinflammatory whereas those of controls are regulatory. Gastroenterology 2006; 131 (2) 606-618
  • 55 Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J Immunol 2008; 181 (2) 1536-1547
  • 56 Burroughs AK, Rosenstein IJ, Epstein O, Hamilton-Miller JM, Brumfitt W, Sherlock S. Bacteriuria and primary biliary cirrhosis. Gut 1984; 25 (2) 133-137
  • 57 Rosenstein IJ, Hazlehurst GR, Burroughs AK, Epstein O, Sherlock S, Brumfitt W. Recurrent bacteriuria and primary biliary cirrhosis: ABO blood group, P1 blood group, and secretor status. J Clin Pathol 1984; 37 (9) 1055-1058
  • 58 Butler P, Hamilton-Miller JM, McIntyre N, Burroughs AK. Natural history of bacteriuria in women with primary biliary cirrhosis and the effect of antimicrobial therapy in symptomatic and asymptomatic groups. Gut 1995; 36 (6) 931-934
  • 59 Floreani A, Bassendine MF, Mitchison H, Freeman R, James OF. No specific association between primary biliary cirrhosis and bacteriuria?. J Hepatol 1989; 8 (2) 201-207
  • 60 Varyani FK, West J, Card TR. An increased risk of urinary tract infection precedes development of primary biliary cirrhosis. BMC Gastroenterol 2011; 11: 95
  • 61 Varyani FK, West J, Card TR. Primary biliary cirrhosis does not increase the risk of UTIs following diagnosis compared to other chronic liver diseases?. Liver Int 2013; 33 (3) 384-388
  • 62 Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 2013; 16 (1) 100-107
  • 63 Wang J, Yang GX, Zhang W , et al. Escherichia coli infection induces autoimmune cholangitis and antimitochondrial antibodies in NOD.B6 (Idd10/Idd18) mice . Clin Exp Immunol 2014; 175 (2) 192-201
  • 64 Mattner J, Savage PB, Leung P , et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3 (5) 304-315
  • 65 Nilsson HO, Taneera J, Castedal M, Glatz E, Olsson R, Wadström T. Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis. J Clin Microbiol 2000; 38 (3) 1072-1076
  • 66 Abdulkarim AS, Petrovic LM, Kim WR, Angulo P, Lloyd RV, Lindor KD. Primary biliary cirrhosis: an infectious disease caused by Chlamydia pneumoniae?. J Hepatol 2004; 40 (3) 380-384
  • 67 Vilagut L, Parés A, Viñas O, Vila J, Jiménez de Anta MT, Rodés J. Antibodies to mycobacterial 65-kD heat shock protein cross-react with the main mitochondrial antigens in patients with primary biliary cirrhosis. Eur J Clin Invest 1997; 27 (8) 667-672
  • 68 Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci 2007; 1108: 567-577
  • 69 Morshed SA, Nishioka M, Saito I, Komiyama K, Moro I. Increased expression of Epstein-Barr virus in primary biliary cirrhosis patients. Gastroenterol Jpn 1992; 27 (6) 751-758
  • 70 Bogdanos DP, Pares A, Baum H , et al. Disease-specific cross-reactivity between mimicking peptides of heat shock protein of Mycobacterium gordonae and dominant epitope of E2 subunit of pyruvate dehydrogenase is common in Spanish but not British patients with primary biliary cirrhosis. J Autoimmun 2004; 22 (4) 353-362
  • 71 Durazzo M, Rosina F, Premoli A , et al. Lack of association between seroprevalence of Helicobacter pylori infection and primary biliary cirrhosis. World J Gastroenterol 2004; 10 (21) 3179-3181
  • 72 Taylor-Robinson D, Sharif AW, Dhanjal NS, Taylor-Robinson SD. Chlamydia pneumoniae infection is an unlikely cause of primary biliary cirrhosis. J Hepatol 2005; 42 (5) 779-780
  • 73 Shapira Y, Agmon-Levin N, Renaudineau Y , et al. Serum markers of infections in patients with primary biliary cirrhosis: evidence of infection burden. Exp Mol Pathol 2012; 93 (3) 386-390
  • 74 Gershwin ME, Mackay IR. The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 2008; 47 (2) 737-745
  • 75 Oldstone MB. Molecular mimicry as a mechanism for the cause and a probe uncovering etiologic agent(s) of autoimmune disease. Curr Top Microbiol Immunol 1989; 145: 127-135
  • 76 Oldstone MB. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005; 296: 1-17
  • 77 Bogdanos D, Pusl T, Rust C, Vergani D, Beuers U. Primary biliary cirrhosis following Lactobacillus vaccination for recurrent vaginitis. J Hepatol 2008; 49 (3) 466-473
  • 78 Bogdanos DP, Baum H, Grasso A , et al. Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 2004; 40 (1) 31-39
  • 79 Bogdanos DP, Baum H, Okamoto M , et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology 2005; 42 (2) 458-465
  • 80 Padgett KA, Selmi C, Kenny TP , et al. Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun 2005; 24 (3) 209-219
  • 81 Selmi C, Balkwill DL, Invernizzi P , et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 2003; 38 (5) 1250-1257
  • 82 Shimoda S, Nakamura M, Shigematsu H , et al. Mimicry peptides of human PDC-E2 163-176 peptide, the immunodominant T-cell epitope of primary biliary cirrhosis. Hepatology 2000; 31 (6) 1212-1216
  • 83 Selmi C, De Santis M, Cavaciocchi F, Gershwin ME. Infectious agents and xenobiotics in the etiology of primary biliary cirrhosis. Dis Markers 2010; 29 (6) 287-299
  • 84 Long SA, Quan C, Van de Water J , et al. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 2001; 167 (5) 2956-2963
  • 85 Leung PS, Quan C, Park O , et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003; 170 (10) 5326-5332
  • 86 Wakabayashi K, Lian ZX, Leung PS , et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48 (2) 531-540
  • 87 Wakabayashi K, Yoshida K, Leung PS , et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009; 155 (3) 577-586
  • 88 Chen RC, Naiyanetr P, Shu SA , et al. Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. Hepatology 2013; 57 (4) 1498-1508
  • 89 Naiyanetr P, Butler JD, Meng L , et al. Electrophile-modified lipoic derivatives of PDC-E2 elicits anti-mitochondrial antibody reactivity. J Autoimmun 2011; 37 (3) 209-216
  • 90 Bernal W, Meda F, Ma Y, Bogdanos DP, Vergani D. Disease-specific autoantibodies in patients with acute liver failure: the King's College London Experience. Hepatology 2008; 47 (3) 1096-1097 , author reply 1097
  • 91 Leung PS, Rossaro L, Davis PA , et al; Acute Liver Failure Study Group. Antimitochondrial antibodies in acute liver failure: implications for primary biliary cirrhosis. Hepatology 2007; 46 (5) 1436-1442
  • 92 Chang TW, Pan AY. Cumulative environmental changes, skewed antigen exposure, and the increase of allergy. Adv Immunol 2008; 98: 39-83
  • 93 Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299 (6710) 1259-1260
  • 94 Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the 'hygiene' or 'old friends' hypothesis. Clin Exp Immunol 2010; 160 (1) 70-79
  • 95 Brown EM, Arrieta MC, Finlay BB. A fresh look at the hygiene hypothesis: how intestinal microbial exposure drives immune effector responses in atopic disease. Semin Immunol 2013; 25 (5) 378-387
  • 96 Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 2012; 42 (1) 5-15
  • 97 Yin L, Scott-Browne J, Kappler JW, Gapin L, Marrack P. T cells and their eons-old obsession with MHC. Immunol Rev 2012; 250 (1) 49-60
  • 98 Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 2012; 250 (1) 32-48
  • 99 Guéry L, Hugues S. Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol 2013; 4: 59
  • 100 Tian L, Humblet-Baron S, Liston A. Immune tolerance: are regulatory T cell subsets needed to explain suppression of autoimmunity?. BioEssays 2012; 34 (7) 569-575
  • 101 Bogdanos DP, Smyk DS, Invernizzi P , et al. Tracing environmental markers of autoimmunity: introducing the infectome. Immunol Res 2013; 56 (2-3) 220-240
  • 102 Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 2005; 14 (8) 1847-1850
  • 103 Gause WC, Wynn TA, Allen JE. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol 2013; 13 (8) 607-614
  • 104 Taylor MD, van der Werf N, Maizels RM. T cells in helminth infection: the regulators and the regulated. Trends Immunol 2012; 33 (4) 181-189
  • 105 Hussaarts L, van der Vlugt LE, Yazdanbakhsh M, Smits HH. Regulatory B-cell induction by helminths: implications for allergic disease. J Allergy Clin Immunol 2011; 128 (4) 733-739
  • 106 Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol 2011; 11 (6) 375-388
  • 107 Aoyama H, Hirata T, Sakugawa H , et al. An inverse relationship between autoimmune liver diseases and Strongyloides stercoralis infection. Am J Trop Med Hyg 2007; 76 (5) 972-976