Semin Liver Dis 2014; 34(04): 376-388
DOI: 10.1055/s-0034-1394138
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immune Control in Hepatocellular Carcinoma Development and Progression: Role of Stromal Cells

Martin F. Sprinzl
1   First Medical Department, University Medical Center, Johannes Gutenberg University, Mainz, Germany
,
Peter R. Galle
1   First Medical Department, University Medical Center, Johannes Gutenberg University, Mainz, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
04 November 2014 (online)

Abstract

Immune control of hepatocellular carcinoma (HCC) is executed by effector immune cells, which efficiently eliminate malignant transformed cells. However, progression of HCC clearly documents failure of tumor immune control, which led to the concept of immune subversion by the tumor environment.

Particularly tumor-associated stromal cells cooperate within an inflammatory network, which is responsible for immune privilege. The stromal cell composition matures during tumor growth and is derived from surrounding noncancerous tissue or from circulating cells recruited to the tumor site. Therefore, immunosuppressive stromal cells represent heterogeneous cell lineages, including myeloid cells, lymphocytes, endothelial cells, and fibroblasts, which interact by direct cell contact, secretion of soluble factors, or production of extracellular matrix. As the stromal cells determine tumor immune control and clinical outcome of HCC, they represent a promising target for cancer immunotherapy.

 
  • References

  • 1 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132 (7) 2557-2576
  • 2 Villeneuve JP, Desrochers M, Infante-Rivard C , et al. A long-term follow-up study of asymptomatic hepatitis B surface antigen-positive carriers in Montreal. Gastroenterology 1994; 106 (4) 1000-1005
  • 3 Liaw YF, Tai DI, Chu CM , et al. Early detection of hepatocellular carcinoma in patients with chronic type B hepatitis. A prospective study. Gastroenterology 1986; 90 (2) 263-267
  • 4 Ikeda K, Saitoh S, Suzuki Y , et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol 1998; 28 (6) 930-938
  • 5 Naugler WE, Sakurai T, Kim S , et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317 (5834) 121-124
  • 6 Pikarsky E, Porat RM, Stein I , et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431 (7007) 461-466
  • 7 Haybaeck J, Zeller N, Wolf MJ , et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009; 16 (4) 295-308
  • 8 Jiang R, Tan Z, Deng L , et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 2011; 54 (3) 900-909
  • 9 Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004; 206 (2) 193-199
  • 10 Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121 (7) 977-990
  • 11 Luedde T, Beraza N, Kotsikoris V , et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11 (2) 119-132
  • 12 Gao B, Jeong WI, Tian Z. Liver: An organ with predominant innate immunity. Hepatology 2008; 47 (2) 729-736
  • 13 Doherty DG, Norris S, Madrigal-Estebas L , et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 1999; 163 (4) 2314-2321
  • 14 Kita H, Naidenko OV, Kronenberg M , et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002; 123 (4) 1031-1043
  • 15 Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 2013; 210 (10) 2057-2069
  • 16 Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001; 413 (6852) 165-171
  • 17 Thielens A, Vivier E, Romagné F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol 2012; 24 (2) 239-245
  • 18 Kägi D, Ledermann B, Bürki K , et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369 (6475) 31-37
  • 19 van den Broek ME, Kägi D, Ossendorp F , et al. Decreased tumor surveillance in perforin-deficient mice. J Exp Med 1996; 184 (5) 1781-1790
  • 20 Takeda K, Smyth MJ, Cretney E , et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002; 195 (2) 161-169
  • 21 Screpanti V, Wallin RP, Ljunggren HG, Grandien A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 2001; 167 (4) 2068-2073
  • 22 Bauer S, Groh V, Wu J , et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285 (5428) 727-729
  • 23 Guerra N, Tan YX, Joncker NT , et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008; 28 (4) 571-580
  • 24 Cerwenka A, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci U S A 2001; 98 (20) 11521-11526
  • 25 Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189-220
  • 26 Nguyen KB, Salazar-Mather TP, Dalod MY , et al. Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 2002; 169 (8) 4279-4287
  • 27 Subleski JJ, Hall VL, Back TC, Ortaldo JR, Wiltrout RH. Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver. Cancer Res 2006; 66 (22) 11005-11012
  • 28 Cuturi MC, Anegón I, Sherman F , et al. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med 1989; 169 (2) 569-583
  • 29 Tong AW, Lee JC, Wang RM, Ordonez G, Stone MJ. Augmentation of lymphokine-activated killer cell cytotoxicity by monoclonal antibodies against human small cell lung carcinoma. Cancer Res 1989; 49 (15) 4103-4108
  • 30 Kamimura H, Yamagiwa S, Tsuchiya A , et al. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J Hepatol 2012; 56 (2) 381-388
  • 31 Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 1998; 83 (1) 58-63
  • 32 Chew V, Tow C, Teo M , et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 2010; 52 (3) 370-379
  • 33 Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 2006; 43 (2) 362-372
  • 34 Kurokohchi K, Carrington M, Mann DL , et al. Expression of HLA class I molecules and the transporter associated with antigen processing in hepatocellular carcinoma. Hepatology 1996; 23 (5) 1181-1188
  • 35 Zhou H, Huang H, Shi J , et al. Prognostic value of interleukin 2 and interleukin 15 in peritumoral hepatic tissues for patients with hepatitis B-related hepatocellular carcinoma after curative resection. Gut 2010; 59 (12) 1699-1708
  • 36 Kawano T, Cui J, Koezuka Y , et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278 (5343) 1626-1629
  • 37 Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 1995; 7 (10-11) 529-534
  • 38 Smyth MJ, Thia KY, Street SE , et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191 (4) 661-668
  • 39 Swann JB, Uldrich AP, van Dommelen S , et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 2009; 113 (25) 6382-6385
  • 40 Arase H, Arase N, Nakagawa K, Good RA, Onoé K. NK1.1+ CD4+ CD8- thymocytes with specific lymphokine secretion. Eur J Immunol 1993; 23 (1) 307-310
  • 41 Dao T, Mehal WZ, Crispe IN. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. J Immunol 1998; 161 (5) 2217-2222
  • 42 Arase H, Arase N, Kobayashi Y, Nishimura Y, Yonehara S, Onoé K. Cytotoxicity of fresh NK1.1+ T cell receptor alpha/beta+ thymocytes against a CD4+8+ thymocyte population associated with intact Fas antigen expression on the target. J Exp Med 1994; 180 (2) 423-432
  • 43 Kawarabayashi N, Seki S, Hatsuse K , et al. Decrease of CD56(+)T cells and natural killer cells in cirrhotic livers with hepatitis C may be involved in their susceptibility to hepatocellular carcinoma. Hepatology 2000; 32 (5) 962-969
  • 44 Xiao YS, Gao Q, Xu XN , et al. Combination of intratumoral invariant natural killer T cells and interferon-gamma is associated with prognosis of hepatocellular carcinoma after curative resection. PLoS ONE 2013; 8 (8) e70345
  • 45 Bricard G, Cesson V, Devevre E , et al. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. J Immunol 2009; 182 (8) 5140-5151
  • 46 Terabe M, Matsui S, Noben-Trauth N , et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1 (6) 515-520
  • 47 Kang TW, Yevsa T, Woller N , et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374) 547-551
  • 48 Budhu A, Forgues M, Ye QH , et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10 (2) 99-111
  • 49 Witkowski M, Spangenberg HC, Neumann-Haefelin C , et al. Lack of ex vivo peripheral and intrahepatic α-fetoprotein-specific CD4+ responses in hepatocellular carcinoma. Int J Cancer 2011; 129 (9) 2171-2182
  • 50 Greten TF, Ormandy LA, Fikuart A , et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother 2010; 33 (2) 211-218
  • 51 Korangy F, Ormandy LA, Bleck JS , et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res 2004; 10 (13) 4332-4341
  • 52 Sahin U, Türeci O, Schmitt H , et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 1995; 92 (25) 11810-11813
  • 53 Stockert E, Jäger E, Chen YT , et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998; 187 (8) 1349-1354
  • 54 Aarvak T, Chabaud M, Miossec P, Natvig JB. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol 1999; 162 (3) 1246-1251
  • 55 Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature 2008; 453 (7198) 1051-1057
  • 56 Benchetrit F, Ciree A, Vives V , et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 2002; 99 (6) 2114-2121
  • 57 Muranski P, Boni A, Antony PA , et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008; 112 (2) 362-373
  • 58 Martin-Orozco N, Muranski P, Chung Y , et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009; 31 (5) 787-798
  • 59 Kryczek I, Banerjee M, Cheng P , et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 2009; 114 (6) 1141-1149
  • 60 Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 2008; 105 (40) 15505-15510
  • 61 Zhang JP, Yan J, Xu J , et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009; 50 (5) 980-989
  • 62 Hinrichs CS, Kaiser A, Paulos CM , et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 2009; 114 (3) 596-599
  • 63 Liao Y, Wang B, Huang ZL , et al. Increased circulating Th17 cells after transarterial chemoembolization correlate with improved survival in stage III hepatocellular carcinoma: a prospective study. PLoS ONE 2013; 8 (4) e60444
  • 64 Kortylewski M, Xin H, Kujawski M , et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 2009; 15 (2) 114-123
  • 65 Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8 (9) 942-949
  • 66 Langrish CL, Chen Y, Blumenschein WM , et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201 (2) 233-240
  • 67 Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002; 20: 323-370
  • 68 Molldrem JJ, Lee PP, Wang C , et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6 (9) 1018-1023
  • 69 Schmidt N, Neumann-Haefelin C, Thimme R. Cellular immune responses to hepatocellular carcinoma: lessons for immunotherapy. Dig Dis 2012; 30 (5) 483-491
  • 70 Gao Q, Qiu SJ, Fan J , et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25 (18) 2586-2593
  • 71 Mizukoshi E, Nakamoto Y, Arai K , et al. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 2011; 53 (4) 1206-1216
  • 72 Flecken T, Schmidt N, Hild S , et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014; 59 (4) 1415-1426
  • 73 Shang XY, Chen HS, Zhang HG , et al. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 2004; 10 (20) 6946-6955
  • 74 Thimme R, Neagu M, Boettler T , et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology 2008; 48 (6) 1821-1833
  • 75 Gehring AJ, Ho ZZ, Tan AT , et al. Profile of tumor antigen-specific CD8 T cells in patients with hepatitis B virus-related hepatocellular carcinoma. Gastroenterology 2009; 137 (2) 682-690
  • 76 Hiroishi K, Eguchi J, Baba T , et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 2010; 45 (4) 451-458
  • 77 Mizukoshi E, Yamashita T, Arai K , et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013; 57 (4) 1448-1457
  • 78 Kumari S, Wälchli S, Fallang LE , et al. Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proc Natl Acad Sci U S A 2014; 111 (1) 403-408
  • 79 Willimsky G, Schmidt K, Loddenkemper C, Gellermann J, Blankenstein T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Invest 2013; 123 (3) 1032-1043
  • 80 Knolle PA, Germann T, Treichel U , et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol 1999; 162 (3) 1401-1407
  • 81 Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 2008; 47 (1) 296-305
  • 82 Knolle PA, Schmitt E, Jin S , et al. Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 1999; 116 (6) 1428-1440
  • 83 Kruse N, Neumann K, Schrage A , et al. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis. Hepatology 2009; 50 (6) 1904-1913
  • 84 Carambia A, Freund B, Schwinge D , et al. TGF-β-dependent induction of CD4(+)CD25(+)Foxp3(+) Tregs by liver sinusoidal endothelial cells. J Hepatol 2014; 61 (3) 594-599
  • 85 Géraud C, Mogler C, Runge A , et al. Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int 2013; 33 (9) 1428-1440
  • 86 Bergé M, Allanic D, Bonnin P , et al. Neuropilin-1 is upregulated in hepatocellular carcinoma and contributes to tumour growth and vascular remodelling. J Hepatol 2011; 55 (4) 866-875
  • 87 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22 (2) 226-229
  • 88 de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174 (5) 1209-1220
  • 89 Wiegard C, Frenzel C, Herkel J, Kallen KJ, Schmitt E, Lohse AW. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 2005; 42 (1) 193-199
  • 90 Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med 2008; 205 (1) 233-244
  • 91 Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170 (6) 2081-2095
  • 92 Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009; 50 (2) 612-621
  • 93 Tzung SP, Gaines KC, Lance P, Ehrke MJ, Cohen SA. Suppression of hepatic lymphokine-activated killer cell induction by murine Kupffer cells and hepatocytes. Hepatology 1990; 12 (4 Pt 1) 644-652
  • 94 Billiar TR, Lysz TW, Curran RD, Bentz BG, Machiedo GW, Simmons RL. Hepatocyte modulation of Kupffer cell prostaglandin E2 production in vitro. J Leukoc Biol 1990; 47 (4) 305-311
  • 95 Rodriguez PC, Hernandez CP, Quiceno D , et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 2005; 202 (7) 931-939
  • 96 Fu J, Xu D, Liu Z , et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132 (7) 2328-2339
  • 97 Arihara F, Mizukoshi E, Kitahara M , et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 2013; 62 (8) 1421-1430
  • 98 Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 2009; 69 (20) 8067-8075
  • 99 Li H, Wu K, Tao K , et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012; 56 (4) 1342-1351
  • 100 Zhu C, Anderson AC, Schubart A , et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6 (12) 1245-1252
  • 101 Crispe IN, Giannandrea M, Klein I, John B, Sampson B, Wuensch S. Cellular and molecular mechanisms of liver tolerance. Immunol Rev 2006; 213: 101-118
  • 102 Heuff G, Oldenburg HS, Boutkan H , et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother 1993; 37 (2) 125-130
  • 103 Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127 (5) (Suppl. 01) S35-S50
  • 104 Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37 (5) 1043-1055
  • 105 Dapito DH, Mencin A, Gwak GY , et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21 (4) 504-516
  • 106 Svegliati Baroni G, D'Ambrosio L, Ferretti G , et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 1998; 27 (3) 720-726
  • 107 Hong F, Tuyama A, Lee TF , et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 2009; 49 (6) 2055-2067
  • 108 Dunham RM, Thapa M, Velazquez VM , et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 2013; 190 (5) 2009-2016
  • 109 Dangi A, Sumpter TL, Kimura S , et al. Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol 2012; 188 (8) 3667-3677
  • 110 Zhao HQ, Li WM, Lu ZQ, Yao YM. Roles of Tregs in development of hepatocellular carcinoma: a meta-analysis. World J Gastroenterol 2014; 20 (24) 7971-7978
  • 111 Chou HS, Hsieh CC, Yang HR , et al. Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice. Hepatology 2011; 53 (3) 1007-1019
  • 112 Höchst B, Schildberg FA, Sauerborn P , et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59 (3) 528-535
  • 113 Chen Y, Huang Y, Reiberger T , et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 2014; 59 (4) 1435-1447
  • 114 Yu MC, Chen CH, Liang X , et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40 (6) 1312-1321
  • 115 Chen CH, Kuo LM, Chang Y , et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 2006; 44 (5) 1171-1181
  • 116 Ooi LP, Crawford DH, Gotley DC , et al. Evidence that “myofibroblast-like” cells are the cellular source of capsular collagen in hepatocellular carcinoma. J Hepatol 1997; 26 (4) 798-807
  • 117 Neaud V, Faouzi S, Guirouilh J , et al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997; 26 (6) 1458-1466
  • 118 Amann T, Bataille F, Spruss T , et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100 (4) 646-653
  • 119 Orimo A, Gupta PB, Sgroi DC , et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121 (3) 335-348
  • 120 Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17 (2) 135-147
  • 121 Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 2009; 4 (11) e7965
  • 122 Li T, Yang Y, Hua X , et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett 2012; 318 (2) 154-161
  • 123 Basili S, Raparelli V, Riggio O , et al; CALC Group. NADPH oxidase-mediated platelet isoprostane over-production in cirrhotic patients: implication for platelet activation. Liver Int 2011; 31 (10) 1533-1540
  • 124 Dupuy E, Hainaud P, Villemain A , et al. Tumoral angiogenesis and tissue factor expression during hepatocellular carcinoma progression in a transgenic mouse model. J Hepatol 2003; 38 (6) 793-802
  • 125 Palumbo JS, Talmage KE, Massari JV , et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105 (1) 178-185
  • 126 Terme M, Pernot S, Marcheteau E , et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 2013; 73 (2) 539-549
  • 127 Yoong KF, Afford SC, Jones R , et al. Expression and function of CXC and CC chemokines in human malignant liver tumors: a role for human monokine induced by gamma-interferon in lymphocyte recruitment to hepatocellular carcinoma. Hepatology 1999; 30 (1) 100-111
  • 128 Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 2010; 34 (1) 45-54
  • 129 Liu Y, Poon RT, Feng X, Yu WC, Luk JM, Fan ST. Reduced expression of chemokine receptors on peripheral blood lymphocytes in patients with hepatocellular carcinoma. Am J Gastroenterol 2004; 99 (6) 1111-1121
  • 130 Chew V, Chen J, Lee D , et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 2012; 61 (3) 427-438
  • 131 Liu YQ, Poon RT, Hughes J, Li QY, Yu WC, Fan ST. Desensitization of T lymphocyte function by CXCR3 ligands in human hepatocellular carcinoma. World J Gastroenterol 2005; 11 (2) 164-170
  • 132 Curiel TJ, Coukos G, Zou L , et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10 (9) 942-949
  • 133 Yang P, Li QJ, Feng Y , et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22 (3) 291-303
  • 134 Schimanski CC, Bahre R, Gockel I , et al. Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer 2006; 95 (2) 210-217
  • 135 Schrader J, Gordon-Walker TT, Aucott RL , et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 2011; 53 (4) 1192-1205
  • 136 Ding ZY, Jin GN, Wang W , et al. Reduced expression of TIF1γ promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology 2014; [Epub ahead of print] PubMed
  • 137 Hiratsuka S, Duda DG, Huang Y , et al. C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci U S A 2011; 108 (1) 302-307
  • 138 Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9 (3) 162-174
  • 139 Yoneyama H, Matsuno K, Zhang Y , et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J Exp Med 2001; 193 (1) 35-49
  • 140 Kudo S, Matsuno K, Ezaki T, Ogawa M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J Exp Med 1997; 185 (4) 777-784
  • 141 Thomson AW, O'Connell PJ, Steptoe RJ, Lu L. Immunobiology of liver dendritic cells. Immunol Cell Biol 2002; 80 (1) 65-73
  • 142 Bosma BM, Metselaar HJ, Mancham S , et al. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl 2006; 12 (3) 384-393
  • 143 Jomantaite I, Dikopoulos N, Kröger A , et al. Hepatic dendritic cell subsets in the mouse. Eur J Immunol 2004; 34 (2) 355-365
  • 144 De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 2005; 174 (4) 2037-2045
  • 145 Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 2004; 172 (2) 1009-1017
  • 146 Beckebaum S, Zhang X, Chen X , et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 2004; 10 (21) 7260-7269
  • 147 Ninomiya T, Akbar SM, Masumoto T, Horiike N, Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 1999; 31 (2) 323-331
  • 148 Chen S, Akbar SM, Tanimoto K , et al. Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett 2000; 148 (1) 49-57
  • 149 Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141 (1) 39-51
  • 150 Ding T, Xu J, Wang F , et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol 2009; 40 (3) 381-389
  • 151 Li YW, Qiu SJ, Fan J , et al. Tumor-infiltrating macrophages can predict favorable prognosis in hepatocellular carcinoma after resection. J Cancer Res Clin Oncol 2009; 135 (3) 439-449
  • 152 Herlyn D, Koprowski H. IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc Natl Acad Sci U S A 1982; 79 (15) 4761-4765
  • 153 Adams DO, Hall T, Steplewski Z, Koprowski H. Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis. Proc Natl Acad Sci U S A 1984; 81 (11) 3506-3510
  • 154 Kong LQ, Zhu XD, Xu HX , et al. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma. PLoS ONE 2013; 8 (3) e59771
  • 155 Waidmann O, Köberle V, Bettinger D , et al. Diagnostic and prognostic significance of cell death and macrophage activation markers in patients with hepatocellular carcinoma. J Hepatol 2013; 59 (4) 769-779
  • 156 Zhu XD, Zhang JB, Zhuang PY , et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008; 26 (16) 2707-2716
  • 157 Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177 (10) 7303-7311
  • 158 Colegio OR, Chu NQ, Szabo AL , et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014 [Epub ahead of print]
  • 159 Sprinzl MF, Reisinger F, Puschnik A , et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology 2013; 57 (6) 2358-2368
  • 160 Kuang DM, Zhao Q, Peng C , et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (6) 1327-1337
  • 161 Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101 (4) 890-898
  • 162 Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189 (9) 1363-1372
  • 163 Rodriguez PC, Quiceno DG, Zabaleta J , et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64 (16) 5839-5849
  • 164 Etzerodt A, Maniecki MB, Møller K, Møller HJ, Moestrup SK. Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J Leukoc Biol 2010; 88 (6) 1201-1205
  • 165 Schlecker E, Fiegler N, Arnold A , et al. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res 2014; 74 (13) 3429-3440
  • 166 Roderfeld M, Rath T, Lammert F, Dierkes C, Graf J, Roeb E. Innovative immunohistochemistry identifies MMP-9 expressing macrophages at the invasive front of murine HCC. World J Hepatol 2010; 2 (5) 175-179
  • 167 Sun D, Wang X, Zhang H, Deng L, Zhang Y. MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int 2011; 35 (6) 569-574
  • 168 Hoechst B, Ormandy LA, Ballmaier M , et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135 (1) 234-243
  • 169 Shen P, Wang A, He M, Wang Q, Zheng S. Increased circulating Lin(-/low) CD33(+) HLA-DR(-) myeloid-derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res 2014; 44 (6) 639-650
  • 170 Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 2013; 73 (8) 2435-2444
  • 171 Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009; 106 (32) 13439-13444
  • 172 Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133 (5) 775-787
  • 173 Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology 2008; 124 (1) 13-22
  • 174 Yang XH, Yamagiwa S, Ichida T , et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 2006; 45 (2) 254-262
  • 175 Unitt E, Rushbrook SM, Marshall A , et al. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 2005; 41 (4) 722-730
  • 176 Zhang W, Zhu XD, Sun HC , et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010; 16 (13) 3420-3430
  • 177 Hagemann T, Lawrence T, McNeish I , et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008; 205 (6) 1261-1268
  • 178 Pyonteck SM, Akkari L, Schuhmacher AJ , et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19 (10) 1264-1272
  • 179 Sangro B, Gomez-Martin C, de la Mata M , et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59 (1) 81-88
  • 180 Zerbini A, Pilli M, Soliani P , et al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+cells in patients with hepatocellular carcinoma. J Hepatol 2004; 40 (1) 102-109
  • 181 Cai XY, Gao Q, Qiu SJ , et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132 (5) 293-301
  • 182 Yin XY, Lu MD, Lai YR, Liang LJ, Huang JF. Prognostic significances of tumor-infiltrating S-100 positive dendritic cells and lymphocytes in patients with hepatocellular carcinoma. Hepatogastroenterology 2003; 50 (53) 1281-1284
  • 183 Huang Y, Wang FM, Wang T , et al. Tumor-infiltrating FoxP3+ Tregs and CD8+ T cells affect the prognosis of hepatocellular carcinoma patients. Digestion 2012; 86 (4) 329-337
  • 184 Wang F, Jing X, Li G , et al. Foxp3+ regulatory T cells are associated with the natural history of chronic hepatitis B and poor prognosis of hepatocellular carcinoma. Liver Int 2012; 32 (4) 644-655
  • 185 Huang Y, Wang F, Wang Y , et al. Intrahepatic interleukin-17+ T cells and FoxP3+ regulatory T cells cooperate to promote development and affect the prognosis of hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29 (4) 851-859
  • 186 Sasaki A, Tanaka F, Mimori K , et al. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 2008; 34 (2) 173-179
  • 187 Fan QM, Jing YY, Yu GF , et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2014; 352 (2) 160-168
  • 188 Matsubara T, Kanto T, Kuroda S , et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 2013; 57 (4) 1416-1425