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Severe infections leading to severe sepsis and septic shock are
prominent causes of morbidity and mortality in critically ill
patients. In a large multicenter point prevalence study in-
volving 1,265 intensive care units (ICUs) across 75 countries,
51% of ICU patients were classified as infected on the day of
study with a mortality rate of 25.3%.1 Data from a large
European ICU study has further corroborated the diagnosis
of severe sepsis as a global healthcare crisis, whereby the
condition accounted for 26.7% of ICU admissions.2 In this
study, the corresponding mortality in patients with severe
sepsis and septic shock was of concern, with rates of 32.2 and

54.1%, respectively.2 Despite an emerging trend for improved
survival over recent years,3–5 themortality rate in this patient
cohort remains unacceptably high worldwide.6 In the context
of thefinancial burden incurred, the United States is currently
spending between $121 and $263 billion annually on critical-
ly ill patients, which represents more than 8% of the country’s
total healthcare expenditure.7

To address these persisting poor patient outcomes, signif-
icant amounts of research have been directed toward opti-
mizing the provision of care for the critically ill patient.
Indeed, improving antibiotic therapy is a core focus of
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Abstract The recent surge in multidrug-resistant pathogens combined with the diminishing
antibiotic pipeline has created a growing need to optimize the use of our existing
antibiotic armamentarium, particularly in the management of intensive care unit (ICU)
patients. Optimal and timely pharmacokinetic/pharmacodynamic (PK/PD) target at-
tainment has been associatedwith an increased likelihood of clinical andmicrobiological
success in critically ill patients. Emerging data, mostly from in vitro and in vivo studies,
suggest that optimization of antibiotic therapy should not only aim to maximize clinical
outcomes but also to include the suppression of resistance. The development of
antibiotic dosing regimens that adheres to the PK/PD principles may prolong the
clinical lifespan of our existing antibiotics by minimizing the emergence of resistance.
This article summarizes the relevance of PK/PD characteristics of different antibiotic
classes on the development of antibiotic resistance. On the basis of the available data,
we propose dosing recommendations that can be adopted in the clinical setting, to
maximize therapeutic success and limit the emergence of resistance in the ICU.
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treatment of infection-driven pathologies such as sepsis.
There is strong evidence to suggest that optimal antibiotic
therapymay have a greater impact on patients’ survival when
compared with novel treatment strategies such as the use of
activated protein C,8 antithrombin III,9 and intensive insulin
therapy in these patients.10–13 However, the process of
optimizing antibiotic therapy can be a daunting challenge
in the ICU for a variety of reasons. Extreme physiological
derangements that can occur from either pharmacological
interventions or the natural course of critical illnessmay alter
antibiotic concentrations and consequently reduce antibiotic
exposure in critically ill patients.14 In addition, pathogens
that are usually isolated in the ICU differ from the general
wards, as they are commonly less susceptible to common
antibiotics.15,16 Indeed, antibiotic dosing that does not ac-
count for these features is likely to lead to suboptimal
antibiotic exposure and therapeutic failures. In addition,
suboptimal antibiotic exposure is also highly implicated as
a contributing factor to the escalation of antibiotic resistance.
Resistance to antibiotics certainly is considered a global
healthcare crisis which currently threatens the advances of
modern medicine.17

The recent surge in multidrug-resistant (MDR) pathogens
combined with the diminishing antibiotic pipeline has creat-
ed a growing need to optimize the use of the existing
antibiotic armamentarium, particularly in the ICU. Although
critically ill patients constitute fewer than 10% of all hospital
admissions, their antibiotic consumption is 10 times greater
compared with patients in all other wards.18–20 The rampant
antibiotic use (or misuse) has therefore, in part, contributed
to the alarming increase in the MDR pathogens such as the
extended spectrum β-lactamases and carbapenemase-pro-
ducing gram-negative pathogens. Notably, gram-negative
pathogens such asAcinetobacter baumannii and Pseudomonas
aeruginosa, as well as members of the Enterobacteriaceae
family such as Escherichia coli and Klebsiella pneumoniae,
which were previously considered relatively innocuous, have
impressively out-maneuvered our current antibiotics. Previ-
ously simple infections have become increasingly difficult to
treat over a short period of time.21 Moreover, infections
caused by these pathogens frequently result in poor clinical
outcomes, including higher mortality and prolonged hospi-
talisation.22–24 The healthcare community concerns are legit-
imate, as the emergence of resistance is likely to far outpace
the rate of development of new antibiotics. In light of these
grim prospects, clinicians are currently forced to reintroduce
older antibiotics as treatment options (e.g., colistin and
fosfomycin) and vigorously search for new strategies that
can optimize the use of our presently available antibiotics.

The aim of this article is to describe the relevance of
pharmacokinetic (PK) exposure and pharmacodynamic (PD)
characteristics of different antibiotic classes on the develop-
ment of antibiotic resistance. We will discuss the relevant
antibiotic resistance descriptors and review how target drug
exposures differ between predicting treatment success and
suppressing resistance development. On the basis of these
current data, we will also suggest dosing strategies that
ultimately exploit antibiotic pharmacodynamics which in-

crease the likelihood of treatment success as well asminimize
the emergence of resistance.

Applied Clinical Pharmacology of Antibiotics

Pharmacology is the science of drugs including the study of
drug actions. Two principle areas of pharmacology are PK and
PD. Traditionally, antibiotic dosing and administration were
only optimized, in accordance with the PK/PD principles, for
clinical efficacy (i.e., clinical andmicrobiological cure)with an
associated collateral damage being the selection of resistant
pathogens. Emerging data are suggesting that the PD-based
dosing approach should not only aim to maximize clinical
outcomes but also to include the suppression of resistance.
Indeed, the application of PK/PD principles has been shown to
minimize the risk of emergence of resistance by avoiding
ineffective antibiotic exposure, which consequently exerts a
selective pressure to pathogens, rather than to eradicate
them.25 This selective pressure causes the elimination of
highly susceptible, but not the more resistant colonies, lead-
ing to future colonization and potential infection with poorly
susceptible pathogens.

Pharmacokinetic Considerations
PK refers to the study of concentration changes of a drug over
a given time period. This branch of pharmacology describes
the rates and processes from absorption to distribution of
drugs to eliminationmechanismviametabolism or excretion.
Some of the examples of important PK parameters are (1)
volume of distribution (Vd), (2) clearance (CL), (3) maximum
drug concentration over a dosing interval (Cmax), (4) mini-
mum drug concentration during a dosing interval (Cmin), and
(5) area under the concentration–time curve from 0 to
24 hours (AUC0–24). Among these however, alterations in
the primary PK parameters, namely Vd and CL, are probably
the most influential in determining altered antibiotic dosing
and exposure. Changes in antibiotic Vd and CL have been
commonly observed in critically ill patients and the relevance
of the two phenomena in influencing effective antibiotic
exposure has been reviewed in detail elsewhere.26

Pharmacodynamic Considerations
PD describes the relationship between PK exposure and
pharmacological effect. For antibiotics, PD relates the antibi-
otic concentration to the ability of an antibiotic to kill or
inhibit the growth of a pathogen. In general, this relationship
is often described by linking the concentration of an antibiotic
with the corresponding minimum inhibitory concentration
(MIC) of the offending pathogen. For an antibiotic, it is the free
or unbound concentration that is responsible for the antibi-
otic activity.27 Numerous studies have demonstrated that
different antibiotics have different PD properties and can
be readily categorized as the following: (1) the duration of
time that free drug concentration remains above the MIC
during a dosing interval (fT>MIC), (2) the ratio of Cmax to MIC,
and (3) the ratio of AUC0–24 to MIC. These fundamental PK/PD
indices for antibiotics’ activity are further illustrated
in ►Fig. 1. It should be noted that the AUC/MIC was never
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considered in earlier studies, and that many data retrieved
from older literature established only the relationship be-
tween Cmax/MIC and effect parameter. From a theoretical
point of view, most of the antibiotics should show a relation-
ship with AUC and effect rather than Cmax.

Based on the PK/PD indices, antibiotics can be classified
into three categories that, by and large reflect their modes of
bacterial killing.28–30 The first category includes antibiotics
where the difference between the maximum effect and
minimum effect is relatively large, and increasing concen-
trations result in progressively increased killing. Therefore,
these are also sometimes called concentration-dependent
antibiotics, and include aminoglycosides and quinolones.
For these antimicrobials, AUC/MIC describes their antibiotic
activity best, and, mainly because AUC/MIC is closely corre-
lated to Cmax/MIC, Cmax/MIC as well.31,32 On the other hand,
time-dependent antibiotics’ activity, such as the β-lactams, is
strongly correlated with fT>MIC and as such, prolonging the
duration of effective drug exposure should be the priority
when this antibiotic class is used.33,34 However, some anti-
biotics such as the glycopeptides are more complex where
they are found to display both concentration- and time-
dependent kill characteristics.34 For these antibiotics, the
ratio of AUC0–24/MIC describes their antibiotic activity best
and higher thresholds are closely related to successful clinical
outcome.35

Pharmacokinetic/Pharmacodynamic
Considerations and the Resistance
Descriptors

Most of the earlier research on optimizing antibiotic dosing
was focused only on maximizing clinical and microbiological

cure and not on minimization of the emergence of antibiotic
resistance. To date, most of the data describing PK/PD and its
association with antibiotic resistance comes from preclinical,
albeit advanced, PK/PD infection models. However, the anti-
biotic exposure required for clinical efficacy and resistance
suppression is markedly different. For instance, the antibiotic
exposure–response relationship for clinical efficacy is mono-
tonic or can also be described as a sigmoidal relationship in
which no measurable antibiotic effect is expected at lower
drug exposures while larger exposures are expected to aug-
ment the bactericidal effect up to a certain threshold. In
contrast, the relationship between antibiotic exposure and
the selection of resistantmutants ismarkedly non-monotonic
and has the shape of an inverted “U,”where resistant mutants
are amplified with initial antibiotic exposure and then slowly
decline with increasing exposure up to an optimal threshold
that ultimately prevents resistance amplifications.36–39 The
inverted U-shape seems to follow a log normal distribution.40

In addition, Jumbe et al40 found that an AUC0–24/MIC of �110
for levofloxacin, which was twice that was necessary for
optimal bactericidal effect, was required to suppress drug-
resistant population of P. aeruginosa in a mouse thigh infec-
tion model.41 This information, among other similar obser-
vations, has indicated that themagnitude of the PK/PD indices
for resistance suppression is generally different and higher
than the thresholds required for clinical success.37,42–44

Therefore, antibiotic dosing that only aims to optimize clinical
efficacy may potentially amplify resistance formation by
selecting mutant bacterial strains with reduced drug suscep-
tibility. With enhanced knowledge on antibiotic PK/PD over
recent years, important hypotheses and concepts, such as the
mutant selection window (MSW) and mutant prevention
concentrations (MPCs), have been proposed to provide

 

MIC

T>MIC 

Cmax

AUC AUC

Concentration-dependent antibiotics (Cmax/MIC)
e.g. Aminoglycosides, quinolones 

Concentration- with/without time-dependence (AUC/MIC)
e.g. Quinolones, aminoglycosides & glycopeptides 
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e.g. Beta-lactams 
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Fig. 1 The graphical illustration of fundamental pharmacokinetic and pharmacodynamic parameters of antibiotics on a hypothetical
concentration–time curve. AUC, area under the concentration–time curve; Cmax, maximum drug concentration; Cmin, minimum drug
concentration; MIC, minimum inhibitory concentration; T>MIC, duration of time that drug concentration remains above MIC.
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potential explanations as to how suboptimal antibiotic expo-
suremayamplify the selection of resistant bacterial strains. In
addition, the dynamics of bacterial populations under various
dosing regimens can be described using mixture models,
where changes in susceptible and resistant subpopulations
in relation to drug concentrations are quantified.38,41,42,45,46

Mutant Selection Window
The term “selective window” (SW), which was first coined by
Baquero,47,48 refers to a critical range of antibiotic concen-
trations in which drug-resistant bacterial mutants could be
selectively enriched and amplified when exposed to concen-
trations in this zone. Subsequent in vitro studies, utilizing
mycobacteria treatedwith quinolones, were able to define the
boundaries for the critical zone of antibiotic concentrations
and this concept was later renamed as the MSW.49–51 Studies
that attempted to describe MSW further suggested that these
concentration zones are those between the MIC of the
susceptible pathogens and that of the least susceptible
mutants. ►Fig. 2 illustrates the concept of MSW and its
relevance in the development of resistant mutants. In addi-
tion to this, the formation of the resistant mutants was
observed to bemost intense in the bottomportion as opposed
to the upper portion of the selectionwindow.52 The existence
of such “dangerous” concentration zones was further corrob-
orated by several in vitro39,53–55 and in vivo experimental
studies.56–59

The MSW hypothesis is potentially important, as contem-
porary antibiotic dosing tends to produce drug concentra-
tions within the critical zone where they selectively amplify
the growth of resistant mutants. Essentially, the higher the
percentage of time (t) spent by an antibiotic within the MSW
(tMSW), the greater the opportunity for resistant mutants to
be selected and amplified. Furthermore, the continuous and
prolonged “careless” practice of “dosing to only cure” in the
ICU eventually leads to the resistant mutants being the
dominant bacterial population and it is only at this point
that surveillance studies would be alerted to the emergent
resistant isolates. The MSW has been defined for many of the
quinolones and some of the β-lactams against various micro-
organisms.60–62 Nevertheless, this concept is currently con-
sidered as a relatively new idea and has not been investigated
in many infective pathologies, nor its relevance at the site of
infection. Hence, its clinical relevance in optimizing antibiotic
dosing to avoid the MSW remains unclear and warrants
further investigation.

Mutant Prevention Concentration
The concept of MPC, which was derived from the MSW
hypothesis, refers to the antibiotic concentration that corre-
sponds to the MIC of the least susceptible mutants in a
colony.49,51 While MIC refers to the lower boundary, the
MPC essentially represents the upper boundary of concen-
trations in the MSW in which the enrichment of resistant

Fig. 2 Graphical illustration of the mutant selection window and mutant prevention concentration on a hypothetical concentration–time curve.
The MSW describes the range of antibiotic concentrations where resistant mutants may be selectively amplified and these concentration zones are
those between the MIC of the susceptible pathogens and that of the least susceptible mutants, i.e., MPC. In area (A), which is below the MIC, no
resistant mutants are expected to grow, as there is no selective pressure in this area. In area (C), which is above the MPC, the growth of resistant
mutants is severely restricted and highly unlikely as the exposure in the area is able to suppress the growth of the least susceptible pathogens. On
the contrary, the selection of resistant mutants would be most intense in area (B) which is also known as MSW. Conversely, the longer the time
spent by an antibiotic in this concentration zone, the greater the opportunity for resistant mutants to be selected and amplified. Cmax, maximum
drug concentration; Cmin, minimum drug concentration; MIC, minimum inhibitory concentration; MPC, mutant prevention concentration; MSW,
mutant selection window.
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mutants are expected to be severely hindered. Conversely,
antibiotic dosing that aims to achieve concentrations higher
than the MPC, as opposed to MIC, theoretically provides both
an optimal bactericidal effect and resistance suppression.
Furthermore, the ratio of AUC0–24 to MPC (AUC0–24/MPC) as
opposed to AUC0–24/MIC is also suggested as a predictor of the
development of resistance in several in vitro and in vivo
evaluations as MIC quantifications generally ignore mutant
subpopulations.36,60,63,64 The argument has been mostly
tested in in vitro studies for quinolones where the mutant-
restrictive thresholds of AUC0–24/MPC were approximately
one-third of those AUC0–24/MIC values.39,65

The MPC has been described mostly for quinolones, al-
though data for other classes of antibiotics are emerg-
ing.60,66,67 Quantifying MPC thresholds for individual
antibiotics should be one of the priorities in the development
of dosing guidelines especially earlier in the process of
evaluation and screening of new compounds. Although the
concept seems appealing, the application, however, is not
straightforward, as the doses needed to achieve the MPC are
usually higher than those for curing patients and exceed those
that are registered for those antibiotics. There are also
examples where these concentrations are unattainable for
some antibiotic–pathogen combination.50,67 In addition, a
trade-off between an increased risk of adverse effects with
minimizing antibiotic resistance is a difficult consideration in
clinical practice. In such cases, combining two or three anti-
biotics with overlapping PD properties may be warranted.

Application of Experimental Mixture Models
Mixture models examine resistance development by describ-
ing the population dynamics of antibiotic-susceptible and
-resistant bacteria during the course of treatment. Suscepti-
ble and resistant subpopulations respond differently to dif-
ferent antibiotic concentrations.

In amurine thigh infectionmodel, Jumbe et al investigated
the impact of bacterial inoculum on the required levofloxacin
exposure for the eradication of the total P. aeruginosa popu-
lation.41 The mice were inoculated with either 107 or 108

bacteria per thigh and levofloxacinwas initiated after 2 hours.
The investigators demonstrated that the exposure intensity
which is required for maximal levofloxacin activity increases
(by two- to fivefold) as the size of the inoculum increases by 1
log. This phenomenon occurs as a larger bacterial challenge
constitutes larger population of resistant mutants, which are
less susceptible to antibiotic therapy. The investigators also
employed a complex mathematical model to analyze their
findings and simultaneously calculate an exposure that
would amplify resistant population and restrict the enrich-
ment of the population. A free AUC/MIC ratio of 110 and 36
was predicted to prevent and amplify resistant P. aeruginosa
mutants in the study, respectively.

Specific Antibiotic Classes

This section discusses individual antibiotic classes and their
pharmacodynamic characteristics, which influence antibiotic
activity and the prevention of resistance. The relevant PD

indices that havebeen shown to correlatewith both outcomes
are presented in ►Table 1.

Quinolones
Quinolones aremostly lipophilic antibiotics and display largely
concentration-dependent kill characteristics but with some
time-dependent effects. Previous in vitro studies have shown
that the achievement of a Cmax/MIC ratio of at least 8 to 12 is
important for optimal bactericidal activity.68,69 Given the half-
life of most quinolones, this corresponds to AUC0–24/MIC
values that correlate to efficacy. More important, however, is
that the index has also been associated with the reduction of
resistant mutants in several experimental studies.70–72

Several studies found that the ratio of AUC0–24/MIC is
important for its bactericidal effect, as an even more signifi-
cant index as comparedwith the Cmax/MIC ratio, and a ratio of
�125 and �30 has been advocated for clinical success in the
treatment of gram-negative and -positive infections, respec-
tively.71,73–77 In the context of antibiotic resistance, an in-
verse relationship has been described between this index and
the probability of developing resistance.78 Accordingly, quin-
olone dosing regimens that ensure higher ratios of AUC0–24/
MIC are currently recommended to maximize bactericidal
exposure as well as minimizing the development of resis-
tance.38,41,78 Several investigators have further elucidated the
critical AUC0–24/MIC thresholds as being between >100 and
200 to suppress the formation of resistant mutants when
these antibiotics are used for gram-negative infec-
tions.41,78,79However, owing to intrinsic differences between
various quinolones in selecting resistant strains, the sug-
gested AUC0–24/MIC ratio for resistance suppression may
vary between individual agents.71,80

The AUC0–24/MPC index is also being investigated and the
advantages over AUC0–24/MIC in the prediction of resistance
development have been documented in several in vitro
studies.60,63,64 To date, this remains a controversial argument
as most authors found that both indices were similar in their
predictive potentials of resistance development.57,81 Never-
theless, higher ratios of AUC0–24/MPC are associated with
minimizing the emergence of resistance.

Recently, increasing interest and efforts have been focused
on the application of MSW concept in the evaluation of
quinolones dosing regimens. Based on the current data,
tMSW of �30% should restrict mutant amplification and
the index has been studied in several in vitro55,82 and in
vivo studies.57,61 Khachman et al further extended this
concept into clinical practice by investigating the appropri-
ateness of the currently recommended ciprofloxacin dosing
in 102 critically ill patients.83 Using Monte Carlo simulations,
the probability of target attainment (i.e., �20% tMSW) for the
currently recommended ciprofloxacin dosing regimens (i.e.,
800 mg or 1,200 mg/daily) was less than 50% and when
higher doses such as 2,400 mg/daily were used, only minor
improvements were observed, that is, probability of target
attainment of 61%. More importantly, the risk of selecting
resistant A. baumannii and P. aeruginosa strains were ex-
tremely high with the recommended regimens, thus chal-
lenging their appropriateness in critically ill patients. As it
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stands, a quinolone dosing regimen that maximizes the
AUC0–24/MIC ratio should be considered in critically ill pa-
tients and by citing ciprofloxacin as an example; the objective
may be achieved with a 400 mg 8-hour or 600 mg 12-hour
regimen. When treating pathogens with high MICs, dose
escalation should be considered while being observant of
possible occurrence of dose-related adverse effects.

Aminoglycosides
Aminoglycosides are hydrophilic in nature and they demon-
strate concentration-dependent kill characteristics.31,84 Al-
though previous studies have mainly suggested that
achieving a high Cmax/MIC ratio predicts optimal out-
come,32,85–88 Craig argued that the ratio of AUC0–24/MIC
would be more appropriate in describing the antibiotic’s

Table 1 Optimal pharmacokinetic/pharmacodynamic indices for antibiotic activity and the magnitudes associated with maximal
therapeutic outcomes and resistance suppressiona

Antibiotic class Optimal PK/PD
index

PK/PD magnitude
for bacterial
killingb

PK/PD magnitude
for clinical efficacyc

Optimal PK/PD
index for
resistance
suppression

PK/PD magnitude
for resistance
suppressiond

Aminoglycosides AUC0–24/MIC AUC0–24/MIC: 80–
16086,88,90

AUC0–24/MIC: 50–
10089

Cmax/MIC Cmax/MIC � 2094

Cmax/MIC – Cmax/MIC � 831,66,87 Cmax/MIC � 3094

Penicillins T>MIC �40–50% T>MIC
34 �40–50% T>MIC T>MIC �40–50% T>MIC

62

Cephalosporins T>MIC �60–70% T>MIC
34 �45–100%

T>MIC
32,99,102,103

tMSW �40% tMSW112

Carbapenems T>MIC �40% T>MIC
34 �50–75%

T>MIC
105,107

T>MIC �40% T>MIC
116

tMSW �45% tMSW117

Quinolones AUC0–24/MIC AUC0–24/MIC: 30–
20029,76,77

AUC0–24/MIC: 35–
25071,73–75

AUC0–24/MIC AUC0–24/MIC: 100–
20038,41

Cmax/MIC Cmax/MIC
�868,69,72

Cmax/MIC � 888 Cmax/MIC Cmax/MIC � 470

AUC0–24/MPC AUC0–24/MPC
�2260

tMSW �30%
tMSW53,55,59,82

Vancomycin AUC0–24/MIC AUC0–24/MIC: 86–
46034

AUC0–24/MIC: 400–
60034,128

AUC0–24/MIC AUC0–24/MIC:
20053

Linezolid AUC0–24/MIC AUC0–24/MIC: 50–
80136

AUC0–24/
MIC � 80137

T>MIC �40% T>MIC
136,138 �85% T>MIC

137

Daptomycine AUC0–24/MIC AUC0–24/MIC:
388–537149

– AUC0–24/MIC AUC0–24/MIC:
20053

Cmax/MIC Cmax/MIC: 59–
94149

–

Fosfomycin Unknown – – – –

Colistin AUC0–24/MIC AUC0–24/MIC: 50–
65175,176

– – –

Abbreviations: AUC0–24/MIC, ratio of area under the concentration–time curve during a 24-hour period to minimum inhibitory concentration;
AUC0–24/MPC, ratio of area under the concentration–time curve during a 24-hour period to the concentration that prevents mutation; Cmax/MIC, ratio
of maximum drug concentration to minimum inhibitory concentration; T>MIC, duration of time that drug concentration remains above the minimum
inhibitory concentration during a dosing interval; tMSW, percentage of time spent by an antibiotic within the mutant selection window.
aAll values refer to the nonprotein bound, free fraction except when indicated otherwise.
bData have been summarized from in vivo animal studies and may utilize different infection models employing different bacteria. Where the index is
reported as a range, specific data for the contributing indices, which may have been derived from different studies, can be found in the associated
references. The data also reflect the 2-log kill and in some cases 1-log kill which may or may not coincide with maximum kill.

cData have been summarized from clinical studies and may recruit different patient population. Where the index is reported as a range, specific data
for the contributing indices, which may represent PK/PD thresholds for clinical or microbiological cure, can be found in the associated references.
dData have been summarized from preclinical studies, which may include in vitro and in vivo experimental infection models employing different
bacteria. Specific data for the contributing indices can be found in the associated references.

eValues reported here refer to total drug concentration.
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activity.34 In the 1980s, Moore et al32 suggested that an
aminoglycoside dose that provided a Cmax/MIC ratio of 8 to
10 was associated with a higher probability of clinical success
against gram-negative infections. However, the investigators
chose the index due to their sparse PK sampling times and
consequently, AUC0–24/MIC ratio was not considered in the
study. Importantly, high collinearity existed between Cmax

and AUC. Several investigators have since suggested that the
ratio of AUC0–24/MIC is more likely to be a “better” PD
descriptor for aminoglycosides activity,29,89 in which an
AUC0–24/MIC ratio of 80 to 160 has been advocated for its
efficacy.89,90

Although higher concentrations enhance aminoglycoside
activity, prolonged exposure of such concentrations may lead
to drug toxicity as well as the development of bacterial
resistance. This type of resistance is known as adaptive
resistance and is characterized by a slow, but reversible,
concentration-independent killing.91–93 Maximizing the
Cmax/MIC ratio seems to reduce the development of adaptive
resistance and the objective is likely achieved with extended
daily dosing (EDD) as opposed to the traditional dosing
schemes (i.e., twice or thrice daily dosing).93 In a PD model
designed to predict aminoglycosides activity against A. bau-
mannii and P. aeruginosa, Tam et al further quantified the
required Cmax/MIC ratio to prevent the resistance develop-
ment.94 In this study, a Cmax/MIC ratio of 20 for a once-daily
amikacin dosing regimen and 30 for a 12-hour gentamicin
dosing regimen was required for suppressing A. baumannii
and P. aeruginosa regrowth, respectively. Based on these
results, it could be inferred that the Cmax/MIC and AUC0–24/
MIC ratios are the PD indices to consider for suppressing A.
baumannii and P. aeruginosa resistant mutants, respectively.

Based on the available data, EDD rather than the tradi-
tional multiple daily dosing of aminoglycosides is currently
advocated in an attempt to maximize their therapeutic
potential and minimize resistance development. Further-
more, it has been shown in numerous clinical studies95,96

and several meta-analyses97,98 that the dosing recommenda-
tion is indeed appropriate and valid in reducing aminoglyco-
sides toxicity and may increase the likelihood of successful
treatment outcomes. Clinical data on these dosing effects on
development of resistance remain sparse.

Beta-Lactams
The β-lactam antibiotics are made up of penicillins, cepha-
losporins, monobactams, and carbapenems. Because of their
different spectrum and PD properties, carbapenems will be
discussed separately in the following section. Beta-lactam
antibiotics are generally hydrophilic in nature and display
time-dependent kill characteristics. The percentage of fT>MIC

(% fT>MIC) is regarded as the optimal PD index for their activity
and, as such, maintaining effective drug exposure above the
MIC should be the prioritywhen this antibiotic class is used.30

It has been generally suggested that the % fT>MIC required for
bactericidal effect is 50, 60 to 70, and 40% for penicillins,
cephalosporins, and carbapenems, respectively.99–101 In ad-
dition, relatively higher fT>MIC exposures are needed for
maximal activity against the gram negatives as opposed to

the gram-positive pathogens. However, clinical data from
critically ill patients have not consistently supported these
targets. Some studies recommend these in vitro exposures to
be the minimum antibiotic exposures required, with patients
potentially benefiting from higher and longer antibiotic ex-
posures than those previously described in in vitro and in vivo
studies.33,102–106 It has also been demonstrated that maximal
bactericidal activity occurs when drug concentrations are
maintained at four to five times the MIC, with higher con-
centrations providing little added benefit.106–108 Therefore, it
has been suggested that β-lactam concentrations should be
maintained at least four to five times the MIC for extended
periods during each dosing interval to ensure clinical success,
particularly in severely ill patients.109

It is still inconclusive whether the fT>MIC index predicts
β-lactam resistance, although the potential link has been
described in several in vitro44 and in vivo experimental
studies.62,110 Fantin et al utilized an in vivo animal model
to suggest that the development of resistance against cefta-
zidime might arise should the drug concentration fall below
the MIC for more than half of the dosing interval.110 The risk
of developing resistance against a cephalosporin has also
been linked to a low AUC0–24/MIC ratio.111 This was further
demonstrated by Stearne et al who found that an AUC0–24/
MIC of 1,000 was required with ceftizoxime to prevent the
emergence of resistant Enterobacter cloacae strains.40 In
another murine lung infection model, Goessens et al found
that the growth of resistant E. cloacae strains was correlated
with prolonged ceftazidime’s tMSW.112

Based on the limited data on resistance suppression,
β-lactams dosing that targets concentrations greater than
four times the MIC for extended periods would be most
appropriate.113 Importantly, research has shown that the
objective can be obtained via frequent dosing or by utilizing
extended infusion (EI) or continuous infusion (CI). However,
the altered dosing schemes may potentially drive the emer-
gence of resistancewith suboptimal dosing, at least in theory,
as these approaches tend to increase β-lactams tMSW. In a
recent in vitro hollow-fiber infection model (HFIM) of P.
aeruginosa, Felton et al suggested that EI of piperacillin/
tazobactam was equivalent to intermittent bolus (IB) dosing
in terms of the bactericidal effect and the prevention of
resistance.14 However, the target concentration for the two
approaches should be different inwhich the ratio of Cmin/MIC
of 10.4 and 3.4 was required by EI and IB to suppress resistant
mutants, respectively.

Carbapenems
In general, carbapenems have similar PK/PD characteristics
when compared with other β-lactam antibiotics. Some stud-
ies have suggested that unlike other β-lactams, carbapenems
possess a postantibiotic effect (PAE) against gram-negative
bacilli, including P. aeruginosa strains,114 although this could
not be confirmed in another study.115 This PAE property of
carbapenems may explain a shorter % fT>MIC for optimal
bactericidal activity. Li et al further quantified the % fT>MIC

as >54% to achieve optimal microbiological outcome when
meropenem is used in patients with lower respiratory tract
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infections.107 In addition, only a ratio of Cmin/MIC of >5 was
significantly associated with clinical andmicrobiological cure
in this cohort of patients. Further, Tam et al used an in vitro
HFIM to demonstrate that a Cmin/MIC of >6.2 was required to
suppress the development of resistant P. aeruginosa mu-
tants.108 The finding was later corroborated by the same
group of investigators in a neutropenic mouse infection
model, and in this current analysis, % fT>MIC of >40% was
also associated with the selection of resistant mutants.116

Recently in an in vitro dynamic model simulating doripenem
concentrations, Zinner et al found that resistant P. aeruginosa
mutants were likely to be selected at drug concentrations that
fell �45% within the MSW (�45% tMSW).117

Similar to the other β-lactam antibiotics, maintaining
carbapenem concentrations at four to six times the MIC for
extended periods is currently advocated to suppress the
selection of resistant mutants. To achieve this objective,
prolonging the duration of infusion is generally recom-
mended when the antibiotic is used. However, EI instead of
CI is the currently preferred dosing method when carbape-
nems are used considering the group’s inherent drug insta-
bility in aqueous solutions. With increasing information and
emerging data, clear distinction, in the context of stability
problems, needs to be emphasized between the different
members of the carbapenem group. While imipenem is
indeed less stable, there are currently no practical reasons
to oppose continuous meropenem infusion, as it has been
successfully administered up to 8 hours (in a hospital envi-
ronment) in numerous clinical studies without drug instabil-
ity or degradation reports.118–120 In an in vitro HFIM
examining cell-kill and resistance suppression for three P.
aeruginosa strains, Louie et al demonstrated that a doripenem
dosing regimen of 1 g infused over 4 hours was the solitary
regimen that was able to completely suppress resistance for
the full period of 10 days for wild-type isolates.121 Impor-
tantly, the investigators also reported that the dosing regimen
produces concentrations at >6.2 times the MIC which were
significantly associated with maximal resistance suppression
in other evaluations.44,117 In addition, Chastre et al also
observed lower occurrence of resistant P. aeruginosa strains
arising in patients treated with EI of doripenem when com-
pared with patients who received conventional imipenem
dosing in a multicenter, randomized controlled trial of criti-
cally ill patients with ventilator-associated pneumonia.122

Vancomycin
Vancomycin is a glycopeptide antibiotic and is a relatively
hydrophilic drug. Some in vitro123,124 and in vivo animal
studies125 suggest that the bactericidal activity of the antibi-
otic is time dependent, whereas somehave shown the ratio of
Cmax/MIC to be equally important.126 Recently, it has been
generally accepted that achieving a high ratio of AUC0–24/MIC
would be more predictive of its clinical success. Studies by
Moise-Broder et al were the earliest to quantify that a ratio of
AUC0–24/MIC of�400 is needed for an optimal bacteriological
and clinical outcome when treating patients with S. aureus
respiratory infections.35,127 The findings are consistent with
the retrospective data evaluation of Zelenitsky et al and they

also described that higher exposures are needed, specifically
a ratio of AUC0–24/MIC of �578, when treating critically ill
patients with septic shock.128 Owing to common clinical
practice of measuring trough concentrations when vancomy-
cin is used, a trough concentration ranging between 15 and 20
mg/L is recommended for optimal outcome in hospital-
acquired pneumonia and complicated infections.129,130

Although scarce data exist, it could be assumed that the
development of resistance is linked to suboptimal vancomy-
cin exposure. Through their in vitro PDmodel, Tsuji et al were
able to conclude that the development of vancomycin-inter-
mediate susceptible S. aureus (VISA) strains was driven by
suboptimal vancomycin exposure in the setting of dysfunc-
tional agr locus in S. aureus.131 In addition, the investigators
also found that the AUC0–24/MIC ratio needed to suppress
resistance for the strains was fourfold higher than that in the
parent strains. Charles et al observed that patients with VISA
infections were more likely to present with low vancomycin
trough concentrations (i.e., <10 mg/L).132 Based on similar
findings to Charles et al’s retrospective data evaluation,133,134

and considering the recommended trough concentrations for
successful clinical outcomes in severe infections, vancomycin
trough concentrations should also be maintained between
�15 and 20 mg/L at all times to suppress resistance emer-
gence.129 Thus, loading doses of 25 to 30 mg/kg should be
considered in critically ill patients to rapidly attain the target
concentration and certainly, higher vancomycin doses of up
to 40 mg/kg may be important to minimize resistance devel-
opment. In addition, doses in excess of 5 g/daily were
estimated to be necessary to achieve the target AUC0–24/
MIC ratiowhen treating VISA infections.135 Increasing knowl-
edge of the relationship between higher vancomycin expo-
sures and drug toxicities may limit the dosing of this drug to
limit the emergence of resistance.

Linezolid
Linezolid belongs to a class of antibiotics known as oxazoli-
dinones, which was developed for the treatment of gram-
positive infections. In a murine infection model, Andes et al
demonstrated that optimal linezolid activity correlates well
with the ratio of AUC0–24/MIC, with a ratio of between 50 and
80 predicting the likelihood of successful treatment out-
come.136 However, higher clinical success rates may occur
at AUC0–24/MIC ratio of 80 to 120 for bacteremia, lower
respiratory tract infections and skin structure infections as
reported by Rayner et al.137 Importantly, the investigators
also showed that the drug exposure required for optimal
treatment outcome was also dependent on the site and types
of infection. In addition, the probability of treatment success
appeared likely when linezolid concentrations were main-
tained above the MIC for the entire dosing interval. The
finding corroborated two earlier rabbit endocarditis experi-
mental models, which described linezolid as a time-depen-
dent antibiotic where an fT>MIC of 40% is needed for optimal
antibiotic activity.136,138 A 600-mg 12-hour dose is currently
suggested to achieve these PD indices and hence, predicts
successful treatment outcome. However, it is also imperative
to emphasize that the antibiotic’s PK is highly
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variable,27,115,139–141 particularly in patients with severe
infections, and the phenomenon has, in part, contributed to
treatment failures as well as the increased occurrence of
adverse events in such patients.137,142 As such, therapeutic
drug monitoring (TDM) of linezolid is beneficial in this
respect and emerging data are suggesting that general TDM
may optimize patient outcomes when linezolid is used in
critically ill patients. In the context of antibiotic resistance,
low-dose linezolid (200 mg 12 hourly) has been associated
with the development of E. faecium and E. faecalis resistant
strains.143 In addition, prior exposure and prolonged line-
zolid administration have been suggested to increase the
likelihood of resistance development.144–146 Nevertheless,
the development of resistance against the antibiotic has not
been widely reported.147,148

Daptomycin
Daptomycin is the first approved member of the cyclic lip-
opeptides with a potent activity against gram-positive patho-
gens including methicillin-resistant S. aureus (MRSA) and
vancomycin-resistant enterococci. In vivo experimental stud-
ies describe daptomycin to be a concentration-dependent
antibiotic. The ratio of Cmax/MIC in concert with AUC0–24/MIC
has been correlated with its efficacy in several in vivo animal
studies.149–151 Safdar et al used a neutropenic murine thigh
infection model to characterize the PD characteristics of
the antibiotic.149 In the infection model, the Cmax/MIC and
AUC0–24/MIC ratio required for bacteriostasis ranged from
59 to 94 and 388 to 537 (total drug concentration), respective-
ly. Similar ratios were required for bacteriostasis in two other
clinical studies, which recruited healthy volunteers.152,153

Based on these suggested indices, optimal daptomycin expo-
sure could be expected in most patients with modest dosing
(4–6 mg/kg/d). However, the emergence of daptomycin-resis-
tant strains has been reported with such dosing regi-
mens154,155 and some experts recommend the use of higher
dosing to curb this issue (i.e., 8–12 mg/kg/d),156 which was
shown to be safe in one retrospective data evaluation157 and
several case reports.158,159 A duration of therapy exceeding
2weekshas also beendocumented to increase the likelihoodof
daptomycin resistance.155

Fosfomycin
Fosfomycin, which was discovered more than 40 years ago
but then forgotten, is a phosphonic acid derivative that
possesses promising in vitro activity against carbapenem-
resistant K. pneumoniae.160 The introduction of fosfomycin
into our current armamentarium of antibiotics was greeted
with some skepticism due to major setbacks in its initial in
vitro evaluation and this has, in part, contributed to its
limited acceptance for clinical use. Although there are sug-
gestions that fosfomycin’s bacterial killing appears to be
driven by fT>MIC, the optimal PK/PD index relating to its
activity remains to be established and requires further
investigations.161 In addition, rapid bacterial killing was
observed in several static-time kill studies when drug con-
centrations were maintained at two to eight times the MIC.
Similar to the β-lactams, the development of fosfomycin

resistance is driven by low drug exposures and prolonged
duration of antibiotic course.162 There has also been some
debate concerning the rapid development of fosfomycin
resistance when it is used as a monotherapy particularly
in nonurinary tract infections. In a murine endocarditis
model, Thauvin et al found that the combination of fosfo-
mycin and pefloxacin was more effective in suppressing
resistant S. aureus strains emergence when compared
with fosfomycin alone.163 In several in vitro and in vivo
experimental studies, instances of synergism were also
demonstrated against MRSA when fosfomycin was com-
bined with the β-lactams,164,165 linezolid,166 and moxiflox-
acin.167 Combining fosfomycin with β-lactams is also
strongly supported by in vitro data, which describe syner-
gism between the two antibiotics against P. aeruginosa
infections.168–170 However, whether the in vitro synergism
would translate to increased clinical efficacy remains to be
demonstrated. In a recent prospective study, fosfomycin, in
combination with colistin, gentamicin, or piperacillin/
tazobactam, provided promising bacteriological and clinical
outcome data in the treatment of 11 critically ill patients
with ICU-acquired infections caused by carbapenem-
resistant K. pneumoniae.171 Based on limited clinical data
in treating serious infections in the ICU and its high tendency
for developing resistance, fosfomycin should not be used as a
single agent and the choice of adjunctive antibiotic should be
appropriately evaluated in future studies.

Colistin
Colistin is a polymyxin antibiotic, which is administered
parenterally as colistin methanesulfonate (CMS). The antibi-
otic has concentration-dependent kill characteristics with a
significant in vitro PAE against gram-negative pathogens.172

In vivo murine studies suggested that the most predictive PD
index for its bacterial activity, particularly against A. bau-
mannii and P. aeruginosa, is AUC0–24/MIC.173,174 Based on
observations in several lung infection models, the ratio of
AUC0–24/MIC between 50 and 65 has been suggested as the
optimal PD target, although higher exposures were also
described in thigh infection models.175 The heteroresistance
phenomenon, the situation whereby resistant subpopula-
tions are present within a strain-considered susceptible
based on MIC, is an emerging problem for the antibiotic
and has been observed in clinical isolates of A. bauma-
nii,176,177 K. pneumoniae,178 and P. aeruginosa.179 Further to
this, rapid resistant mutants formation was demonstrated
following colistin exposure in two recent in vitro PK/PD
studies mimicking clinical dosing regimens in humans.180,181

This is particularly worrying as Garonzik et al suggested that
the currently recommended CMS dosing regimen is subopti-
mal in a population PK analysis of 105 critically ill patients182

and their findings were corroborated by other investigators
who recruited smaller number of patients.183,184 With in-
creasing PK knowledge on the drug, Garonzik et al182 and
Plachouras et al184 further described optimized CMS dosing
regimens in patients with varying degrees of renal function.
The dosing proposed by Plachouras et al184 has now been
validated in a critical care setting by Dalfino et al in the
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treatment of MDR infections.185 Among the relevant recom-
mendations concerning CMS dosing is the need for an initial
loading dose, as the conversion of the prodrug CMS to the
active entity of colistin is very slow and adequate colistin
exposure may be delayed for a few days. Although theoreti-
cally plausible based on its PD characteristics, the adoption of
EDD is not suitable on the basis of the resultant prolonged
periods of low colistin concentrations leading to the forma-
tion of heteroresistance.173,174,180 Based on current PKdata of
critically ill patients182–184,186,187 and in vivo PK/PD experi-
mental studies,173,174 colistin monotherapy would not be
beneficial in maximizing therapeutic success and preventing
resistance, particularly in patients with moderate-to-good
renal function and for pathogenswithMICs of�1. In addition,
a treatment course lasting more than 12 days has been found
to be associatedwith the development of colistin resistance in
two recent clinical studies.188,189

Modifying Treatment Approaches to Prevent
Emergence of Resistance

Combination Antibiotic Therapy
Although combining antibiotics is common during the
treatment of infection, the relevance of the practice has
been the matter of debate with conflicting conclusions.
Proponents of combination therapy will strongly suggest
that the approach will increase antibiotic exposure via
extending coverage across a wider range of potential
pathogens and, in some clinical evaluations, has been found
to improve survival in severely ill patients.190–193 Further
strong theoretical reasons to seriously consider a combi-
nation antibiotic approach include antibiotic synergism
which enhances killing potency; combined activity against
biofilm-growing pathogens; increasing tissue penetration;
inhibition of pathogen’s toxin and enzyme production; and
prevention of resistance development. However, there is
also clinical evidence indicating that combination therapy
may not be superior, even harmful in some instan-
ces,194–196 as opposed to monotherapy in the treatment
of gram-negative bacilli infections.197–199 Based on the
current data, it could be deduced that combination antibi-
otic therapy may not benefit all patients but rather a select
patient populationwith select infections. While monother-
apy may be sufficient for most patients, critically ill pa-
tients with severe infections may benefit the most from
rationally optimized combination therapy. Although some
in vitro infection models200,201 and animal studies202

clearly indicated benefits behind the approach, unfortu-
nately, the vast majority of combination schemes were
chosen randomly without considering the preclinical
findings.203

In the context of resistance suppression, rationally opti-
mized combination therapy may restrict the amplification of
resistant mutants. Epstein et al204 suggest that the presence
of more than two antibiotics at the infection loci (with drug
concentrations above the MIC), each with a different killing
mechanism, would “shut” the MSW and thereby suppress
mutant growth.205–207 Apart from several preclinical stud-

ies,53,200,202,208,209 no randomized clinical trials to date have
shown that the approach reduces the emergence of resis-
tance. Furthermore, the benefit is particularly difficult to be
demonstrated in clinical evaluations, which frequently re-
cruit heterogeneous patient population and are not con-
ducted long enough to detect the emergence of resistance.
In the face of rapidly evolving resistance phenomenon, it is
likely that we have to turn our attention to the concept of
rationally optimized combination antibiotic therapy, partic-
ularly in the treatment of severely ill patients in the ICU. In
addition, the approach is likely to be important early in the
course of infection when the inoculum of the infecting
pathogens is the highest.

Duration of Therapy
It has been increasingly shown in preclinical studies that
prolonged antibiotic administration may play an important
role in the formation of resistant mutants. Conversely, the
longer antibiotic therapypersists, themore challenging it is to
curtail the emergence of resistant pathogens. It has been
suggested that an antibiotic regimen that lasts for only 4 to
5 days should be sufficient to produce maximal bactericidal
effect with an added benefit of resistance suppression. Ex-
tending antibiotic exposure to more than 10 days is risky on
the basis of resistance development whereby higher drug
exposures are needed to suppress resistant mutants in this
situation and if this threshold is not achieved, treatment
failure ensues as the resistant population dominates. This
phenomenon has been described by Tam et al in their in vitro
model of S. aureus infection which investigated two gare-
noxin dosing regimens with different intensity, one with an
AUC0–24/MIC ratio of 280 and the other with 100.42 The
investigators demonstrated that once the duration of gare-
noxin exposure increased beyond 5 days, the magnitude of
dosing needed for suppressing resistant mutants also in-
creased. The higher dosing regimen was found to suppress
resistance amplification for 10 days, while the less intense
regimen was only able to demonstrate the ability for 4 to
5 days.

At best, the common practice of administering an antibi-
otic for 10 to 14 days is currently based on limited data and
expert opinion rather than it being an evidence-based ap-
proach. However, for some deep-seated infections such as
osteomyelitis and endocarditis, prolonged antibiotic courses
are essential. Instances of potential benefits from shortening
the duration of antibiotic therapy in reducing the emergence
of resistance while maintaining clinical efficacy have been
increasingly described.210–213 Among these findings, Singh et
al demonstrated that patients who received shortened anti-
biotic courses (i.e., �3 days) had reduced ICU stays, lower
superinfection and resistance rates, as well as lower mortality
rates compared with patients who received standard
courses.213 Further investigations are warranted to elucidate
the exact duration of therapy that maximizes therapeutic
outcome and suppresses resistance development. Until con-
clusive findings are made, antibiotic therapy should “hit
hard” in the early course of infection and “stop early” to
assist in resistance prevention.
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Altered Dosing Approaches
Optimal and timely PK/PD target attainment has been associ-
ated with the likelihood of clinical success and resistance
suppression in critically ill patients.6 However, organ func-
tion changes that may result from either infectious or nonin-
fectious pathologic processes may alter antibiotics exposure.
For example, the increase in Vd for hydrophilic antibiotics
such as aminoglycosides,214,215 β-lactams,216 glycopepti-
des,135 and linezolid,217 has been extensively documented
in critically ill patients. Importantly, this phenomenon leads
to suboptimal antibiotic concentration and may impair the
attainment of desired PK/PD targets for optimal activity,
particularly in the early phase of severe sepsis and septic
shock. In this setting, higher initial loading doses of hydro-
philic antibiotics should be applied to compensate for the
volume expansion. In the context of resistance prevention,
the approach may have the potential utility to rapidly reduce
bacterial burden in the early stage of infection. Tsuji et al
recently tested the impact of a front-loaded linezolid-dosing
regimen on bacterial killing and resistance suppression in a
HFIM of MRSA infection.218 From a PD standpoint of bacterial
eradication, their findings suggest potential benefits of in-
creasing doses of linezolid early in therapy, although no
differences were observed in terms of resistance suppression.
Further preclinical studies are necessary to investigate this
promising dosing strategy particularly in the context of
resistance suppression, before it can be fully applied in clinical
practice.

For the β-lactams, maintaining effective exposure for
extended periods or increasing % fT>MIC would be especially
appropriate in the prevention of resistance particularly in
critically ill patients. Research has shown that the traditional
bolus dosing produces suboptimal antibiotic concentrations
for much of the dosing interval, which may consequently
favor resistant bacterial strains development.109 Numerous
preclinical and clinical PK/PD studies have demonstrated that
improved β-lactams exposure could be achieved via EI or CI
administration.219 These altered dosing approaches may be
especially important in patients who develop severe patho-
physiological derangements and when less susceptible
pathogens are present. However, more clinical studies are
urgently needed to evaluate the relative ability of EI and CI
versus IB dosing of β-lactam antibiotics in reducing the
emergence of resistance if a global practice change is to be
expected.

Conclusion

For decades now, clinicians have overused antibiotics and
apparently did so with the notion that our continuous supply
of new antibiotics would adequately address any emerging
resistance concerns. That thought did not materialize and on
the contrary, as our current antibiotic pipeline is nearly dry,
infecting pathogens have tremendously outperformed our
existing armamentarium thus far and they are becoming
increasingly difficult to treat. The current situation that we
are in is not surprising, as most of our treatment goals were
previously focused onmaximizing clinical andmicrobiological

cure and not on minimization of the emergence of antibiotic
resistance. With numerous preclinical data indicating that the
magnitude of the PK/PD indices for resistance suppression is
generally higher than the thresholds required for clinical
success, antibiotic dosing that only aims to optimize clinical
efficacy may potentially amplify resistance formation by se-
lecting mutant bacterial strains with reduced drug suscepti-
bility. Furthermore, the relevance of commonly prescribed
antibiotic dosing is questionable in severely ill patients as
most dosing recommendations havebeenderived from studies
that do not consider the occurrence of pathophysiological
changes in critical illness. Therefore, with enhanced knowl-
edge on antibiotic PK/PD over recent years, emerging data are
suggesting that the PD-based dosing approach should not only
aim to maximize clinical outcomes but also to include the
suppression of resistance. In some antibiotics such as the
quinolones, the PD thresholds needed to prevent the emer-
gence of resistance is readily described but, unfortunately, is
often neglected and not implemented in clinical practice,
while for most antibiotic classes specific research is urgently
needed. To curb the development of resistance, it is likely that
we have to administer “the highest tolerated antibiotic dose”
via alternative dosing strategies and should also consider the
combined use of multiple antibiotics (that are rationally opti-
mized), particularly early in the course of infection in severely
ill patients.
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