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Despite decades of basic and clinical research, treatments to
improve outcomes after traumatic brain injury (TBI) are
limited. In severe TBI, with few exceptions, supportive meas-
ures such as controlling brain swelling using osmolar therapy
or barbiturates, and/or surgical interventions remain the
standard of care. In severe TBI, development of novel thera-
pies targeting secondary injury has been the topic of consid-

erable research, but failures in translation continue to mount
with the recently published clinical trial on erythropoietin1

and recent halting of the PROTECT trial of progesterone
therapy (personal communication, David Wright, MD). Only
treatment with amantadine in the subacute phase has trans-
lated—from the controlled cortical impact (CCI) model of TBI
in rats to moderate–severe TBI in humans.2 In mild TBI
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Abstract Despite decades of basic and clinical research, treatments to improve outcomes after
traumatic brain injury (TBI) are limited. However, based on the recent recognition of the
prevalence of mild TBI, and its potential link to neurodegenerative disease, many new
and exciting secondary injury mechanisms have been identified and several new
therapies are being evaluated targeting both classic and novel paradigms. This includes
a robust increase in both preclinical and clinical investigations. Using a mechanism-
based approach the authors define the targets and emerging therapies for TBI. They
address putative new therapies for TBI across both the spectrum of injury severity and
the continuum of care, from the field to rehabilitation. They discussTBI therapy using 11
categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3)
mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia
and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of
endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11)
TBI resuscitation. The current golden age of TBI research represents a special opportu-
nity for the development of breakthroughs in the field.
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(mTBI), empiric therapies targeting sequelae such as cogni-
tive impairment and posttraumatic stress disorder are often
used. However, there has been little research on therapies in
mTBI, secondary injury pathways, or the link between mTBI
and neurodegenerative disease. Given the increased recogni-
tion of the scope of the problem, the growth in funding for TBI
research, and the expanding discussion of therapies,3 an
acceleration of research into the treatment of TBI across the
injury spectrum is emerging and there is cause for optimism.
Using a mechanism-based approach we will define the tar-
gets and emerging therapies for TBI. We will address emerg-
ing therapies for TBI across the spectrum of severity and the
continuum of care, from the field to rehabilitation. We will
discuss TBI therapy using 11 categories, namely, (1) excito-
toxicity and neuronal death, (2) brain edema, (3) mitochon-
dria and oxidative stress, (4) axonal injury, (5) inflammation,
(6) ischemia and cerebral blood flow (CBF) dysregulation, (7)
cognitive enhancement, (8) augmentation of endogenous
neuroprotection, (9) cellular therapies, (10) combination
therapy, and (11) TBI resuscitation.

Therapies Targeting Excitotoxicity and
Neuronal Death

Excitotoxicity and its link to neuronal death pathways in TBI
has been richly explored, and yet after 45 years of research
most antiexcitotoxic therapies have failed to translate.4,5New
understanding of glutamatergic neurotransmission inspires
optimism that future drugs will be more effective.

Excitotoxicity after Traumatic Brain Injury
Presynaptic glutamate release depolarizes post-synaptic neu-
rons by opening ion channels such as N-methyl-D-aspartate
receptors (NMDARs) that permit Naþ and Ca2þ to surge into
cells. Excitotoxic events occur early after TBI and trigger
apoptosis, necrosis, necroptosis, autophagy, or pyroptosis
(none of which are mutually exclusive). Ca2þ overload is a
key feature that is upstream to cell-death signaling.6 Naþ

overload is less significant, but may contribute to neuronal
swelling.7After TBI, there is a surge in extracellular glutamate
followed by persistent elevations.8 Extracellular glutamate
increases intracellular Ca2þ (iCA2þ) by activating neuronal
glutamate receptors (GluRs) like NMDARs and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPARs). Release of Ca2þ from intracellular stores in organ-
elles also contributes to excitotoxicity.9

Necrosis and Apoptosis
Nuclear Ca2þ promotes neuronal survival by inducing protec-
tive genes like brain-derived neurotrophic factor (BDNF). In
contrast, cytoplasmic Ca2þ is toxic. Necrotic death is triggered
in part by calpains—Ca2þ activated cysteine proteases that
destroy survival substrates.10 Traumatic brain injury induces
rapid and sustained iCa2þ elevations and calpain activa-
tion.10,11 Blocking calpain activity in TBI models reduces
tissue loss.12 Increased iCa2þ also overwhelms mitochondria
resulting in oxidative stress, mitochondrial permeability
transition pore (MPTP) opening and cytochrome c release.13

This activates the intrinsic pathway (capase-9 dependent).14

Apoptotic cell death has been characterized after TBI.14,15

Therapies that block executioner caspases reduce tissue loss
and improve outcome.16,17

Additional Excitotoxic Death Pathways
Necroptosis (programmed necrosis) is regulated by receptor-
interacting serine/threonine-protein kinase (RIPK1/3) and
mixed lineage kinase domain-like.18 Necroptosis is induced
by co-incubation of tumor necrosis factor α (TNFα) with Z-
VAD-FMK (a pan caspase inhibitor). Alone, TNFα stimulates
the extrinsic cell death receptor-mediated apoptotic pathway
(caspase-8 dependent). Caspase-8 cleaves and destroys RIPK
preventing its activation.19 The addition of Z-VAD during
TNFα � induced apoptosis in neurons stabilizes RIPK1/3
activating necroptosis.20 The necroptotic inhibitor necrosta-
tin-1 inhibits neuronal death after TBI.21 However, excitotox-
icity induces necroptosis in cultured neurons, but accounts
for a fraction of the cell death.22 Autophagy is a homeostatic
mechanism that regulates catabolism of damaged organelles
(macroautophagy). Loss of autophagy may contribute to
neurodegenerative disease,23 whereas overactivation may
promote cell death. There is marked upregulation of autoph-
agy after TBI.24 Mice treated with the autophagy inhibitor
3-methyladenine show reduced neuronal death after TBI.25

However, autophagy may also be beneficial late after TBI by
helping to “clean-up” injured brain.26 Microglia can also
release glutamate, enhance excitoxicity,27 and promote in-
flammasome-mediated cell death (pyroptosis) linked to cas-
pase-1. All of these cell death pathways are targets for TBI
therapy.

Antiexcitotoxic Therapy
Excitotoxicity plays a key role in tissue damage after TBI.
Vespa et al28 reported early posttraumatic subclinical seizure
activity and its deleterious effects after severe TBI. Most
strategies to reduce excitotoxicity include averting Ca2þ

accumulation, or inhibiting downstream death signaling
(caspases/apoptosis or calpains/necrosis). Historically
NMDARs have been key targets. Nonselective NMDAR antag-
onists like MK801 are neuroprotective in TBI models. How-
ever, they failed in clinical TBI due to psychosomatic side
effects, inadvertent death of select brain regions (cingulate
and retrosplenial cortex), and limited therapeutic window.5

Progress in NMDAR-mediated neurotransmission has re-
vealed greater complexity then previously appreciated—and
may better inform therapy. N-Methyl-D-aspartate receptors
consist of heterodimeric glutamate receptor (GluR) subunits
including NR1, NR2A, and NR2B. NR2A containing NMDARs
are enriched in the synapse (synaptic NMDARs).29 NR2B
containing NMDARs are enriched at extrasynaptic sites
(extrasynaptic NMDARs).29 Spatial distribution of NMDARs
greatly affects excitotoxic signaling. Activation of synaptic
NMDARs is neuroprotective. They increase nuclear Ca2þ,
activate CREB, BDNF, protein kinase B (AKT), phosphorylat-
ed-JACOB (pJACOB), and upregulate antioxidants.30–33 In
contrast, activation of extrasynaptic NMDARs by glutamate
spillover after TBI has the opposite effect. Extrasynaptic
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NMDARs increase cytoplasmic Ca2þ, inhibit CREB, AKT,
p-JACOB, BDNF, active calpain, stimulate death-associated
protein kinase (DAPK), and activate autophagy.30,32–35 Extra-
synaptic NMDARs play a role in cell death in TBI. The selective
NR2B antagonist Ro 25–6981 inhibits induction of autophagy
after TBI.34 Stretch injury increases NR2B/NMDAR currents,
which open AMPARs. That deleterious cascade is prevented
by the NR2B antagonists Ro 25–6981 and memantine
(a lipophilic form of amantadine).36 Memantine (Namenda)
was tested in rodent TBI many years ago.37 Recently it was
discovered to block extrasynaptic NMDARs while sparing
synaptic NMDAR function.38 It is approved by the U.S. Food
and Drug Administration (FDA) to treat dementia and has
proved a more tolerable NMDAR antagonist than MK801.39

Memantine and other next-generation NR2B-selective antag-
onists deserve additional study.40

Considerations for Chronic Recovery after Traumatic
Brain Injury
Long-term blockade of NMDARs may limit recovery of brain
function. Even mTBI disturbs synaptic processes resulting in
impaired network connectivity.41,42 Abnormal synaptic connec-
tivity may reflect aberrant decreases in glutamatergic neuro-
transmission or overactivation of GABAergic inhibitory
input.43,44 Levetiracetam (Keppra; UCB, Brussels, Belgium) is
often used to control seizures in severe TBI patients.45 Although
the mechanisms of action are not fully understood they involve
GABAergic activation and inhibition of presynaptic glutamate
release.46,47 Cognition remains largely intact in patients on
levetiracetam.48 It is curious to speculate if levetiracetam may
help balance long-term excitatory/inhibitory disturbances in
neurotransmissionafter TBI. Zouet al49 recently reportedbenefit
from chronic treatment with levetiracetam after CCI in rats.
Thus, one approachmight be to use a potent NMDAR antagonist
like memantine early after TBI, to block excitotoxicity and then
transition to therapies that fine-tune glutamatergic activity
during recovery such as levetiracetam. ►Fig. 1 provides an
overview of excitotoxicity and its link to the neuronal death
pathways along with emerging therapies.

Therapies Targeting Brain Edema

Brain edema has been a TBI target for decades. It is identified
and continuously monitored in patients with severe TBI by
imaging, clinical examination, and intracranial pressure (ICP)
monitoring. Cerebral edema is caused by two main mecha-
nisms—cellular (traditionally called cytotoxic) and vasogenic—
resulting from a disturbance in the blood–brain barrier (BBB).
There are no therapies in clinical practice designed to prevent
edema, rather than simply to treat it once it has occurred.
Treatments for brain edema are limited to the use of osmolar
agents (mannitol, hypertonic saline), which aid in water
removal, sedatives like barbiturates, which can lower the
cerebral metabolic rate and reduce brain swelling (via a
coupled reduction in cerebral blood volume), cerebrospinal
fluid (CSF) drainage via a ventriculostomy, and craniectomy.
These guidelines-based therapies are routinely used in severe
TBI.50,51However, they have toxicities. For example, increasing

serum sodium to > 170 mEq/L to manage refractory brain
swelling after severeTBI caused an increased rate of acute renal
failure, thrombocytopenia, and acute respiratory distress syn-
drome.52 Also, the decompressive craniectomy (DECRA) trial
failed to show improved outcome in adults with severe TBI
(although it decreased ICP).53 Some have thus even begun to
question the use of ICPmonitoring in patients with severe TBI;
this remains controversial.54 A recent randomized controlled
trial (RCT) by Chesnut et al55 showed that outcomes after
severe TBI did not differ between patients managed with ICP
monitoring versus clinical exam/imaging—although the use
of therapies for brain swelling was similar or greater in the
patients treated based on the clinical exam/imaging. In
contrast, other recent clinical studies have shown that
even short periods of increased ICP unfavorably affect
outcome,56 and new preclinical work suggests that very
modest levels of raised ICP (< 20 mm Hg) may be deleteri-
ous.57 Brain edema might even contribute to secondary
damage in mTBI if astrocyte swelling at the cellular level
compromises astrocyte function.

Novel Pathways of Edema Formation
New understandings of themolecular underpinnings of brain
edema are revealing new targets and therapies. Laird et al58

outlined molecular events that could contribute to the devel-
opment of brain edema after TBI (►Fig. 2). After TBI, neuronal
necrosis can induce release of the danger signal high-mobility
box protein 1 (HMGB-1). HMGB-1 binds to toll-like receptor-4
(TLR-4) on microglia and triggers interleukin-6– (IL-6–)
mediated aquaporin-4 (AQP4) channel upregulation in astro-
cytes, mediating edema formation. AQP4 is a membrane
channel that regulates water transport.59 Consistent with
this hypothesis, IL-6 andHMGB-1 are increased in human CSF
after severe TBI.60,61 HMGB-1 is also linked to brain edema in
TBI models.58 In addition to binding to TLR4, HMGB-1 inter-
acts with the receptor for advanced glycation end product
(RAGE); the RAGE pathway may play a role in vasogenic
edema/breakdown of BBB,62while TLR4maymediate cellular
edema.58 Cerebrospinal fluid levels of HMGB-1 correlatewith
unfavorable outcome after TBI.61 More discussion of this
pathway is provided later in this review. Finally, Simard
et al63 reported that sulfonylurea receptor 1 (SUR1) contrib-
utes to the development of brain edema. SUR1 channels
conduct monovalent cations, are upregulated after TBI, and
function independent of Naþ-Kþ ATPase activity.63

Emerging Therapies to Prevent Brain Edema
Effort has been directed at developing new therapies for brain
edema in TBI. The anti-inflammatory drug glycyrrhizin in-
hibits HMGB-1 from binding to RAGE and prevents BBB
breakdown and vasogenic edema.58,62 Similarly, Okuma
et al64 reported a reduction of edema in a rodent model using
an anti-HMGB1 monoclonal antibody. Edema could also be
reduced by inhibiting TLR4 with VGX-1027, which is in
clinical trials for inflammatory diseases.58 Other therapies
targeting HMGB-1/TLR4 are discussed later. AQP4 is another
edema target inTBI. Injection of small-interfering RNA target-
ing AQP4 reduced brain edema in rats65 and selective AQP4

Seminars in Neurology Vol. 35 No. 1/2015

Emerging Therapies in Traumatic Brain Injury Kochanek et al. 85

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



antagonists are in development (personal communication,
Marc Pelletier). The SUR1 receptor blocker glibenclamide
(Glyburide) is another a promising therapy that reduces
edema in TBI models.66 It is in a phase II clinical trial (NCT-
01132703) in TBI. These new agents give hope for improved
management of brain edema. Studies in preclinical models
are also needed to determine if reducing edema blunts
secondary injury independent of ICP or reduced CBF, includ-
ing studies in mTBI.

Mitochondrial Targeting Therapies and
Oxidative Stress

Mitochondria have important functions ranging from gener-
ation of ATP to production of reactive oxygen species (ROS),

which are important in the regulation of life and death
decisions in cells.67 Dysfunctional mitochondria can also
generate inflammatory and vasoactive mediators.68 Timely
elimination of dysfunctional mitochondria via macroautoph-
agy is essential particularly in postmitotic cells such as
neurons.69 Mitochondrial dysfunction has been reported in
experimental models and humans after TBI,70–73 and is a
robust target because alterations in mitochondrial function
persist days after injury.74

Role of Oxidative Stress in Traumatic Brain Injury
Oxidative stress plays a key role after TBI.75 It is classically
described as a misbalance between the generation of free
radicals and the body’s ability to detoxify them.76 However,
this definition fails to describe the essential roles free radicals

Fig. 1 Strategies to modulate traumatic brain injury- (TBI-) induced excitotoxicity while maintaining beneficial glutamatergic activation.
Glutamate is an essential neurotransmitter in brain function. Normal release of glutamate from presynaptic neurons activates synaptic NMDARs
(NR2A enriched) on postsynaptic neurons. Synaptic NMDAR activation promotes nuclear CA2þ influx. Synaptic-to-nuclear CA2þ communication
transmits prosurvival signals (CaMKIV and CREB). The transcription factor CREB induces neuroprotective BNDF. Also, synaptic NMDAR activity
stimulates expression of other protective AIDs. Traumatic brain injury alters CA2þ biochemistry to favor toxic cytoplasmic signaling. Extracellular
glutamate activates distal extrasynaptic NMDARs (NR2B enriched). Extrasynaptic NMDARs promote cell death (top-left). They oppose synaptic
NMDAR/CREB prosurvival responses and activate calpains and DAPK, and inhibit AKT survival signaling. Drugs approved by the U.S. Food and Drug
Administration targeting excitotoxicity include (identified by Ø): (1) Memantine— blocks extrasynaptic NMDAR, (2) ceftriaxone and raloxifene—
increases expression of glutamate uptake transporters in astrocytes, and (3) levetiracetam–may inhibit high presynaptic glutamate release by
modulating inhibitory GABAergic input to excitatory neurons. ALS, amyotrophic lateral sclerosis; CBF, cerebral blood flow; CTE, chronic traumatic
encephalopathy; NMDAR, N-methyl-D-aspartate receptor; GluN2A/NR2A, glutamate N2A subunit; GluN2B/NR2B, glutamate N2B subunit; CREB,
cAMP response element binding protein; GLT-1, glial glutamate transporter 1; GLAST, glutamate/aspirate transporter; AKT, protein kinase B;
DAPK, death-associated protein kinase; BDNF, brain-derived neurotrophic factor; AID, activity-regulated inhibitor of death; CaMK, CA2þ/
calmodulin dependent protein kinase.
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play in normal neuronal function, such as long-term potenti-
ation.77 A more contemporary definition, “disruption of
redox signaling and control,” recognizes the compartmental-
ized nature of these events.78 For a thorough evaluation of
oxidative stress, a battery of studies, including (1) assessment
of generation of free radicals; (2) quantification of oxidation
products of lipids, proteins, and DNA; and (3) evaluation of
radical scavenging capacity, should be performed. All of these
components of oxidative stress occur after experimental and
clinical TBI.79–83 Several sacrificial antioxidants and free
radical scavengers have been explored in TBI, such as PEG-
SOD, tirilazad, and edaravone.84–86 Although they have
shown efficacy in TBI models, clinical trials failed to confirm
efficacy.87,88 The limitations of general antioxidant strategies
include narrow therapeutic window, inability to cross the
BBB, and lack of targeting of the specific causes of oxidative
stress. Without a targeted approach, the use of sacrificial
antioxidants and free radical scavengers will fail.

Mitochondrial Failure after Traumatic Brain Injury
Mitochondria are a major intracellular source of ROS with
production of superoxide and its dismutation product hydro-
gen peroxide.89 Other sources of oxidative stress after TBI
include NADPHoxidase, nitric oxide (NO) synthases, xanthine
oxidase, and transition metals, which can be released by

hemorrhage.90,91 Underlying mechanisms of increased pro-
duction of ROS by mitochondria include dysfunction of
electron transport92 and impairment in Ca2þ buffering.93

Mitochondria are also targets of ROS, which can promote
MPTP opening, leading to apoptosis.94 Mitochondrial DNA,
which encodes elements for electron transport, is also a target
for free radical damage.95 Thus, oxidative stress can impair
mitochondrial function, which in turn generates more oxida-
tive stress in a vicious cycle.

Targeting Mitochondrial after Traumatic Brain Injury
Several strategies have been designed to combat mitochon-
drial dysfunction, including alternative fuels and MPTP in-
hibitors.96,97 Preliminary studies in adults describe the safety
of cyclosporine, a MPTP inhibitor, when given after severe
TBI.98 These strategies target different components of mito-
chondrial dysfunction, but fail to localize into mitochondria.
Recently small molecules have been discovered99 that can
selectively accumulate in mitochondria and bind targets in
the organelle to exert their effects. Several strategies have
been used, including (1) conjugation to lipophilic cations such
as triphenylphosphonium that take advantage of negative
membrane potential of mitochondria,99 and (2) binding to a
specific mitochondrial target such as cardiolipin (CL), a phos-
pholipid exclusively found in the inner mitochondrial

Fig. 2 Emerging therapies to inhibit the development of brain edema after traumatic brain injury (TBI). On the left, the novel molecular pathway
of brain edema formation proposed by Laird et al,58 which hypothesizes that in areas of necrosis, HMGB1 release from neurons binds to TLR4
receptors on microglia and leads to elaboration of IL-6. IL-6 triggers upregulation of AQP4 water channels in astrocytes with water uptake across
the blood–brain barrier and astrocyte swelling. On the right, a second pathway involves upregulation of the SUR1 channel on neurons, astrocytes,
and cerebrovascular endothelium. This monovalent cation channel is normally absent but is upregulated after TBI. Emerging therapies targeting
both pathways (identified by Ø). For the HMGB1-TLR4 cascade (left), potential therapies include (1) the HMGB1 binding agent glycyrrhizin or
release inhibitor ethyl pyruvate, (2) inhibitors of TLR4 signaling (VGX-1027 or resatorvid), or (3) AQP4 antagonists. The prototype therapy
targeting the SUR1 channel pathway (right) is glibenclamide. HMGB-1, high-mobility box protein 1; TLR4, toll-like receptor-4; IL-6, interleukin-6;
AQP4, aquaporin-4; SUR1, sulfonylurea receptor 1.
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membrane.67 Both strategies are effective at delivering ther-
apies into mitochondria. Compounds in the first category
have not been tested in TBI. One of them, Mito-Q (a ubiqui-
none moiety linked to triphenyl-phosphonium), was used in
recent human trials in Parkinson disease and hepatitis C.100

Compounds in the second category include Szeto-Schiller (SS)
peptides.101 Their uptake into mitochondria is thought to be
independent of membrane potential, with a high affinity
binding to inner membrane.101 They contain four alternating
aromatic amino acids and some have antioxidant activity.
One of these peptides, SS-31, protects mitochondria, accel-
erates ATP recovery, and reduces infarct size in the heart.101

Another class of compounds in the second category promising
for TBI are the hemigramicidin-nitroxides (GS-nitroxide),
inspired by the shared ancestry between mitochondria and
bacteria, taking advantage of chemical moieties used in
antibacterial agents (the antibiotic gramicidin S) with high
affinity for the inner membrane.102 One GS-nitroxide, XJB-5–
131, was shown to partition almost exclusively into neuronal
mitochondria in vitro, penetrate the BBB, prevent TBI-in-
duced CL oxidation and caspase activation, and improve
lesion volume and neurocognitive outcome after TBI.70 This
is an exciting targeted strategy for TBI.

In summary, there is promising experimental success in
application of mitochondria-targeted redox regulators in
treatment of TBI, and these approaches deserve significant
future efforts.

Therapies Targeting Neuroinflammation

Evidence suggests the inflammatory response, including
cytokines, chemokines, microglial activation, and recruit-
ment of circulating leukocytes, mediates secondary injury
and/or repair after TBI. Traumatic brain injury causes the
release of endogenous danger signals (i.e., extracellular ATP
and HMGB-1),58,61 which bind to pattern recognition recep-
tors such as TLR4 on neurons and glia to activate the immune
response. Activated microglia undergo a phenotypic shift
from an anti-inflammatory (M2) state to a proinflammatory
and procytotoxic (M1) state. M1 microglia proliferate and
migrate to the injury site and (1) form a barrier between
damaged and healthy tissue,103 (2) increase expression of
proinflammatory cytokines such as TNFα104 and IL-1β,105 and
(3) release ROS and reactive nitrogen species. Chronic micro-
glial activation develops and may mediate chronic traumatic
encephalopathy (CTE) and neurodegenerative diseases.106

Dual Role of Inflammation in TBI
Studies of the role of TNFα after TBI reveal the dual effects of
inflammation in secondary injury and repair. Scherbel et al107

using a TNF KO mouse reported evidence of early neuro-
protection in the KO at 48 hour; however, TNF KO mice had
persistent motor deficits and more tissue loss at 4 weeks
comparedwith wild-type. Balancing neurotoxicity with repair
must be considered for therapies that modulate inflammation.
Preclinical work with thalidomide analogs (TNFα synthesis
inhibitor) and etanercept (fusion protein that binds to and
inhibits TNFα) have shown benefit early after TBI.108,109

HMGB-1/TLR4 Pathway Inhibition
HMGB1/TLR4 pathway inhibitors were previously discussed.
They also block secondary injury due to immune activation.
Ethyl pyruvate, an inhibitor of HMGB1 secretion, and resa-
torvid, a small molecule inhibitor of TLR4, improved outcome
and reduced levels of TNFα and IL-1β in rodent TBI mod-
els.110,111 These drugs have not yet been evaluated in clinical
trials for TBI.

Other Anti-Inflammatory Agents
Minocycline, a lipophilic tetracycline antibiotic with sever-
al proposed mechanisms of action, including inhibition of
microglial activation, reduces IL-1β production, lesion
volume, and functional deficits in TBI models.112 A phase
1 clinical trial of minocycline in TBI is recruiting
patients. IL-1β antagonism via intraventricular injection
of anti-IL-1β antibody113 and transgenic overexpression of
IL-1 receptor antagonist (IL-1ra)114 reduced lesion volume
and improved outcomes in TBI models. A recent phase
2 trial in adults with severe TBI115 randomized 20 patients
to receive 100-mg recombinant human IL-1ra (Anakinra)
for 5 days, an FDA-approved dose for rheumatoid arthritis.
Adverse events did not differ in treatment and control
groups. Cerebral microdialysis showed increased levels of
IL-1ra with treatment and a shift in the cytokine/chemo-
kine profile. HMG-CoA reductase inhibitors (statins) have
several proposed mechanisms of action after TBI (antia-
poptotic, antioxidant, increase CBF, and neurogenesis);
however, the primary mechanism is likely anti-inflamma-
tory. Two clinical studies of statins have been conducted—a
RCT of rosuvastatin in 20 adults with TBI that showed
improved memory with treatment,116 and a retrospective
study showing a 76% relative risk reduction for mortality in
patients treated with statins before injury.117 Larger RCTs
are needed.

Promoting Inflammation-Mediated Regeneration
Another approach is to promote shifting microglia from the
M1 to the M2 phenotype. Currently under investigation for
treating multiple sclerosis,118 therapies such as glatiramer
acetate, interferon-β, or dimethyl fumarate may promote the
beneficial aspects of neuroinflammation—neurogenesis and
repair—while reducing cytotoxic mediators. A similar ap-
proach is being adapted from spinal cord injury research
with the use of “pro-inflammatory” therapy: G-CSF alone119

or in combination with mesenchymal stem cells.120 These
therapies may also be useful late in the course of the disease
to mitigate CTE.121

Therapies Targeting Traumatic Axonal Injury

Therapies targeting traumatic axonal injury (TAI) is a promi-
nent feature of TBI and represents a vital target across the
spectrum of injury severity. In classic studies, Povlish-
ock122,123 showed that TAI is a fundamental component of
secondary injury after TBI and thus a key therapeutic target.
Progression of TAI involves TBI-induced dysregulation of Naþ

channels, in turn causing increased Ca2þ influx into axons,
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calpain activation with loss of microtubules, neurofilament
impaction with impaired axoplasmic transport,124 and mi-
tochondrial failure with permeability transition pore open-
ing and oxidative stress.125 The aforementioned novel
strategies targeting mitochondrial failure may be particu-
larly efficacious in TAI. Smith et al124 recently identified
categories of therapies for TAI based on work in TBI models:
(1) cytoskeleton stabilization, (2) ion homeostasis, (3) pro-
tease inhibition, (4) mitochondrial protection, (5) mild
hypothermia, and (6) other therapies. We will review and
update those categories (►Fig. 3).

Cytoskeleton Stabilization
Loss of microtubule function devastates axonal transport.
Unfortunately, data are limited on approaches to block this
mechanism. The chemotherapeutic drug Taxol can inhibit
chemical depolymerization of microtubules during
stretch.126 Taxol has not been tested in TBI in vivo, but
recently produced axonal preservation after spinal cord
injury in rats.127

Ion Homeostasis
There has also been limited work targeting Ca2þ accumula-
tion linked to TAI. Rather, focus has been on downstream
signaling cascades such as calpain activation. Therapies tar-
geting major breaches in membrane disruption such as
Kollidon VA64 show promise in TBI models.128

Protease Inhibition
Beneficial effects of calpain inhibition on TAI have been
shown in rodent TBI models for over a decade, including
use of MDL28170, AK295, and SJA-6017.124,129 However, lack
of brain bioavailability and target specificity have limited the
development of calpain inhibitors. Recent studies have sug-
gested that citicoline suppresses calpain activation after TBI.
However, the failed COBRIT clinical trialwith citicoline argues
against this agent.130Given the evidence supporting a role for
calpain in TAI, it is disappointing that additional calpain
inhibitors are not available.

Mitochondrial Protection
Mitochondrial failure may worsen Ca2þ overload and exacer-
bate TAI. Preclinical work125 has shown benefit from cyclo-
sporine A (CsA) on TAI. Inhibition of MPTP opening is
suggested as the mechanism for this effect. However, clinical
studies with CsA have been equivocal.3 The aforementioned
GS-nitroxides70 or N-acetyl cysteine (NAC) amide131 are
logical candidates to study.

Hypothermia
Preclinical work shows that mild hypothermia can attenuate
TAI.129 Sadly clinical trials in TBI have failed.132 Surprisingly,
hypothermia failed to attenuate the increase in CSF levels of
myelin basic protein after severe TBI in children.133 Mild
hypothermia was recently shown to markedly attenuate TAI

Fig. 3 Emerging therapies to limit traumatic axonal injury (TAI) after traumatic brain injury (TBI).124 Cellular and molecular events in the TAI
cascade include Ca2þ accumulation with calpain activation and resultant microtubule proteolysis, MPTP opening, and oxidative stress. Direct
membrane poration can also mediate injury. Emerging therapies (identified by Ø) include calpain antagonists (MDL28170, AK295, SJA-6017), and
taxol, which may prevents microtubule polymerization. Therapies targeting mitochondria include CsA that blocks MPTP, FK506 that may target
calcineurin induced translocation of BAD, and XJB-5–131 and NACA that target oxidative stress in mitochondria. Kolloidan VA64 may directly
reseal membranes. Mild hypothermia may reduce TAI by multiple mechanisms. CsA ,Cyclosporin A; NACA, N-acetyl cysteine amide.
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after repetitive mTBI in rats.134 Mild hypothermia deserves
exploration in mTBI.

Other
In addition to CsA, the calcineurin inhibitor FK506 has been
shown to reduce TAI, particularly in unmyelinated axons.135 It
is unclear whether this is independent of effects on mito-
chondria.124 Therapies targeting oxidative damage have also
been suggested to reduce TAI134—these were discussed
previously.

Therapies Targeting Cerebral Blood Flow
Dysregulation and Ischemia

After TBI, CBF dysregulation develops and may contribute to
secondary damage. In mTBI, vascular dysregulation could
mediate vulnerability to a second hit.136 Cerebral blood flow
is often reduced early after severe TBI.137 This may result from
a coupled reduction in brain activity, but can be pathologic
during excitation. Cerebrovascular resistance (CVR) is con-
trolled at themacro- andmicrovascular level. At themicrovas-
cular level, it is coupled to brain metabolic activity. Recently,
Hall et al138 showed that pericytes positioned around brain
capillaries mediate dilation that produces a much greater
change in CBF (19% vs. 3%) than dilation of arteries alone—
implicating pericyte-mediated dilation as the major contribu-
tor to changes in CBF. Key metabolites identified included the
vasodilators nitric oxide (NO) andprostaglandin-E2 (PGE2) and
the vasoconstrictor 20-hydroxyeicosatertraenoic acid (20-
HETE). They implicated the relative production of these me-
tabolites in regulating pericyte dilation and thus CBF. The
potent vasoconstrictor endothelin-1 (ET-1) may also contrib-
ute to CBF dysregulation after TBI.

Modulating Nitric Oxide
Nitric oxide is a potent vasodilator and may be useful to treat
ischemia after TBI. Conversely, NO at high levels can be
converted to peroxynitrite, which can worsen damage. This
paradox has yielded interventions that augment NO delivery
or block NO production after TBI. The primary clinical strate-
gy to increase NO delivery is with inhaled NO. Inhaled NO is
FDA-approved for neonatal respiratory failure. Studies sug-
gest that inhaled NO improves collateral circulation and
outcomes in TBI models.139 However, in newborn piglets,
the NO donor sodium nitroprusside did not prevent impaired
autoregulation during hypotension after TBI, implying that
NO augmentation may only be beneficial in normotensive
states.140 This is important, given that NO augmentation can
produce hypotension that may mitigate benefit. Whether
inhaled NO is a viable approach remains to be determined.
Nitric oxide synthase inhibitors are also being explored inTBI.
A phase II placebo controlled trial with the NO synthase
inhibitor VAS 203 was just completed in 32 adults with TBI
(NOSTRA; NCT 02012582). It suggested improved outcomes,
but renal injury was a concern. It is unknown if NO augmen-
tation or inhibition is preferred. A targeted approach to NO
delivery to maximize microvascular affects coupled with
selective inhibition of inducible NOS (iNOS) to prevent nitro-

sative stress might be considered. However, sustained inhi-
bition of iNOS may be deleterious given that iNOS KO mice
exhibit marked impairments in cognitive outcome.141

Modulating ET-1
In TBI, ET-1 levels in CSF are increased and linked to unfavor-
able outcomes.142 However, in a phase 2b trial, the ET
receptor A antagonist clazosentan failed to improve outcomes
after subarachnoid hemorrhage (SAH).143 New ET-1 antago-
nists remain to be tested in TBI.

Statins
HMG-CoA reductase inhibitors (statins) are used for choles-
terol reduction. As discussed, they have anti-inflammatory
effects, but also upregulate eNOS and increase NOproduction,
leading to improved capillary patency.144 Clinical trials with
statins suggest a potential benefit on outcome inTBI, although
the role of effects on CBF is unclear.145 In stroke, an RCT of
lovastatin is in phase 2 trials (NeuSTART, NCT01976936).146

The optimal choice of statin and dosing for BBB penetration
also remain unclear. Results from larger RCTs in TBI are
needed to define the utility of these agents in TBI.

Cytochrome P450 Metabolites
Cytochrome P450 produces two classes of arachidonic acid
metabolites with opposing microvascular effects. Hydroxyl-
ation produces 20-HETE, a potent vasoconstrictor, while
epoxidation produces epoxyeicosatrienoic acids (EETs),
which are vasodilatory. Both 20-HETE and EETs are autore-
gulatory mediators. Inhibition of 20-HETE formation by NO is
an essential pathway of PGE2-mediated pericyte dilation.138

Inhibition of 20-HETE formation or prevention of EET metab-
olism can reduce lesion volume in stroke and SAH mod-
els.147,148 20-HETE is involved in reduced CBF in cortical
spreading depression149— a secondary injury mechanism
implicated in TBI.150 Thus, cytochrome P450 arachidonic
acid metabolites affect CBF after TBI. It remains to be deter-
mined whether targeting these pathways can improve out-
come after TBI.

Enhancing Oxygen Delivery
Another approach to reduce ischemic damage is to improve
oxygen delivery despite CBF reductions—such as with per-
fluorocarbon-enhanced oxygen delivery. A safety/efficacy
RCT is evaluating the perfluorocarbon Oxycyte (STOP-TBI;
NCT00908063). Mild hypothermia has also been shown to
reduce CBF dysregulation after TBI.151 This includes benefit
injury in repetitive mTBI.134

In summary, an emerging area TBI is mitigating microvas-
cular dysregulation. These approaches and others deserve
further investigation in TBI, including testing in mTBI.

Cognitive Enhancement

Many rehabilitation strategies have been used to enhance
cognitive function after TBI. Some of the most effective
preclinical rehabilitative strategies in TBI have been neuro-
stimulant pharmacotherapies, and as discussed below,
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successful clinical translation of this approach in an RCTwas
recently acheived.2 Thus, we will focus on these agents as
emerging TBI therapies.

Catecholamine Agonists
Catecholamine agonists promote functional recovery after
TBI. This was confirmed in weight drop cortical contusion or
ablation models in rats and/or cats.151–154 Because norepi-
nephrine antagonists block or reinstate deficits, the norad-
renergic system has been implicated. However, clinical155,156

and experimental157,158 research shows that the dopamine
(DA) system is also involved in both injury and rehabilitative
processes.Methylphenidate, a psychostimulant and DA trans-
porter inhibitor, exhibits pharmacological properties similar
to amphetamine, but without undesirable sympathomimetic
effects. In a study assessingmotor function after sensorimotor
cortex injury in rats, a single dose of methylphenidate fol-
lowed by symptom relevant experience (beam walking)
enhanced beam-walk ability.154 This work supports the
importance of an interaction between pharmacotherapy
and symptom-relevant experience (rehabilitation) in pro-
moting functional recovery after TBI. Moreover, daily treat-
ment with methylphenidate beginning as late as 24 hours
after CCI in rats revealed less spatial memory deficits versus
controls.159 Wagner et al160 has showed that methylpheni-
date exhibits some restorative capacity for striatal DA neuro-
transmission after experimental TBI; their additional work
suggests potential sex differences in methylphenidate treat-
ment effects and dosing for male versus female rats.161

Amantadine—A Translational Success
With success in preclinical studies as well as phase 2 and
phase 3 clinical trials, amantadine (Symmetrel; Endo Phar-
maceuticals, Malvern, PA) is a promising drug for TBI rehabil-
itation.2,162 Daily treatment with amantadine (for 20 d) after
CCI in rats revealed improvements in spatial memory perfor-
mance deficits versus saline-treated counterparts.163 Higher
doses also benefit cognition after fluid percussion.164 Clini-
cally, amantadine accelerates the rate of functional recovery
in vegetative or minimally conscious patients during the
subacute phase after TBI.2 It exerts its effects by increasing
extracellular DA by blocking reuptake and by facilitating
synthesis.165,166 In addition to its presynaptic actions, aman-
tadine increases the density of postsynaptic DA receptors166

or alters their conformation, which may be clinically impor-
tant.167 Because the mechanism of action of amantadine
differs from other DA-releasing drugs,168 it is likely that the
dopaminergic effects of amantadine are a combination of
presynaptic and postsynaptic effects. It also blunts NMDAR
activation.

Bromocriptine
Delayed or chronic treatment with the D2 receptor agonist
bromocriptine also improves the acquisition of spatial and
working memory in rats after CCI.169 Bromocriptine (5 mg/kg)
has been shown to increase extracellular DA levels in rats,170

suggesting that enhanced presynaptic DA neurotransmission
may havemediated thebenefit at this dose. Bromocriptine also

attenuated lipid peroxidation, suggesting antioxidant
effects.169 Further support for dopaminergic activity in restor-
ing functional recovery after TBI comes fromapreclinical study
showing that selegiline (L-deprenyl), which enhances the
action of DA by inhibiting its main catabolic enzyme in brain,
monoamine oxidase-B, improved cognitive outcome when
given daily for 7 days after fluid percussion injury.171 Clinical
studies showing benefits of DA augmentation after TBI also
exist.172,173

Thus enhancing catecholamine neurotransmission during
the chronic postinjury phase may be a useful adjunct in
ameliorating the neurobehavioral sequelae of TBI in humans.
Additional studies are warranted.

Augmenting Endogenous Neuroprotectants

Evolution has provided several naturally occurring neuro-
protective mechanisms. Perhaps the “low-hanging fruit” for
increasing therapeutic options for TBI patients resides in
augmenting the mechanisms that allowed the brain to evolve
in the first place.

Adenosine as an Archetype for Endogenous
Neuroprotection
Adenosine is released by tissue injury via several pathways.
Breakdown of ATP is one source of adenosine in the injured
brain (the traditional route). Recently, an alternative 2’,3′
cAMP pathway was discovered, and involves production of
adenosine from mRNA breakdown via 2’,3′cAMP. This latter
pathway appears to play a major role after TBI.174 Adenosine
acts on cell surface receptors (A1, A2A, A2B, and A3) and
engages signal transduction that is neuroprotective in TBI.175

Activation of A1 receptors attenuates post-TBI excitotoxicity.
Mice null for A1 receptors suffer lethal status epilepticus after
TBI,176 and variants in the A1 receptor genes associate with
posttraumatic seizures in TBI patients.177 Moreover, A1 re-
ceptor KO mice exhibit enhanced microglial proliferation
after TBI.178 However, systemic effects of A1 agonists (brady-
cardia, hypotension) limit their use in TBI. A more effective
strategy might be to enhance adenosine levels in the brain or
increase A1 receptor numbers and/or signaling. One approach
would be to upregulate enzymes that produce adenosine. For
example, isoflurane increases activity of the adenosine-form-
ing enzyme ecto-5′-nucleotidase (CD73) by stimulating re-
lease of microparticles,179 which may contribute to its
neuroprotection.180 Another approach would be to adminis-
ter chronically and prophylactically an A1 receptor blocker
with a short half-life. This would upregulate A1 receptor
numbers and signaling in the brain, yet post-TBI the antago-
nist would dissipate rapidly, leaving enhanced adenosine
signaling at the time of greatest need. Improved outcomes
are seen in TBI patients with caffeine (a short half-life
adenosine receptor antagonist) in their CSF at the time of
injury.181 Finally, adenosine kinase (ADK) is a key enzyme in
the breakdown of adenosine. Adenosine kinase increases
markedly in the astrocyte scar and limits adenosine availabil-
ity chronically after TBI.182Given the anticonvulsant effects of
A1 receptors, blocking ADK or using other strategies to
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overexpress adenosine may represent a therapy for posttrau-
matic seizures. Huber et al183 used grafts of adenosine-
releasing fibroblasts to suppress seizures in rats. A1 receptor
gene polymorphisms are strongly associated with posttrau-
matic seizures.177 Thus, it may be possible to use a personal-
ized medicine approach to define patients who might benefit
from adenosine augmentation therapy.

Other Endogenous Neuroprotectants
There are many other endogenous neuroprotectants emerg-
ing as therapies for TBI. Augmentation of trophic factors such
as BDNF, or immediate early gene products such as HSP, could
improve outcome after TBI.184 It was recently shown that
remote preconditioning using tourniquet inflation/deflation
may mediate benefit in ischemia/reperfusion via local elabo-
ration of nitrite—which is converted to NO in regions of tissue
hypoxia.185 Systemic nitrite therapy might yield similar
effects.186 An endogenous neuroprotectant receiving atten-
tion in Parkinson disease is uric acid, which has antioxidant
effects.187 Finally, regulators of cold stress such as RNA-
binding motif 3 (RBM3) stabilize mRNAs and may underlie
benefit in hypothermia.188 New drugs are targeting RBMs.189

Cellular Therapies

Therapies designed to replenish cells lost after TBI may help
improve outcome. Methodologies include supplementation
of exogenous stem cells or therapies that enhance endoge-
nous neurogenesis in the adult brain. Both approaches have
promise based on studies in TBI models. New approaches are
being used to enhance the regenerative capacities of these
cellular therapies in hopes of developing interventions that
can ultimately promote recovery in patients.

Administration of Exogenous Cells
Traumatic brain injury can be associated with loss of neurons
and other cells in multiple brain regions. Administration of
exogenous bone marrow stromal cells in rats, via intracrani-
al,190 intra-arterial,191 or intravenous delivery,192 results in a
portion of transplanted cells migrating into the brain paren-
chyma, and is associated with improved motor function after
TBI.190,193 Survival of stromal cells is associated with in-
creased production of BDNF and nerve growth factor.192 In
other studies, transplantation of neural stem cells194,195 and
the coadministration of neural stem cells and olfactory
ensheathing cells similarly improve motor performance after
TBI.196 However, it is unclear whether the regenerative
capacity of transplantation is dependent upon the incorpo-
ration of the exogenous cells, the production of soluble
growth permissive factors, or their combination. Two studies
provide evidence for complex dynamics between the contri-
butions of exogenous cell survival and the release of soluble
factors that promote regeneration after TBI. Intracranial
administration of human bone marrow stromal cells in a
collagen scaffold matrix enhances the survival of the stromal
cells in the cortex and improves motor function compared
with administration of stromal cells alone.52 Coadministra-
tion of the collagen scaffold also enhanced corticospinal tract

sprouting in the denervated spinal cord,197 suggesting con-
tributions from both the surviving stromal cells and soluble
factors that promote regeneration after TBI. Tajiri et al198

studied soluble factors released from transplanted human
adipose-derived stem cells that may play a role in recovery
after TBI. Delivery of either the adipose-derived stem cells or
conditioned media improved outcome in rats after TBI.
However, knockdown of two long noncoding RNAs, impor-
tant for cellular differentiation, blunted the recovery. These
data indicate that regeneration can be enhanced with soluble
factors in the absence of transplanted cells. They reveal the
potential of transplantation approaches and highlight the
complex dynamics between stem cells and growth permis-
sive factors in promoting recovery.

Enhancing the Generation and Survival of
Newborn Cells
Therapies that enhance the generation of newborn neurons
are also attractive after TBI. Enhancement of neurogenesis
after TBI with growth factors, neuroprotective agents, and
hypothermia promotes cellular proliferation and increases
the generation of newborn neurons in neurogenic regions of
the injured brain.199–202 These studies have also shown that
an enhancement of posttraumatic neurogenesis in the weeks
after TBI is associated with improved neurobehavioral per-
formance. Hippocampal immature neurons are particularly
sensitive to brain injury in the days postinjury.202 Promoting
survival of neural stem cells and immature neurons is a
promising target to improve outcome.203 Blaya et al204 eval-
uated the efficacy of the neuroprotective agent P730-A20 to
promote the survival of immature neurons, as this drug
blocks apoptosis in immature neurons. Treatment with
P730-A20 improved immature neuron density, increased
the number of newly generated neurons, and improved
cognitive performance. This highlights the promise of thera-
pies promoting newborn neuron survival and incorporation
into the injured brain.

Clinical Trials of Cellular Therapy
There are several clinical trials exploring cellular therapy in
TBI. Recently a study addressing “Safety of Autologous Stem
Cell Treatment for TBI in Children” (NCT00254722) was
completed. The objective of that phase 1 study was to
determine if bone marrow precursor cell harvest and autolo-
gous transplantation (within 36 h of injury and by intrave-
nous route) is safe in children after TBI. The study was
completed; a phase II trial is recruiting (NCT01851083). There
is also an open label study of “Autologous Bone Marrow
Mononuclear Cells in TBI” (NCT0202810), in which bone
marrow-derived mononuclear cells are given intrathecally.
That study is also recruiting.

Combination Therapy

Combination therapy is attractive to overcome translational
challenges. Incomplete understanding of dose-response rela-
tionships and poor central nervous system (CNS) penetration
of therapies are factors widely acknowledged to contribute to
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failed clinical trials.205–207 The heterogeneity of TBI and its
complex pathophysiology suggest that it is unlikely that any
single agent can address all of the secondary injury mecha-
nisms.205 The success of combination therapies that enhance
drug exposure or have complementary mechanisms of action
in cancer and human immunodeficiency virus has further
increased enthusiasm for this approach in TBI research.

Emerging Combination Therapies
In 2008, the NIH convened a workshop on multidrug combi-
nations for TBI. The recommendation was to combine thera-
pies with complementary targets and effects rather than
focus on a single target with multiple therapies.207 Several
combination therapies meeting this definition are being
investigated. One of the most promising combines the anti-
inflammatory agent minocycline and the glutathione precur-
sor NAC. Effects of minocycline were discussed previously.
N-acetyl cysteine is a precursor for synthesis of the antioxi-
dant glutathione, impacts glutamatergic transmission, and
despite poor CNS penetration improved outcomes in some
TBI models and in blast-induced mTBI in humans.208–210

When given together, benefits of the combination exceed
that of the single agents studied in CCI and mTBI mod-
els.211,212 N-acetyl cysteine is used in another combination
therapy designed to improve drug exposure. Our group is
testing coadministration of the FDA-approved organic acid
transporter and multidrug resistance-associated protein in-
hibitor, probenecid, with NAC in preclinical and phase I
pediatric studies (NCT01322009). The aim is to overcome
membrane barriers, such as the BBB, to synergistically im-
prove NAC bioavailability and antioxidant reserves after TBI.
Preclinical pharmacokinetic (PK) data show that probenecid
increases NAC brain penetration in juvenile rats two- to
threefold as early as 1 hour after injury.213 Outcome studies
are underway. Other combinations such as progesterone plus
vitamin D are in early stages of preclinical investigation.214

Addressing Unique Challenges of Combination Therapy
Interactions between therapies may alter PK (dose-concen-
tration relationships) or pharmacodynamic (concentration-
effect relationships) properties of either therapy. Theymay be
additive, synergistic, or antagonistic. Thus, studies using full-
factorial designs at multiple dosing levels are ideal.207 These
data are used to identify combinations and sequences of
therapies that achieve greater efficacy and lower toxicity
than either therapy alone. Specific statistical approaches to
identify synergism are advocated.215 Coadministered thera-
pies should also be evaluated for physiochemical incompati-
bilities to ensure systemic bioavailability. As with single
drugs, it is imperative to measure brain concentrations of
therapies used in combination to optimize their potential for
success.

Therapies Targeting TBI Resuscitation in
Polytrauma

Traumatic brain injury is often accompanied by secondary
insults (hypotension, hemorrhage, hypoxemia) that worsen

outcome.216However, given their complexity, clinical studies
commonly exclude these patients, and few animal models
have been developed to investigate therapies. Optimal resus-
citation of the TBI patient with polytrauma continues to
present unique challenges and remains understudied.

Resuscitation Fluids
The mainstay of resuscitation involves fluids: crystalloids,
colloids, and/or blood products. Crystalloids are the initial
therapy; however, large volumes are often needed, which
can exacerbate brain edema.217 Colloids, given their im-
proved ability at maintaining intravascular volumes, are
attractive; however, in the SAFE study, TBI patients resus-
citated with albumin had raised ICPs and greater mortality
compared with saline-treated patients.218 Traumatic brain
injury-induced BBB permeability may have allowed extrav-
asation of albumin into brain—potentiating rebound brain
edema.219 Thus, small molecule colloids may be problem-
atic early after TBI. Blood products are not available for
prehospital use.

Emerging Resuscitation Agents
Given the risk of exacerbation of brain edema with current
resuscitation fluids, new therapies are being investigated,
including novel, ultra-small-volume resuscitation agents.
Polynitroxylated pegylated hemoglobin (PNPH) is one
agent that may represent an out-of hospital bridge to
transfusion. Polynitroxylated pegylated hemoglobin is a
bovine-based hemoglobin that, in an effort to eliminate
toxicity of cell-free hemoglobin, is covalently bonded with
antioxidant nitroxidemoieties and polyethylene glycol side
chains. Polynitroxylated pegylated hemoglobin is being
developed as a small-volume resuscitation solution. In a
model of TBI plus hemorrhage, it dramatically reduced
resuscitation fluid requirements compared with crystal-
loid.220,221 It also reduced ICP, brain edema, and neuronal
death.220,221 Unlike conventional free hemoglobins, it has
surprising in vitro neuroprotective effects.221 It is in pre-
clinical development. Traditional resuscitation approaches
focus on improving tissue perfusion by increasing circulat-
ing blood volume. An alternative might entail modification
of microcirculatory blood flow. Drag-reducing polymers
(DRPs) at nM levels markedly reduce the resistance of
microvascular flow, improving tissue perfusion.222,223

Drag-reducing polymers, such as long-chain polyethylene
glycol (kDa > 106), improve perfusion and reduce mortali-
ty in models of hemorrhagic shock.224 Drag-reducing poly-
mers thus could maintain brain perfusion despite using a
volume-limited resuscitation.

Conventional Resuscitation Plus Antiedema Therapies
Although volume-limiting resuscitation strategies hold
promise in TBI, treatment with the aforementioned novel
drugs targeting brain edema (Kollidon VA64, glibenclamide,
AQP4 antagonists) could reduce the deleterious effects of
resuscitation fluids on edema after TBI. Preclinical studies of
these drugs are needed in models of TBI plus hemorrhage/
polytrauma.
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Other Therapies

Many more emerging therapies are on the horizon, including
the use of transcranial low level laser,225 neutraceuti-
cals,226,227 lithium,228 modulating cell cycle229 and targeting
microhemorrhage,230 among many others. This brief list
illustrates the level of creativity in our dynamic research field.

Conclusion

This review is far from comprehensive. However, given our
goal to address mechanism-based emerging therapies across
the injury-severity spectrum, and from the field to rehabili-
tation, we chose to provide a “survey” across key mecha-
nisms. There are many other promising agents worthy
of investigation. We also believe that the recent surge in
interest in mTBI may identify new targets in severe
TBI—particularly given the fact that in patients with severe
TBI, brain regions outside of areas of major disruptions are
likely to be plagued by the pathomechanisms seen in mTBI.
Thus, new investigations into therapies for mTBImay provide
new opportunities for treatment of severe TBI. For example,
emerging mechanisms in mTBI, such as disturbances in the
balance between excitatory and inhibitory pathways or
disturbances in synchronization,42,231 could be important
in severe TBI—layered upon the classical injury paradigms
(►Fig. 4). Finally, to complement rehabilitation and cognitive
enhancing therapies currently used chronically after TBI,
new approaches to break the link between TBI and chronic

neurodegenerative diseases including CTE are needed
(►Fig. 4). The current golden age of TBI research thus
represents a special opportunity for the development of
breakthroughs in the field.
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