
Abstract
!

Cyanobacteria are a promising yet underexplored
source for novel natural products with potent bio-
logical activities. While predominantly cytotoxic
compounds have been isolated from cyanobacte-
ria in the past, there are also a significant number
of compounds known that possess anti-infective

activities. As the need for novel anti-infective lead
compounds is high, this manuscript aims at giving
a concise overview on the current knowledge
about anti-infective secondary metabolites iso-
lated from cyanobacteria. Antibacterial, antifun-
gal, antiviral, antiprotozoal, and molluscicidal ac-
tivities are discussed. Covering up to February
2015.

Anti-infective Natural Products from Cyanobacteria

Author Timo Horst Johannes Niedermeyer

Affiliation German Center for Infection Research (DZIF), Partner Site Tübingen and University of Tübingen, Interfaculty Institute for
Microbiology and Infection Medicine, Tübingen, Germany

Key words
l" cyanobacteria
l" anti‑infective
l" antibacterial
l" antifungal
l" antiviral
l" antiprotozoal
l" secondary metabolites
l" drug discovery

received January 23, 2015
revised March 16, 2015
accepted April 13, 2015

Bibliography
DOI http://dx.doi.org/
10.1055/s-0035-1546055
Published online June 17, 2015
Planta Med 2015; 81:
1309–1325 © Georg Thieme
Verlag KG Stuttgart · New York ·
ISSN 0032‑0943

Correspondence
Prof. Timo Niedermeyer
University of Tübingen
Interfaculty Institute for Micro-
biology and Infection Medicine
Auf der Morgenstelle 28
72076 Tübingen
Germany
Phone: + 4970712972079
Fax: + 497071295999
timo.niedermeyer@
uni-tuebingen.de

1309Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
Introduction
!

Anti-infective drugs have paved the way for mod-
ernmedicine, and ended aworld where the major
cause of death was infectious diseases. They have
been one of the important factors contributing to
the rise in life expectancy in the past 75 years, and
are surely the most important class of drugs in
this regard [1,2]. The majority of anti-infective
drugs in current use are based on natural prod-
ucts [3]. However, pharmaceutical companies
have neglected both the search for novel anti-in-
fectives and natural product-based drug discov-
ery over many years [4], resulting in the current
situation that infections with antibiotic-resistant
bacteria often cannot be treated adequately [5].
Especially infections with drug-resistant gram-
negative bacteria such as Pseudomonas or Entero-
bacter are often a serious and life-threatening
condition, and only a few novel drugs are in ad-
vanced development [6]. This problem is widely
acknowledged today [7–9], and pharmaceutical
and biotech companies as well as public institu-
tions have reinforced or reinstalled research in
this field. This is, for example, shown by the es-
tablishment of research centers such as the Ger-
man Center for Infection Research (DZIF) and the
Sanofi-Fraunhofer collaboration Center for Natu-
ral Product Research as well as by the acquisition
of the antibiotics specialist company Cubist Phar-
maceuticals by Merck & Co. in December 2014
and the “New Drugs for Bad Bugs” program of
Niedermeyer THJ. Anti-in
the Innovative Medicines Initiative (IMI) in which
major pharmaceutical companies such as Glaxo-
SmithCline, Sanofi, AstraZeneca, Basilea, Janssen,
and others as well as SMEs and public research in-
stitutes are involved.
The secondary metabolism of plants as well as
microorganisms such as actinobacteria and fungi
has been studied extensively over many decades,
and many indispensable drug substances in many
therapeutic areas have been approved that are
based on compounds originally isolated from
these organisms [3,10–12]. In contrast, cyanobac-
teria have long been neglected by natural product
scientists. Until the 1980s, they were mainly
known for the toxins they produce [13–15]. In re-
cent years, however, cyanobacteria have gained
more attention. They are now recognized as a
promising yet underexplored source for novel
natural products with potent biological activities,
and several reviews covering cyanobacterial me-
tabolites have been published [16–23]. The inter-
est in secondary metabolites from cyanobacteria
is rising (l" Fig. 1). While only about 200 cyano-
bacterial metabolites had been structurally char-
acterized up until 1996 [24], this number has ris-
en to about 1200 today [25]. However, despite the
progress made in the past 15 years, this is still a
small number of metabolites compared to the
structures known from other microorganisms
such as, e.g., the actinomycetes (> 9000 [25]).
Cyanobacteria, formerly known as blue-green al-
gae and not recognized to be bacteria, are among
fective Natural Products… Planta Med 2015; 81: 1309–1325



Fig. 1 SciFinder entries for “Natural product from cyanobacteri?” (09 Dec 2014).

1310 Reviews

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
the oldest organisms known and have been inhabiting the earth
for more than three billion years [26]. They populate almost all
habitats including extreme ones, and are highly diverse in terms
of their morphology, physiology, and metabolism [27]. The syn-
thesis of highly potent bioactive metabolites, in general, is one
of the evolutionary strategies to cope with the dangers posed by
planktivorous grazers or environmental rivals [28,29].
Burja et al. noted in 2001 that a major portion of the approxi-
mately 200 marine cyanobacterial natural products described
up until 1996 displayed cytotoxic activity [16]. Indeed, cytotoxic-
ity is still today an often-observed bioactivity of cyanobacterial
secondary metabolites. The most prominent examples for cyto-
toxic compounds from cyanobacteria are probably the crypto-
phycins [30–32] and the dolastatins [33,34]. Especially the latter
compounds are most interesting from a drug development point
of view. Although the history of the discovery and development
of the dolastatins to the drug substance Brentuximab vedotin,
approved in 2011 for the treatment of patients with Hodgkinʼs
lymphoma or with systemic anaplastic large cell lymphoma
(ALCL), has been rather intricate [22], it can be said that this anti-
body drug conjugate is the first commercially available drug sub-
stance that is based on a cyanobacterial secondary metabolite.
Cyanobacterial secondary metabolites exhibit a high chemical di-
versity [35]. Even though compounds from many chemical
classes have been isolated, peptide and polyketide structural ele-
ments are predominant among cyanobacterial metabolites [16,
21,36]. The peptides comprise cyclic, branched, and linear struc-
tures as well as depsipeptides, lipopeptides, and peptides with
uncommon modifications such as N- and O-methylation, sulfa-
tion, halogenation, glycosidation, oxidation, dehydration, hetero-
cyclization, prenylation, ketide extensions, and others [21,37].
Often, these compounds are synthesized via combined poly-
ketide sythases and non-ribosomal peptide synthetases (PKS/
NRPS) [38–47], resulting in a high prevalence of non-proteino-
genic amino acids as building blocks of these compounds.
Although often not recognized at first glance, ribosomally syn-
thesized products play an important role among bioactive me-
tabolites from cyanobacteria as well [48–50]. Peptidic structures,
Niedermeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–13
especially cyclic peptides, have been postulated as “privileged
structures” for bioactivities, because they have a high probability
of being able to mimic peptidic substrates or ligands of endoge-
nous proteins such as enzymes or receptors [51,52].
Although PKS and NRPS genes can be detected in all cyanobacte-
ria orders, in particular the cyanobacteria from the orders Oscil-
latoriales and Nostocales seem to make extensive use of PKS/
NRPS for natural product synthesis [21,53]. The marine cyano-
bacterium Moorea producens (formerly often called Lyngbya ma-
juscula [54]) is known for a very diverse product spectrum from
both a chemical and a bioactivity point of view;more than 25% of
all secondary products known from cyanobacteria have been iso-
lated from this species [16,17,21,55,56].
Often, several structural variants of one parent compound are
found within one strain or related strains. For example, the com-
pound family of the microcystins comprises more than 100 natu-
ral congeners [57], and about 25 natural microginins and 140
variants of the aeruginopeptin/micropeptin/cyanopeptolin/oscil-
lapeptin/planktopeptin family are known [25]. This facilitates
both the identification of structure-activity relationships (SAR)
at early research stages and the semisynthetic modification of
possible lead structures. The high natural variety within the com-
pound families is due to the variability and flexibility of the vari-
ous enzymes contained in the PKS/NRPS modules discussed
above as well as transposition and recombination events of bio-
synthesis genes (“natural combinatorial biosynthesis”) [44,58].
The already high diversity of these polyketide/peptides can be
even more enhanced by biocombinatorial techniques [59,60].
Cyanobacteria genomes are extraordinarily large, comprising al-
most 10 million base pairs in the case of Nostoc punctiforme PCC
73102. A large proportion of the genome seems to be dedicated
to genes encoding the biosynthetic machinery for secondary me-
tabolites [44,61]. Given that cyanobacteria can be expected to
have a biosynthetic capacity at least equal to that of other micro-
organisms such as myxobacteria [62], the potential of cyanobac-
teria for future drug discovery programs becomes clear. Indeed,
the rate of rediscovery of already known compounds whenwork-
ing with cyanobacteria is significantly lower than for other bet-
25



Fig. 2 Selected cyanobacterial metabolites with
antibacterial activity.
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ter-studied organisms [35,63]. The relative disregard of cyano-
bacteria in natural product research in the past, paired with the
high chemical diversity of their secondary metabolites, makes
them an attractive source of novel natural products today for
pharmaceutical as well as other applications (e.g., agrochemicals,
food, cosmetics).
While predominantly cytotoxic compounds have been isolated
from cyanobacteria, there are also a significant number of com-
pounds known that possess anti-infective activities. This manu-
script aims at giving a concise overview on the current knowl-
edge about anti-infective secondary metabolites isolated from
cyanobacteria. Antibacterial, antifungal, antiviral, antiprotozoal,
and molluscicidal activities will be covered.
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Antibacterial Metabolites
!

Numerous compounds with antibacterial activities have been
isolated from cyanobacteria. However, only a few metabolites
with specific antimicrobial activity have been found. In many
cases, antimicrobial activity is associated with general cytotoxic-
ity, thus being of limited use for further development. Few com-
pounds have been characterized in more detail (e.g., elucidation
of the mode of action) after their initial description. To the best of
my knowledge, no antibacterial secondary metabolite from cya-
nobacteria is currently under development for this indication.

Metabolites with direct antibacterial effects
In this section, only the most interesting compounds with a di-
rect antibacterial effect will be discussed; these are mainly com-
pounds that have at least some specificity for antibiotic effects. A
concise summary including the reported potencies of all reported
compounds with antibacterial activity can be found in l" Table 1,
the compounds discussed in the following are shown in l" Fig. 2.
The first antibiotic compound that has been described from a cy-
anobacterium is malyngolide (1), isolated in 1979 from a marine
L. majuscula (today classified asM. producens) [64]. Subsequently,
many total synthesis routes have been developed (e.g., [65–67]).
Originally, the compound was described as being active against
gram-positive microorganisms such as Mycobacterium smegma-
tis, Streptococcus pyogenes, Staphylococcus aureus, and Bacillus
Niede
subtilis, and inactive against the gram-negative Salmonella enter-
itidis, Escherichia coli, and Pseudomonas aeruginosa. Recently, it
has been found that malyngolide interferes with bacterial quo-
rum sensing (see section “Compounds interfering with bacterial
quorum sensing”).
The hapalindoles are a large compound family of related indole
alkaloids that were first found in Hapalosiphon species [68–70],
and were later also isolated from Fischerella [71,72] and Westel-
liopsis [72]. Hapalindoles show activity against a range of micro-
organisms including S. aureus, B. subtilis, Salmonella gallinarum,
and E. coli [73]. Interestingly, the various hapalindole congeners
feature highly differing activity against a panel of microorgan-
isms. The most potent compound, hapalindole A (2), shows MICs
at sub-µM concentrations [72]. While having high antibacterial
activity, they later have also been shown to be moderately cyto-
toxic [72] and highly insecticidal [74]. Their mode of action
against eukaryotic cells is likely based on the modulation of sodi-
um channels [75]. The ambiguine isonitrils are structurally re-
lated to the hapalindoles and have comparable bioactivity [76,
77].
Noscomin (3) and a structurally related metabolite isolated from
Nostoc commune [78,79] are terpenoid metabolites, a class of
compounds that is rarely found to be produced by cyanobacteria.
Noscomin was found to be active against Bacillus cereus, Staphy-
lococcus epidermidis, and to a lesser extend against E. coli. It has
not been described whether the compound has also been tested
for other activities. Chemically closely related and of similar bio-
activity are the comnostins isolated from the same Nostoc strain
[80]. Another antibacterial terpenoid is the guanidine-sesterter-
pene scytoscalarol (4) from Scytonema sp. [81], again being more
active against the gram-positive Bacillus anthracis and S. aureus
than against E. coli. The compound also showed weak activity
against Mycobacterium tuberculosis. Based on in silico docking
studies, its mechanism of action against the latter microorganism
has been proposed to be the inhibition of the arabinosyltransfer-
ase Mtb EmbC [82].
Eucapsitrione (5) is an anthraquinone derivative isolated from
Eucapsis sp. [83]. It was found to selectively inhibit M. tuberculo-
sis in assays testing both the activity against fast growing and
nonreplicating persistent states. The compound was inactive
rmeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–1325



Table 1 Antibacterial and antimycobacterial compounds from cyanobacteria. Activity data are given as MIC (µM) or inhibition zone in an agar diffusion assay (mm
inhibition zone at the amount of the compound applied to a disk).

Compound From Structure type Active against MIC/Inhibition

zone

Additional bioactivity/comments Ref.

Aeruginazole A Microcystis sp. cyclic peptide B. subtilis 2.2 µM inactive against E. coli and S. albus;
also antifungal (MIC S. cerevisiae
43 µM); cytotoxic (IC50 of 22–
41 µM); no protease inhibition at
40 µM

[88,
89]

Ambigol A–C Fischerella ambi-
gua

polychlorinated
polyaromatic
phenols

B. megaterium 8mm@100 nmol inactive against gram-negatives; in-
hibition of cyclooxygenase and HIV
reverse transcriptase; molluscicidal;
cytotoxic (IC50 about 75 µM); anti-
algal; antitrypanosomal

[90,
91]

Ambiguine
isonitrils

Fischerella sp. alkaloids E. coli
S. aureus
B. subtilis
C. albicans

6 µM
0.2 µM
0.8 µM
1.0 µM

activity data of congener I; com-
pounds are also antifungal; most
congeners also moderately cytotoxic
(IC50 around 50–150 µM)

[76,
77]

Bromoana-
indolone

Anabaena constric-
ta

alkaloid B. cereus 530 µM anticyanobacterial; cytotoxicity not
tested

[92]

Carbamido-
cyclophanes

Nostoc sp. paracyclophanes M. tuberculosis
S. aureus
E. faecalis
S. pneumoniae

0.8–5.4 µM
0.1–100 µM
0.2–1.1 µM
0.2–2 µM

no activity againstM. smegmatis,
A. baumannii, E. coli, P. aeruginosa, K.
pneumoniae; cytotoxic (IC50 of 0.5–
12 µM); some congeners also anti-
fungal

[93–
95]

Carriebowlinol yet unclassified alkaloid e.g. Vibrio sp. < 1 µM also antifungal (MIC < 0.5 µM) [96]

Comnostins Nostoc commune diterpenes B. cereus
S. epidermidis
E. coli

40–300 µM
10–80 µM
150–300 µM

also cytotoxic (EC50 of 1 µM) and
molluscicidal (MIC of 50 µM)

[97]

Crossbyanol A–C Leptolyngbya cross-
byna

polybrominated
polyaromatic
phenols

S. aureus 3 µM activity dataof congener B; also brine
shrimp (congener B; IC50 of 3 µM)
and cytotoxicity (IC50 congener A
30 µM; congener B > 30 µM);

[98]

α-Dimorphecolic
and coriolic acid

Oscillatoria redekei unsaturated
hydroxy fatty
acids

B. subtilis
M. flavus
S. aureus

2–6mm@
200 nmol
0–9mm@
200 nmol
2–7mm@
200 nmol

activity comparable to that of linoleic
acid

[99]

Eucapsitrione Eucapsis sp. anthraquinone M. tuberculosis 3–6 µM inactive againstM. smegmatis, S. aur-
eus, E. coli, and C. albicans at 55 µM,
not cytotoxic at 28 µM

[83]

Hapalindoles Hapalosiphon fon-
tinalis; Fischerella
sp., Westelliopsis
sp.

indole alkaloids S. aureus
B. subtilis
E. coli

36mm
30mm
31mm

activity data of congener N; allelo-
pathic activity; moderately cytotoxic
(IC50 > 30 µM), antifungal, highly
insecticidal

[68–
74,
100,
101]

Kawaguchipeptins Microcystis aerugi-
nosa

cyclic peptides S. aureus 0.7 µM only tested against S. aureus [102]

Lyngbyazothrins Lyngbya sp. cyclic peptides B. subtilis
E. coli

18mm@16 µmol
18mm@65 µmol

activity data of congeners C/D; anti-
algal; also inhibit 20S proteasome
(IC50 of 7–19 µM)

[103–
105]

Malyngamides Lyngbya majuscula fatty acid amides S. aureus
B. subtilis

? cytotoxic (IC50 < 60 µM); feeding
deterrents

[106–
108]

Malyngolide Lyngbya majuscula fatty acid/
δ-lactone

M. smegmatis
S. pyogenes
S. aureus
B. subtilis

? also interferes with quorum sensing;
feeding deterrent

[64,
108]

Muscoride A Nostoc muscorum peptide alkaloid B. subtilis 3–6mm amount on disc not given; inactive
against E. coli

[109,
110]

Norabietanes Microcoleous la-
custris

diterpenes S. aureus
S. epidermidis
S. typhi
V. cholerae

45 µM
55 µM
150 µM
850 µM

not active against B. subtilis/cereus,
E. coli, K. pneumoniae; cytotoxicity
not tested

[111]

Nostocyclyne A Nostoc sp. polyketide S. aureus
B. subtilis

MIC@ 36 nmol
MIC@ 30 nmol

no activity against Staphylococcus
albus and E. coli; weakphotosynthesis
inhibition

[112]

cont.
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Table 1 Continued

Compound From Structure type Active against MIC/Inhibition

zone

Additional bioactivity/comments Ref.

Noscomin Nostoc commune diterpene B. cereus
S. epidermidis
E. coli

75 µM
18 µM
300 µM

cytotoxicity not tested [97]

Nostocarboline
dimers

synthetic alkaloid S. aureus
E. faecium
S. pneumonia
H. influenzae
E. coli
A. baumannii
P. aeruginosa

0.35–0.7 µM
2.8 µM
5.7 µM
11.4 µM
11.4 µM
22.8 µM
45.6 µM

activity data of compound NCD9;
synthetic derivatives based on
nostocarboline from Nostoc; inactive
against S. cerevisiae and C. albicans

Pitipeptolides A–F Lyngbya majuscu-
la/Moorea pro-
ducens

cyclic depsipep-
tides

M. tuberculosis 0–30mm@
60 µmol

cytotoxic (IC50 11–100 µM), feeding
deterrents

[113–
115]

Schizotrin A Schizotrix sp. cyclic peptide B. subtilis
C. albicans

15mm@7 nmol
7mm@ 13 nmol

no activity against Gram-negatives;
also antifungal; cytotoxicity not
tested

[116]

Scytoscalarol Scytonema sp. sesterterpene B. anthracis
S. aureus
E. coli
M. tuberculosis

6 µM
2 µM
30 µM
110 µM

also antifungal and weakly cytotoxic
(IC50 of 135 µM)

[81]

Unidentified diverse genera ? various micro-
organisms

[117–
121]
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against M. smegmatis, S. aureus, E. coli, and the yeast Candida al-
bicans, and also not cytotoxic in the concentrations tested.
Nostocarboline from a Nostoc species is a quaternary indole alka-
loid [84]. It was found to inhibit the enzyme butyrylcholine ester-
ase. First thought to be suitable as a lead for the treatment of Alz-
heimerʼs disease, it was soon realized that the compound or de-
rivatives of it are also algicidal against photosynthetic organisms
[85], and active against M. tuberculosis and the malaria parasite
Plasmodium falciparum [86]. Synthetic studies on nostocarboline
resulted in several nostocarboline dimers (e.g., NCD9, 6) showing
activity against S. aureus, E. coli, or C. albicans [87].

Compounds interfering with bacterial quorum sensing
The term “quorum sensing” (QS) has been coined for inter- or in-
traspecies cell-to-cell communication by chemical signals in bac-
teria [122–124]. This mechanism enables bacteria to sense other
species or their own population density, thus making it possible
for individual bacteria in populations to coordinate their behav-
ior. As, for example, biofilm formation and the production and se-
cretion of many virulence factors are controlled by QS, inhibition
of QS is currently being discussed as a novel and promising target
for antibacterial therapy [125–128]. Different QS systems using
specific chemical signals have been described, but the best-
studied system is based on N-acyl homoserine lactones as signal-
ing compounds (AHLs, general structure 7, l" Fig. 3) [125].
Although, to date, none of the typical genes encoding AHL bio-
synthesis have been found in cyanobacteria, and research on
quorum sensing in cyanobacteria is still in its infancy, AHL-like
compounds have been isolated from two strains: The first report,
the isolation of N-butyryl homoserine lactone fromM. producens,
dates back to the 1970s, when it was not yet even known that
AHLs were involved in bacterial communication. It is not known
whether this compound is involved in QS in this cyanobacterium.
Years later when awareness of bacterial communication had ris-
en, it was found that Gloeothece sp. produces N-octanoyl homo-
serine lactone; the compound seems to have QS activity in this
Niede
strain and is involved in carbohydrate and amino acid metabo-
lism regulatory processes [129]. AHLs have also been reported to
affect nitrogen fixation in Anabaena sp. PCC 7120 [130], which
perhaps is the reason that this strain is able to produce the en-
zyme AHL-acylase that deactivates AHLs by opening the lactone
ring mandatory for activity, and thus “detoxifies” them [131].
A possibility to interferewith QS of other bacteria, and in this way
possibly helping to outcompete them, is the production of com-
pounds inhibiting QS signaling molecules at the receptor site.
The first cyanobacterial metabolites for which inhibition of QS
was observed were the tumonoic acids, isolated from Blennothrix
cantharidosum [132]. Suspected to be QS-active due to their dis-
tant structural similarity to the AHLs, tumonoic acid F (8) was
found to be themost active compound among the isolated conge-
ners. It inhibits wild-type Vibrio harveyi bioluminescence with
an IC50 of 62 µM, without affecting bacterial growth at this con-
centration. Interestingly, the compounds did not show cytotoxic-
ity. However, the exact target of the compounds in the Vibrio QS
machineries has not been elucidated.
Malyngolide (1), already mentioned above as an antibacterial
compound, has been found in a directed screening for cyanobac-
teria extracts interfering with AHL-regulated violacein prod-
uction of the reporter strain Chromobacterium violaceum CV017
[133]. The EC50 in this assay was determined to be 110 µM, while
the compound had no effect on bacterial growth up to 220 µM.
Compund 1 also blocked QS-dependent production of elastase
by P. aeruginosa (EC50 of 10 µM). Subsequent studies on themode
of action of 1 suggested that the compound acts by blocking the
expression of lasR (a homologue of the luxR gene encoding the
AHL sensing receptor protein) but does not interfere with the
AHL-binding domain of the respective protein.
Malyngamide C (9) was isolated in 1985 from L. majuscula
(M. producens) [134]. In 2010, its 8-epi-isomer was isolated from
the same species, and both compoundswere found to reduce AHL
signaling at concentrations not inhibiting bacterial growth (IC50
rmeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–1325



Fig. 3 Cyanobacterial
metabolites with quo-
rum sensing inhibiting
activity.
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of about 1mM). However, the compounds were cytotoxic at far
lower concentrations (IC50 of about 10 µM).
The three QS-inhibiting compounds discussed above all feature a
rather lipophilic, fatty acid-like side chain. This also holds true for
the last two compounds discussed in this section that even more
closely resemble fatty acids. Lyngbyoic acid (10) from L. majuscu-
la (M. producens) directly acts on the AHL receptor proteins, espe-
cially LasR from P. aeruginosa, reducing the expression of impor-
tant virulence factors in a wild-type strain [135]. Nothing has
been reported about cytotoxic properties on eukaryotic cells. Pit-
inoic acid A (11) inhibits LasB and pyocyanin production in P. aer-
uginosa with an IC50 between 0.1 and 1mM. Again, nothing has
been reported about cytotoxicity.
Antifungal Metabolites
!

All reported cyanobacterial compounds with antifungal activity
are summarized in l" Table 2. As has already been noted above
for the antibacterial compounds, many of the identified antifun-
gal compounds also possess general cytotoxicity. The most inter-
esting compounds will be discussed in the following paragraphs,
there structures are shown in l" Fig. 4.
Very interesting metabolites that were initially identified as anti-
fungal agents but later shown to be extremely potent cytotoxins
with IC50 values in the low pM (!) range are the cryptophycins
from Nostoc [30–32]. Their story is told in more detail elsewhere
[22].
Niedermeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–13
The hassallidins, first isolated from Tolypothrix [136,137], were
found to be widespread among filamentous cyanobacteria [138].
They are structurally interesting non-ribosomal cyclic depsipep-
tides decorated with both a sugar and a dihydroxy fatty acid that
can also be glycosylated. The MICs of hassallidins A (12) to D
against various Candida species including C. albicans are in the
range from 1.5 to 10.5 µM [137,138]. Cytotoxicity of the hassalli-
dins is about 10-fold higher [139]. The balticidins A–D from Ana-
baena cylindrica are structurally closely related compounds with
a comparable antifungal activity spectrum [140]. Interestingly,
the cyclic structure does not seem to be essential for activity, as
balticidins cleaved at the ester bond of the cyclic depsipeptide
showed comparable bioactivity.
The laxaphycins are well-studied antifungal and cytotoxic com-
pounds. Initially isolated from Anabaena laxa [141,142] and later
also from L. majuscula/M. producens [143] and Anabaena torulosa
[144], they were shown to be most active in a mixture, pointing
at synergistic effects of the different laxaphycins [141]. The com-
bination of congeners A and B had an MIC of about 20 µM against
Aspergillus oryzae. It is also active against other fungi such as C.
albicans, Penicillium notatum, Saccharomyces cerevisiae, and Tri-
chophyton mentagrophytes. However, as the cytotoxicity of this
mixture is about 100-fold higher, the compounds seem of limited
use to serve as antifungal lead compounds. Thus, in recent years,
these compounds have been studied more from a cytotoxicity
point of view, hinting at different modes of actions for laxaphy-
cins A and B, which could already be suspected from their syner-
gistic activity [144,145].
Majusculamide C, a metabolite isolated from L. majuscula/M. pro-
ducens, has been found to be active against several plant patho-
genic fungi such as Rhizoctonia solani, Pythium aphanidermatum,
Aphanomyces euteiches, and Phytophthora infestans at low µM
concentrations [146,147]. However, the compound was later
found to also be cytotoxic at even lower, nM concentrations
[148]. Cytotoxicity in addition to antifungal activity has also been
observed for the scytophycins and the related tolytoxin from, e.g.,
Scytonema and Tolypothrix, which are the most potent antifungal
compounds isolated from cyanobacteria to date [149–154]. Calo-
phycin from Calothrix fusca is another compound with both anti-
fungal and cytotoxic activity [155]. Tanikolide from L. majuscula/
M. producens, chemically related to malyngolide (1) and active
against C. albicans, also showed brine shrimp and snail toxicity
[156,157]. Interestingly, 1, differing from tanikolide by opposite
stereochemistry and an additional methyl group at the lactone
ring, showed no antifungal activity. Pronounced brine shrimp
toxicity in addition to activity against C. albicans has also been
found for lyngbyabellin B, a cyclic depsipeptide isolated from
L. majuscula/M. producens [158]. Nostofungicidine from Nostoc
commune has equal antifungal and cytotoxic activity (MIC of As-
pergillus candidus and IC50 of NSF-60 cells 1.5 µM) [159]. The am-
biguine isonitrils and the hapalindoles have already been dis-
cussed above due to their additional antibacterial activity.
A number of antifungal compounds were described without data
on cytotoxic activity:
Moderate activity against C. albicans (MIC of 22 µM) has been
found for tolybyssidin A (13) from Tolypothrix byssoidea [160].
Fischerellin A (14) from Fischerella muscicola, a structurally inter-
esting compound featuring an enediyne and two heterocyclic
moieties, displays antialgal and herbicidal effects in addition to
its antifungal activity [161].
Majusculoic acid (15), isolated from an uncharacterized cyano-
bacterial mat assemblage, exhibited antifungal activity against C.
25



Table 2 Antifungal compounds from cyanobacteria. Activity data are given as MIC (µM) or inhibition zone in an agar diffusion assay (mm inhibition zone at the
amount of the compound applied to a disk).

Compound From Structure type Active against MIC/Inhibition

zone

Additional bioactivity/

comments

Ref.

Ambiguine
isonitrils

Fischerella sp. alkaloids C. albicans 1.0 µM activity data of congener I; also anti-
bacterial; moderately cytotoxic

[76,77]

Balticidins Anabaena cylin-
drica

glycosylated
lipopeptide

C. maltosa 9–18mm@6 nmol no antibacterial activity against
B. subtilis, E. coli, P. aeruginosa;
cytotoxicity not tested

[140]

Calophycin Calothrix fusca cyclic peptide A. oryzae
C. albicans
P. notatum
S. cerevisiae
T. mentagro-
phytes

13mm@1 nmol
7mm@ 1 nmol
12mm@1 nmol
12mm@1 nmol
15mm@1 nmol

also cytotoxic (IC50 of 0.2 µM, KB
cells)

[155]

Carriebowlinol yet unclassified alkaloid Fusarium sp.
L. thalassiae
D. salina

0.2 µM
0.4 µM
0.5 µM

IC50 given; also antibacterial against
several marine bacteria (MIC < 1 µM)

[96]

Fischerellin A Fischerella musci-
cola

other U. appendicula-
tus
E. graminis

100% inh. at
0.6mmol
100% inh. at
2.5mmol

also antialgal and herbicidal effects [161]

Hapalindoles Hapalosiphon
fontinalis

indole alkaloids C. albicans 0.7 µM activity data of congener J; also
cytotoxic (IC50 of 12–44 µM), anti-
bacterial, highly insecticidal

[72]

Hassallidins
A and B

Hassallia sp.;
widely spread
among filamen-
tous cyanobac-
teria

glycosylated
lipopeptide

A. fumigatus
C. albicans

3.5 µM activity data of congener A; also ac-
tive against Fusarium, Ustilago, Peni-
cillium; not active against Bacillus
subtilis, Streptomyces versicolor, E.
coli; cytotoxicity 10-fold higher

[136,
137]

Laxaphycins Anabaena laxa,
Moorea pro-
ducens, Anabae-
na torulosa

cyclic peptides A. oryzae 20 µM also active against C. albicans,
P. notatum, S. cerevisiae, and
T. mentagrophytes; synergistic
effects between congeners A and B;
cytotoxicity about 0.2 µM

[141–
144]

Lobocyclamide
A–D

Lyngbya confer-
voides

cyclic lipopep-
tides

C. albicans 10 µM MIC of a synergistic mixture of
congeners A and B

[163]

Lyngbyabellin B Lyngbya majus-
cula/Moorea pro-
ducens

cyclic depsipep-
tide

C. albicans 10mm@150 nmol also brine shrimp toxicity (LD50

of 4.4 µM); not active against
P. aeruginosa, E. coli, S. cholerae-suis,
B. subtilis, S. aureus

[158]

Majusculamide
C

Lyngbya majus-
cula/Moorea pro-
ducens

cyclic depsipep-
tide

R. solani
P. aphaniderma-
tum
A. euteiches
P. infestans

4 µM
< 1 µM
2 µM
1 µM

ED50 values given; also cytotoxic
(ED50/GI50 at 20–750 nM)

[146–
148]

Majusculoic acid Undefined lipid C. albicans 8 µM cytotoxicity not tested; fluconazole-
resistant Candida strains also resist-
ant againstmajusculoic acid

[162]

Nostofungici-
dine

Nostoc commune cyclic lipo-
peptide

A. candidus 1.5 µM also cytotoxic (IC50 1.5 µM, NSF-60
cells)

[159]

Scytophycins
and Tolytoxins

Scytonema sp.
Tolypothrix sp.

macrolides S. pastorianus
N. crassa
C. albicans
P. ultimum
R. solani
S. homoeocarpa

24mm@1.2 µmol
30mm@1.2 µmol
23mm@1.2 µmol
> 30mm@1.2 µmol
30mm@1.2 µmol
> 30mm@1.2 µmol

activity given for scytophycin A;
also cytotoxic (IC50 50–100 nM)

[149–
154]

Scytoscalarol Scytonema sp. sesterterpene C. albicans 4 µM also antibacterial and weakly
cytotoxic (IC50 135 µM)

[81]

Tanikolide Lyngbya majus-
cula/Moorea pro-
ducens

fatty acid/
δ-lactone

C. albicans 13mm@350 nmol also brine shrimp and snail toxicity
(LD50 12 µM/32 µM)

[156,
157]

Tjipanazoles Tolypothrix tjipa-
nasensis
Fischerella ambi-
gua

indolocarba-
zoles

? ? also weak cytotoxicity; no inhibition
of protein kinase C at 1 µM

[164]

Tolybyssidins
A/B

Tolypothrix
byssoidea

cyclic peptide C. albicans 22 and 42 µM cytotoxicity not tested [160]
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Fig. 4 Selected cyanobacterial metabolites with
antifungal activity.
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albicans (MIC of 8 µM) [162]. Fluconazole-resistant strains, how-
ever, were also resistant against majusculoic acid. Due to its close
chemical similarity with lyngbyoic acid (10), it is possible that 15
could also have QS-inhibiting activity.
The lobocyclamides are cyclic lipopeptides from Lyngbya confer-
voides. A mixture of lobocyclamides A and B had higher activity
against a fluconazole-resistant C. albicans than the separate com-
pounds (MIC of the mixture 10 µM) [163].
The tjipanazoles (e.g., tjipanazole A1 16) from Tolypothrix tjipa-
nasensis and Fischerella ambigua were found to be active against
a range of phytopathogenic fungi, which is in contrast to other in-
dolocarbazoles that show only weak cytotoxicity and no inhibi-
tion of protein kinase C [164]. The alkaloid carriebowlinol (17)
has recently been isolated from a yet unclassified cyanobacte-
rium. It showed high antifungal activity (IC50 of 0.2–0.4 µM) and
activity against marine bacteria [96]. Scytoscalarol (4) has al-
ready been discussed due to its antibacterial activity. It also pos-
sesses antifungal activity (MIC against C. albicans 4 µM; cytotox-
icity > 30-fold lower) [81].
Antiviral Substances
!

A number of screening campaigns have identified cyanobacteria
as a potential source for antiviral compounds [165–168]. More
detailed studies have been done on sulfoglycolipids and lectins.
Niedermeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–13
Sulfoglycolipids
Antiviral sulfoglycolipids such as sulfolipid 1 (18, l" Fig. 5) were
isolated from the genera Lyngbya, Phormidium, and Scytonema,
and also identified in Anabaena, Calothrix, and Oscillatoria. These
compounds as well as structurally related acylated diglycolipids
from Oscillatoria and Phormidium show inhibition of the human
immunodeficiency virus (HIV-1) via inhibition of the DNA poly-
merase function of HIV-1 reverse transcriptase [169–171]. Inter-
estingly, the sulfoglycolipids, showing IC50 values as low as
25 nM, are an order of magnitude more active than the related
glycolipids without the sulfonic acid group [170]. Esterification
of the free hydroxyl groups of the sulfosugar with further fatty
acids leads to a significant decrease of activity [171]. The pres-
ence of the fatty acid chains of the sulfoglycolipids are mandatory
for activity. Alterations in the fatty acids (e.g., 16:0, 16:1, 18:1,
18:2, 18 :3), however, have a neglectable effect on potency [169,
171].

Lectins
Cyanovirin-N is a peptide lectin isolated from Nostoc ellipsospo-
rum, comprising 101 amino acid residues [172,173]. It targets
N-linked, high-mannose glycans [174–176], and was found to be
a fusion inhibitor, preventing infectionwith all HI virus types. Cy-
anovirin-N is active in the low nanomolar range and noncyto-
toxic at a thousandfold higher concentration. It is also strongly
active against influenza A and B, respiratory syncytial virus, en-
teric viruses, and several coronaviruses [177,178]. As the com-
pound is readily available by heterologous expression in E. coli
25



Fig. 5 Selected cyanobacterial metabolites with
antiviral activity.
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and can also be optimized by rational design [179], it is discussed
as a promising template for antiviral lectins. Applications for cya-
novirin-N are under current investigation [180], although safety
issues such as the release of chemokines and stimulatory/mito-
genic activity have been recognized [181]. Recently, microvirin,
a lectin with a comparable pharmacophor but supposedly better
safety profile, has been isolated from Microcystis aeruginosa
[182]. A third antiviral lectin from cyanobacteria with similar
properties is scytovirin, isolated from Scytonema varium [183].

Other antiviral compounds
Nostoflan is a complex acidic polysaccharide from Nostoc flagelli-
forme [184]. It inhibits the virus-cell interaction of enveloped vi-
ruses such as herpes simplex virus, human cytomegalovirus, and
influenza A virus, whose cellular receptors are carbohydrates. In-
terestingly, it exhibits only a very low cytotoxicity and, in con-
trast to sulfated antiviral polysaccharides, does not show anti-
thrombin activity. Serinol-derivedmalyngamides (e.g., derivative
19), isolated from an unidentified cyanobacterium, display weak
anti-HIV activity [185]. Activity against influenza A virus has
been found for the ichthyopeptins A (20) and B (IC50 of 12 µM),
isolated from Microcystis ichthyolabe [186]. Other antiviral com-
pounds show significant cytotoxicity. These compounds com-
prise some aplysiatoxin derivatives from Trichodesmium eryth-
raeum, which are active against Chikungunya virus [187], as well
as the β-carbolines bauerines A–C isolated from Dichothrix
baueriana [188] and the indolocarbazoles isolated from Nostoc
sphaericum [189], both active against herpes simplex virus type
2.
Antiprotozoal Compounds
!

Many compounds active against themalaria parasite Plasmodium
as well as other protozoal parasites such as Trypanosoma (sleep-
ing sickness or Chagasʼ disease) or Leishmania (leishmaniasis)
have been reported from cyanobacteria [190]. However, as it has
already been noted with antibacterial and antifungal com-
pounds, many compounds found to be active in the antiprotozoal
assays also display cytotoxicity, limiting their usability as drug
leads. It is common to evaluate a compoundʼs selectivity index
(IC50 against human cell lines vs. IC50 against parasites) to assess
bioactivity.
Niede
The ribosomal cyclic peptide aerucyclamide B (21, l" Fig. 6) from
M. aeruginosa is the most active antiplasmodial compound iso-
lated from cyanobacteria to date [191]. Its IC50 of 0.7 µM against
P. falciparum and an almost 200-fold lower cytotoxicity make it
an interesting lead. The structurally closely related balgacycla-
mides, isolated from a different M. aeruginosa strain, show com-
parable activity [192]. A total synthesis for aerucyclamide B has
been established, and the first work on the optimization of the
anti-trypanosomal activity of the aerucyclamides has been de-
scribed, leading to a compound active against T. bruceiwith a se-
lectivity index of about 150 [193].
Synthetic optimization of the linear lipopeptide almiramides
from L. majuscula/M. producens has resulted in derivatives (e.g.,
22) active against Leishmania donovani in the low µM range with
selectivity indices of up to 50 [194,195].
Nostocarbolin has already been discussed in the section “Anti-
bacterial Metabolites”. Of special interest concerning antiproto-
zoal activity is a synthetic nostocarboline dimer (23) that, in ad-
dition to having an IC50 of 18 nM against P. falciparum, showed a
selectivity index against the parasite vs. rat myoblasts of > 2500.
Other dimers were more potent against Trypanosoma or Leish-
mania [196].
The linear depsipeptide viridamide A (24) fromOscillatoria nigro-
viridis, structurally distantly related to the almiramides, showed
an IC50 in the low µM range against the parasites P. falciparum,
Trypanosoma cruzi, and Leishmania mexicana. The cytotoxicity
data presented do not allow a comparative assessment of cyto-
toxicity, but activity seems to be in favor of antiparasitic activity
[197]. The same holds true for the cyclic depsipeptide companer-
amides from a yet unclassified filamentous cyanobacteriumwith
moderate antiplasmodial activity [198].
Several compounds with antiprotozoal, but at the same time cy-
totoxic activities, have been described (selectivity indices ≤ 10).
Among these compounds are the lipophilic phenolic ambigols
from F. ambigua (already mentioned above) [91] and hierridin B
from Phormidium ectocarpi and Cyanobium sp. [199,200], the in-
dolophenanthridine alkaloid calothrixins from Calothrix [201],
the linear lipopeptides carmabin A, dragomabin, and dragona-
mide A [202], the cyclic depsipeptides lagunamide A–C [203,
204] the cyclodepside malyngolide dimer [205] from L. majuscu-
la/M. producens, the cyclic peptides venturamide A and B from
Oscillatoria [206], and the linear peptide gallinamide A from
rmeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–1325



Fig. 6 Selected cyanobacterial metabolites with
antiprotozoal activity.
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Schizothrix [207], which has recently been shown to be a potent
inhibitor of human cathepsin L [208].
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Molluscicidal Bioactivities
!

Schistosomiasis, caused by the parasitic flatworm Schistosoma, is
one of the most prevalent parasitic infections worldwide. Hun-
dreds of millions of people are infected and/or at risk of infection,
especially in African countries [209,210]. Schistosoma has a com-
plex life cycle that requires both an aquatic snail host belonging
to the genus Biomphalaria and a mammalian host to complete
their reproductive cycle. As eradicating the disease in infected
patients using anthelmintic drugs like praziquantel does not pro-
tect against the possibility of reinfection, the treatment of water
containing the snail vector with molluscicides like niclosamide is
seen as a viable way to protect the population from schistosomia-
sis. This strategy is widely practiced and nowadays a crucial part
of schistosomiasis control, but has several drawbacks such as the
price of the applied compounds as well as environmental con-
cerns [211]. Thus, there is a demand for novel molluscicides. As
cyanobacteria might produce molluscicidal compounds to pro-
tect themselves against snails feeding on cyanobacterial biomass,
strains have been screened for molluscicidal activity, and subse-
quently, several compounds with this bioactivity have been
found. Their structures are shown in l" Fig. 7.
The first compound for which molluscicidal activity has been
found is barbamide (25) from L. majuscula/M. producens [212]. It
has specific molluscicidal activity (LC100 of 21.6 µM), and does
not show brine shrimp toxicity or ichthyotoxicity. Due to several
intriguing chemical features, like a trichlormethyl group and a
methyl enol ether of a β-keto amide, its biosynthesis has been
studied in great detail [213–217].
Cyanolide A (26) from Lyngbya bouillonii is an unusual symmetric
glycosidic macrolide. It is more active against Biomphalaria than
barbamide (LC50 of 1.2 µM), but in addition it also shows brine
shrimp toxicity (LC50 of 10.8 µM) [218]. As the compounds cyto-
toxicity is comparably low (nontoxic at 35 µM), its total synthesis
has received considerable attention (e.g., [219–222]).
Thiopalmyrone (27) and palmyrrolinone (28) have been isolated
from the same marine cyanobacteria assemblage of Oscillatoria
and Hormoscilla. Both compounds activities were in the low
Niedermeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–13
micromolar range (LC50s of 8.3 and 6.0 µM, resp.) [223]. As the
compounds were not antifungal, antibacterial, or cytotoxic up to
a concentration of 100 µM, they seem to be selectively mollusci-
cidal and deserve closer attention.
Conclusions
!

To date, many compounds with anti-infective activities have been
isolated from cyanobacteria. Most of the isolated compounds
showed cytotoxicity in addition to the desired anti-infective ac-
tivity, limiting their direct use as anti-infective drug substances.
However, theymight well serve as lead compounds for the devel-
opment of derivatives with a lower toxicity, a common approach
in pharmaceutical natural product chemistry.
Interestingly, despite intense screening campaigns searching for
novel antibacterial compounds from cyanobacteria, these orga-
nisms have only been a poor source for selective antibacterial
compounds, in contrast to other microorganisms such as the soil
dwelling actinomycetes (of the about 7000 known compounds
from the genus Streptomyces, about 2600 compounds have anti-
biotic activity) or microscopic fungi. An explanation for this ob-
servation might be the unique lifestyle of cyanobacteria com-
pared with the aforementioned microorganisms. Photosynthetic
cyanobacteria as autotrophs and primary producers serve as food
for a plethora of micro- and macroorganisms [224]. They do not
directly compete with heterotrophic bacteria for organic nu-
trients in their environment, but rather compete with other pho-
totrophic organisms or eukaryotic organisms grazing on cyano-
bacteria. That might explain why the synthesis of antibacterial
compounds might only be of limited evolutionary advantage,
while the production of compounds with toxicity against other
phototrophic organisms or eukaryotic organisms might be fa-
vored. This could suggest that searching for cyanobacterial com-
pounds targeting eukaryotes such as fungi, protozoa, and mol-
lusks might be more fruitful than searching for antibacterial me-
tabolites in cyanobacteria. But, as has been noted above, cyano-
bacteria are still poorly researched. Thus, it can be expected that
selective antibacterials will also be found in these organisms
sooner or later. Another interesting aspect to note concerning
the compounds found to have antibacterial activity is that they
most often are not peptides, the structural class most often ob-
25



Fig. 7 Selected cyanobacterial metabolites with
molluscicidal activity.
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served in cyanobacteria. Instead, mainly polyketides, terpenes,
and alkaloids have been found to exert antibacterial activity. This
might be due to the fact that peptides have physicochemical
properties unsuitable for crossing cell walls. It is also worth men-
tioning that cyanobacterial secondary metabolites have more
often been isolated from the biomass rather than from the culti-
vation medium. For example, amongst the antibacterial com-
pounds summarized in this review, only bromoanaindolone, the
comnostins, and noscomin have been described as being isolated
from the cultivation medium. Although this finding is slightly
biased due to the fact that cyanobacteria biomass has simply
been better studied in the past compared to cyanobacteria culti-
vation media, it might indicate that the antibacterial compounds
found to date have not evolved to act as antibacterials, as this
would need export or diffusion into the extracellular environ-
ment. It might be sensible to intensify the examination of com-
pounds secreted into the medium during cyanobacteria cultiva-
tion for the purpose of finding novel anti-infective secondary
metabolites from these organisms.
A rather novel field is the search for cyanobacterial QS inhibitors
as indirect antibacterials. Own screening results (not discussed
here) confirm that cyanobacteria have a good potential in this
area, and the isolation of QS-inhibiting natural compounds from
hit extracts is under way in our laboratory. Antiviral lectins are
the most advanced anti-infective compounds from cyanobacte-
ria, although no compound has reached the market, yet.
Not discussed within the scope of this review is the potential of
cyanobacterial protease inhibitors as anti-infective compounds.
As many potent protease inhibitors have been isolated from cya-
nobacteria [22], and proteases are validated or currently dis-
cussed targets for treating viral or protozoal infections [225], it
can be expected that cyanobacterial compounds will, in the fu-
ture, play a role in this research field.
As discussed above, the pace of cyanobacterial natural product
research has increased. We expect that the majority of cyanobac-
terial genera, species, and strains have not even been discovered
yet, and that novel cyanobacterial metabolites with interesting
bioactivities will continuously be described as more academic
and industrial groups acknowledge the potential of their exploi-
tation. In viewof the relatively small overall number of cyanobac-
Niede
terial strains and isolated secondary metabolites investigated, it
is remarkable that several of them have already entered clinical
trials, and that one analog based on the dolastatins could success-
fully be developed into a marketed drug (brentuximab vedotin).
A more thorough exploitation of cyanobacterial natural products
for drug discovery will potentially increase the number of suc-
cessful drug discoveries in the future, also in the field of anti-in-
fective drugs.
Often, the suitability of cyanobacteria as producers of secondary
metabolites is controversially discussed. However, great advances
have beenmade in this field. Cyanobacteria as photosynthetic au-
totrophs do not require carbon or energy sources supplied in the
cultivation media, but accept cultivation in inorganic salt solu-
tions. This facilitates medium standardization and logistics when
mass cultivations are needed. The downstream processing (the
isolation of the secondary metabolites) is straightforward, as the
products do not have to be separated from a complexorganic me-
dium. Furthermore, the use of inorganic medium ingredients re-
duces the costs and hampers the growth of contaminating heter-
otrophic organisms. However, cultivation facilities with artificial
or natural illumination and photobioreactor systems have yet to
be established before cyanobacteria can be utilized to produce
active pharmaceutical ingredients (APIs) under GMP-compliant
conditions.
The longer generation times compared to, e.g., E. coli (about 1 day
vs. about 20min), result in substantially longer cultivation times
to reach a given amount of biomass. Also, production titers of sec-
ondary metabolites are still 2–3 orders of magnitude lower com-
pared to the optimized industrial bacterial or fungal production
systems. These considerations have led to several developments.
Firstly, most programs that pursue leads from cyanobacteria
make a switch from cyanobacteria cultivation/processing to total
synthesis in order to producemultigram quantities of a drug sub-
stance. Secondly, research on the production of cyanobacterial
secondary metabolites in heterologous hosts such as E. coli has
been taken up. The proof-of-principle that complex ribosomal
metabolites and more simple cyanobacterial metabolites can be
produced in this way has successfully been brought forward
[226–230]. However, due to the size and multifunctional charac-
ter of PKS/NRPS biosynthesis complexes, the heterologous ex-
rmeyer THJ. Anti-infective Natural Products… Planta Med 2015; 81: 1309–1325
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pression of non-ribosomal cyanobacterial peptides is a signifi-
cant challenge, and no successful example has been published to
date. A third possibility to overcome the lower relative prod-
uctivity is the development of low-cost large-scale photobioreac-
tors allowing for cost efficient mass cultivation of the cyanobac-
teria of interest. In this context, the significant progress made in
regard to using microalgae for food as well as biofuels and chem-
ical feedstock production will also support the development of
novel low-cost photobioreactors for high-value products, such as
pharmaceuticals.
Therefore, we advocate striving for intensified drug discovery ef-
forts from cyanobacteria as well as for improved biotechnological
and process engineering solutions for compound production.
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