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Primary ciliary dyskinesia (PCD) is a rare, autosomal recessive
disorder of motile cilia that leads to oto-sino-pulmonary
disease.1 PCD was first described by Kartagener et al in
1936 as a syndrome based on the triad of chronic sinusitis,
bronchiectasis, and situs inversus. Forty years later, Afzelius
expanded on this by observing that these patients had
“immotile” cilia and defective ciliary ultrastructure, specifi-
cally noting a deficiency of dynein arms, decreased mucocili-
ary clearance, and a lack of ciliary motion.2,3 Later on, the
syndrome was renamed “primary ciliary dyskinesia”when it
was observed that functional ciliary impairment without
ultrastructural deformities, as well as motile cilia with obvi-
ous abnormal movement patterns, could result in clinical
disease.4–6 The prevalence of PCD is difficult to determine due
to (hitherto) inadequate diagnostic methods and often an
under-recognition of the syndrome; it is estimated to be
approximately 1 in 15,000 to 20,000 individuals.7 Focused
clinical and research efforts in recent years have led to an
increased understanding of the phenotype, as well as the
discovery of PCD-causing genetic mutations. Indeed, the use
of genetic testing has greatly aided the diagnosis of PCD and

further helped the understanding of PCD. Nonetheless, even
with improvements in diagnostic and screening tests at
specialized centers, up to 30% of patients may be missed.
Secondary ciliary dyskinesia may be seen in diseases associ-
ated with acute and chronic airway inflammation and
infection.

This review focuses primarily on PCD, the genetically
transmitted form of the disease, with a brief review of the
structure and function of normal and dysfunctional cilia, the
clinical manifestations of PCD, including diagnosis, genetic
mutations, therapies, and a glimpse into future.

Normal Cilia Structure and Function

Respiratory cilia are an important part of airway host defense,
protecting the airways from inhaled pathogens, allergens,
and other inhaled noxious particles via the mucociliary
escalator. In the airways, they are surrounded by a thin,
watery, periciliary fluid layer overlaid by a more viscous
mucus layer. The efficiency of the mucociliary escalator in
defense of the airway depends on the viscosity and
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Abstract Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder of cilia structure,
function, and biogenesis leading to chronic infections of the respiratory tract, fertility
problems, and disorders of organ laterality. The diagnosis can be challenging, using
traditional tools such as characteristic clinical features, ciliary function, and ultrastruc-
tural defects and newer screening tools such as nasal nitric oxide levels and genetic
testing add to the diagnostic algorithm. There are 32 known PCD-causing genes, and in
the future, comprehensive genetic testing may screen young infants before developing
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function andmicrobiology, in addition to airway clearance, antibiotics, and early referral
to bronchiectasis centers. As with cystic fibrosis (CF), standardized care at specialized
centers using a multidisciplinary approach likely improves outcomes. In conjunction
with the CF foundation, the PCD foundation, with experienced investigators and
clinicians, is developing a network of PCD clinical centers to coordinate the effort in
North America and Europe. As the network grows, clinical care and knowledge will
improve.
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composition of the periciliary fluid and mucus layer, the
integrity of the airway epithelium, and the synchrony and
beat frequency of the cilia. The density of cilia decreases from
the upper to the lower respiratory tract with an absence of
cilia in the alveoli and air sacs.8 Cilia are hair-like attachments
found on the epithelial cell surfaces (�200 per cell) of various
organs. The cilia basal body attaches to the apical cytoplasm
on the cell surface and extends into the extracellular space.
They are composed of α- and β-tubulin monomers organized
into longitudinal microtubules. The axonemal structure con-
sists of a circular arrangement of nine microtubule doublets
surrounding a central pair of microtubules (9 þ 2) or with an
arrangement where the central pair is absent (9 þ 0).9 Cilia
are categorized into 9 þ 2 motile cilia with dynein arms,
9 þ 0 motile cilia (nodal cilia) with dynein arms, and 9 þ 0
nonmotile cilia lacking dynein arms.10

“9 þ 2” motile cilia are found on the apical surfaces of the
upper and lower respiratory tract, on the ependymal cells
lining the ventricles of the central nervous system, in the
oviducts, and in the flagellum of sperm.10 Outer dynein arms
(ODAs) and inner dynein arms (IDAs) traverse along the
length of the peripheral microtubules forming a doublet
(►Fig. 1) and are organized into nine microtubule pair
doublets, surrounding a central pair. This organizational
structure creates this distinctive 9 þ 2 arrangement. The
central pair is linked to the surrounding pair doublet through
radial spoke proteins, and the surrounding pair doublets are
linked to one another via nexin-linked proteins (►Fig. 1). The
microtubules slide by one another to produce ciliary motion
via an ATP-containing dynein arm on the peripheral micro-
tubule. The protein links between the microtubules limit the
degree of sliding, causing them to bend. Through coordinated
and synchronized bending, wave-like movements occur at
approximately 6 to 12 Hz, which function to propel mucus
and adherent particles/bacteria on the surface of the airway—
hence the term “mucociliary escalator.” The ability of numer-
ous adjacent cilia on airway epithelial cells to beat at such a
high frequency in part reflects the very low friction among
the cilia, which results from negatively charged glycoproteins
that coat the ciliary shaft. Thus, given such an efficient, if
complex, system of defense, it can readily be visualized that
clinical disease may result from disruptions in the various

components of the system. For example, cystic fibrosis (CF)
results from abnormalities in the CF transmembrane conduc-
tance regulator, a critical airway surface epithelial protein.
Similarly, mutations in genes encoding for axonemal struc-
tures of the functional components of motile cilia, or proteins
involved in the biogenesis of cilia, including cytoplasmic
proteins, can result in clinical disease (PCD).11–14

Although dysfunctional motile cilia lead to the main clini-
cal manifestations of PCD, abnormal nodal motile cilia can
also lead to interesting phenotypic features. Nodal cilia occur
during embryonic development and have a 9 þ 0 configura-
tion rather than the classic 9 þ 2 configuration and are found
on the epithelial cell surface of the kidneys, the bile ducts, and
the endocrine pancreas and on nonepithelial cells such as
chondrocytes, fibroblasts, smooth muscle cells, and neurons.
In contrast to the waveform sliding motion of 9 þ 2 cilia,
nodalmotile 9 þ 0 cilia beat with a vertical/rotationalmotion
resulting in a leftward flow of extracellular fluid which is
important for cell signaling during the development of nor-
mal human left–right asymmetry.Mutations in the genes that
encode the outer doublets result in laterality defects (e.g.,
situs inversus), while mutations in the genes that encode the
nondirectional central apparatus (central complex, radial
spoke) do not.15 This represents a predictable genotype–
phenotype relationship (see section “Genetic Testing”).

Phenotypic Features

Overview
Cells lining the nasopharynx, middle ear, paranasal sinuses,
the lower respiratory tract, and the reproductive tract contain
cilia; these cilia are abnormal in structure and function in
PCD, leading to clinical expression of disease. The clinical
manifestations of PCD are thus predictable, with an age-
dependent and organ system spectrum of presentation
(►Table 1). Symptoms of PCD can occur at birth, or within
the first several months of life. Normal ciliary function is
critical in the clearance of amniotic fluid from the fetal lung;
more than 80% of full-term neonates with PCD have a
syndrome of respiratory distress. Unexplained respiratory
distress, radiographic abnormalities, atelectasis in particular,
and hypoxia in a full-term infant should raise the suspicion
for PCD.16,17 Almost all children with PCD have a daily
productive cough, a logical symptom, as cough can partially
compensate for the dysfunctional mucociliary clearance.
However, recurrent bacterial infections of the lower airways
ultimately lead to bronchiectasis, which is seen in virtually all
older adults with PCD.16–18 Despite aggressive medical care,
PCD is generally a progressive disease and some patients
develop severe disease, respiratory failure, and/or require
lung transplant (►Fig. 2).1

Airway Microbiology
Regular surveillance of the respiratory flora is important, as
a variety of organisms may colonize or infect the lung,
which may require targeted therapy because of resistance,
or lead to specific infectious problems (e.g., nontuberculous
mycobacteria [NTM]). Monitoring protocols developed for

 

 

Central microtubule complex
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Microtubule B
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Fig. 1 Diagrammatic representation of a normal ciliary cross section
illustrating major ultrastructural components.

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 2/2015

Primary Ciliary Dyskinesia Lobo et al.170

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



CF and PCD patients vary, but most centers obtain airway
cultures every 3 to 6 months. The respiratory microbiology
in PCD generally mirrors that of CF; however, in PCD
colonization with Pseudomonas aeruginosa, it generally
occurs later, and the incidence of Streptococcus pneumoniae
is much higher.1 Children with PCD have airway coloniza-
tion with Haemophilus influenza, Staphylococcus aureus,
and S. pneumoniae and recently, there has been an upsurge
of P. aeruginosa in infants/preschoolers. P. aeruginosa
(smooth and mucoid varieties) normally occurs in teen-
agers and young adults and is often the dominant organism
in adults with PCD. NTM are seen in approximately 15% of
adults with PCD.1

Lung Function
Patients with PCD, as with other patients with non-CF bron-
chiectasis, usually develop progressive airway obstruction as
the disease advances. The disease progression is usually slower
than that seen in CF; however, it is just as important to follow
lung function serially to establish a baseline, to help guide
therapy, and to determine prognosis.18–20

Radiology
High-resolution chest computed tomography scan (HRCT scan)
is the most sensitive imaging modality to diagnosis bronchiec-
tasis. While HRCT cannot confidently distinguish between the
different etiologies for bronchiectasis (PCD vs. idiopathic vs.
postinfectious disease), there are disease distributions that
may support specific diseases. For example, PCD may be associ-
atedwith more bronchiectasis in the middle and lower lobes, as
compared with CF which usually shows more disease in upper
lobes.21 Subtle lung disease may start early in life, as HRCTscans

of infants and childrenwith PCD show subsegmental atelectasis,
peribronchial thickening, mucus plugging, evidence of air trap-
ping, and groundglass opacities. HRCTmay show bronchiectasis
even in infancy, and its frequency increases with age. The
absence of bronchiectasis on a HRCT scan of an adult virtually
excludes PCD from the differential.21,22

Nonpulmonary Manifestations
Situs abnormalities result in early diagnosis; thus, it is found in
approximately 60% of newly diagnosed pediatric patients and
approximately 50% of newly diagnosed adults. The defect is in
the 9 þ 0 nodal motile cilium during embryogenesis whose
unidirectional rotational beat determines normal thoracoabdo-
minal orientation. Without this, thoracoabdominal orientation
develops at random, resulting in a 50% incidence in adults.15

Recently, this phenotypic expression of situs abnormalities has
expanded to include other clinicalmanifestations, including that
of cardiac abnormalities; approximately 6% of patients with PCD
have congenital heart disease.23 Spermatozoa dependon cilia for
motility; thus, infertility is seen in almost all males with PCD.
However, a small number of men with PCD have appeared to
conceive naturally. Females have abnormal cilia in their fallopian
tubes with longer ovum transit time, and there appears to be an
increased incidence of infertility and ectopic pregnancies.24 Less
clear phenotypic associations include pectus excavatum (10%),
scoliosis (5–10%), retinitis pigmentosa, and hydrocephalus.25

Diagnostic Approaches
A precise diagnosis of PCD may be difficult, especially in
nonclassic clinical situations (e.g., without situs abnormali-
ties). Often, only specialized centers have the resources to
make a definitive diagnosis (see later). Obviously, the presence

Table 1 Clinical signs and symptoms of primary ciliary dyskinesia

By system affected By age of presentation

Middle ear
• Chronic otitis media with tube placement
• Conductive hearing loss
Nose and paranasal sinuses
• Neonatal rhinitis
• Chronic rhinosinusitis
• Chronic pansinusitis
• Nasal polyposis
Lung
• Neonatal respiratory distress
• Chronic cough
• Recurrent pneumonia
• Bronchiectasis
Genitourinary tract
• Male/female fertility problem or history of in vitro

fertilization
Laterality defects
• Situs inversus totalis
• Heterotaxy (þ/� congenital cardiovascular

abnormalities)
Central nervous system
• Hydrocephalus
Eye
• Retinitis pigmentosa

Family history
• Communities or ethnicities with consanguinity
• Close (usually first degree) relatives with clinical

symptoms
Antenatal
• Heterotaxy on prenatal ultrasound
Newborn period
• Continuous rhinorrhea
• Respiratory distress or neonatal pneumonia
Childhood
• Chronic productive cough
• Atypical asthma unresponsive to therapy
• Idiopathic bronchiectasis
• Chronic rhinosinusitis
• Recurrent otitis media with effusion
Adolescence and adult life
• Same as for childhood
• Subfertility and ectopic pregnancies in females
• Infertility in males with immotile sperm
• Sputum colonization with nontuberculosis mycobacte-

rium or smooth/mucoid pseudomonas
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of any laterality abnormalities, or congenital heart disease, in
the presence of chronic respiratory disease should prompt the
notion of PCD as a potential unifying cause. A history of
unexplained neonatal respiratory distress, early onset and
persistent nasal-pulmonary symptoms, unexplained bronchi-
ectasis, a family history of PCD, and immotile sperm/infertility
should trigger an evaluation. There is overlap with other
chronic respiratory diseases, particularly CF, although immu-
nologic deficiencies, allergic bronchopulmonary aspergillosis
(ABPA), and recurrent aspirationmayalso be in the differential.
Early referral to a specialized center is recommended for both
diagnosis and management, given the complex nature of the
disease, and the rapid nature with which new information is
emerging in relation to diagnosis and management.

Indirect Assessment of Ciliary Function
Saccharin test—The saccharin test was a traditional, simple,
indirect way to test ciliary function, and was used as a
screening tool for PCD at many centers. A 1- to 2-mm particle

of saccharin is placed on the inferior nasal turbinate and
the time it takes the patient to taste the saccharin is a
rough estimate of nasal mucociliary clearance. However, at
best it is crude, limited by technical errors (inadequate
placement of saccharin), patient compliance (unable to sit
still for test, especially children), and false positives
(poor sense of taste, rhinosinusitis). Thus, it is rarely used
currently, and has been superseded by the more accurate
tests below.

Nasal nitric oxide (NO) levels—The fortuitous observation
several years ago that levels of NO produced in the upper
airway are reduced in PCD led to the concept that nasal NO
levels could be used as screening test in PCD.26NO is produced
by the paranasal sinus epithelium via NO–synthase and low
levels are seen in PCD, CF, acute/chronic sinusitis, and nasal
polyposis. In patients with PCD, however, levels of exhaled NO
are extremely low (�10% of normal value) when compared
with other diseases. Interestingly, carriers of PCD have been
shown to have intermediate levels of exhaledNO.1,27,28Using a

Clinical suspicion of PCD 

CT chest with bronchiectasis 
No 

PCD unlikely* 

Other etiologies of bronchiectasis 
excluded 

Yes • Exclude cystic fibrosis with a sweat chloride test 
and/or CFTR gene mutation analysis 

• Exclude primary immunodeficiency with 
immunoglobulin levels; IgG, IgA and IgM, serum 
electrophoresis, response to vaccines 

• Exclude connective tissue disorders with appropriate 
serologic tests 

• Consider ABPA, asthma, allergic rhinitis, reflux, 
and α1-antitrypsins deficiency 

No

Nasal NO level reduced 
(5–20% of normal)** PCD unlikely* 

Yes

No

Yes 

Cilia examination 
via nasal biopsy 

Ciliary beat frequency and pattern PCD not excluded***
Nml 

Abnml 

Electron microscopy with 
ultrastructural defect in cilia Normal beat frequency, pattern and 

ultrastructure makes PCD unlikely 

PCD likely 

Yes

Consider genetic testing  

Yes 

Nml

Fig. 2 Diagnostic algorithm for PCD. �If clinical suspicion is still high for PCD, may go to other, more specific tests. ��A nasal NO level less than 77
nL/min has a sensitivity and specificity of 0.98 and>0.99, respectively. ���Normal ciliary beat frequency and pattern does not exclude PCD. Abnml,
abnormal; Nml, normal; NO, nitric oxide; PCD, primary ciliary dyskinesia.
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standardized protocol, nasal NOmeasurements can accurately
identify patients with PCD 98.6% of the time.29

Direct Assessment of Ciliary Function
Microscopic analysis—Function can be classed as qualitatively
normal, dyskinetic, or immotile with direct visualization of
ciliary beat pattern and frequency with microscopic analysis
of transnasal brushings or nasal scrapes of the inferior turbi-
nate. However, this test is technically difficult outside of
research centers, and is neither sensitive nor specific.30

High-speed digital video imaging—Transnasal brushing or
nasal scrape ciliated epithelial samples can be analyzed
with high-speed digital video imaging to get quantitative
measurements of the ciliary beat frequency (CBF) to help
differentiate between abnormally beating cilia and normal
beat patterns.9,31 The cilium can be viewed in slow motion,
with 40 to 50 frames per ciliary beat cycle. Normal cilia beat
back and forth within the same frame with no sideways
recovery sweep. CBF and beat pattern abnormalities are
associated with specific ultrastructural defects including
transposition and defects in isolated outer arms, isolated
inner arms, and radial arms.32 Active sinusitis can cause
secondary ciliary dysfunction resulting in false positives,
and thus samples should be obtained when the patient is
relatively stable clinically. A normal CBF and beat pattern is
sensitive enough to exclude classic PCD, but any abnormal-
ity should provoke further testing.27 Thus, this test (like
other studies of cilia, often available at only research
centers) should be used along with structural and genetic
analysis to confirm the diagnosis.

Assessment of Ciliary Ultrastructure
Transmission electron microscopy 33—Once the suspicion for
PCD is high, the axonemal structure of the respiratory cilia
may be studied using transmission electron microscopy, the
traditional way of diagnosing PCD since Afzelius’ first report
in themid-1970s.2Various ciliary ultrastructural defects have
been described, including the absence of, or alteration in, IDAs
or ODAs, absence of the central pair, or defect of radial
spokes.34 The most common ultrastructural defect in PCD is
either the absence or shortening of an ODA (55% prevalence)
or a combined of absence/shortening of both the IDA and the
ODA (15% prevalence). Other abnormalities include defects in
the IDA alone or in combinationwith defects in radial spokes,
central microtubule pairs (transposition), or central microtu-
bular agenesis. Thus, until recently, the identification of
ultrastructural defects on TEM was the “gold standard” for
the diagnosis; however, with advances in our molecular
understanding in PCD, it is known that approximately 30%
of patients with genetically proven PCD have normal ciliary
ultrastructure and in some cases, a ciliary or oligoplasia,
hence inadequate for the TEM analysis. In addition, the
technique is limited by false-positive conditions (those asso-
ciated with active mucosal epithelium inflammation, viral or
bacterial), inadequate samples, poorly processed samples,
and reader error.35–38 Studies have shown a 3 to 10% preva-
lence of defective cilia in the airways of healthy individuals,
and normal ultrastructure in up to 15% of PCD patients.39

Dependence on TEM alone therefore is an unreliable way of
solely diagnosing PCD.

Fluorescence-labeled antibodies—Immunofluorescent anal-
ysis using antibodies directed against the main axonemal
components has been used to identify structural abnormalities
of cilia. For example, PCD patients with ODA defects have
absence of DNAH5 staining from the entire axoneme and
accumulation of DNAH5 at the microtubule organizing center.
Antibody-based techniques can diagnose defects in both the
ODAs and the IDAs caused by the KTU mutation in PCD.
Currently, a panel of antibodies directed toward multiple
ciliary proteins is being developed that may add to the
diagnostic armamentarium in screening for PCD; however,
like many sophisticated techniques, it is restricted to a few
centers that have this technology.40

Genetic Testing
PCD is a recessive disorder, and exhibits locus and allelic
heterogeneity. That is,multiple genes are involved in thedisease,
and different mutations in the same gene may also cause PCD.
Mutations in 11 different PCD-causing genes have been
described between 1999 and 2010 with linkage mapping and/
or candidate gene testing. An additional 23 genes have been
discovered since 2011 owing to the availability of whole-exome
sequencing (►Table 2). Some of these genes (e.g., DNAH8 and
NME8) have only been seen in few patients; thus, replication
studies are necessary. About 80% of the mutations are loss-of-
function variants (nonsense, frame shift, or defective splice
mutations), while the others are conservative missense muta-
tions or in-frame deletions. Most mutations occur in only one
patient/family (“private” mutations); a few of the mutations
have been seen to recur in two or more unrelated patients.
Collaborative efforts in recent years have allowed the collection
of large amounts ofdata frommanyclinical centers in theUnited
States andCanada and thus facilitated large-scale genetic studies
and identification ofmany causative genes, which had previous-
ly been very difficult to do in this rare disease.41 Approximately
65% of the 200 PCD patients in the rare disease consortium
(Genetic Disorders of Mucociliary Clearance [GDMCC]) have
biallelic mutations (mutations in both copies of the same
gene). At this point, with the use of next generation sequencing,
approximately 66% of patients with PCD can be identified, thus
facilitating early diagnosis and treatment.40,42–45 This is espe-
cially helpful in the caseswhere ciliary ultrastructural analysis is
equivocal or inadequate.

As the basic structure of the cilia is highly conserved across
species, nonhuman models have helped in the discovery of PCD
genes and the effects of the mutations on the cilia. Multiple
publications have documented the effects of specific mutations
on the cilia structure and function. Some of the genes code for
proteins in the ODA, IDA, or radial spoke causing specific
dysfunction or dysmotility, while others are expressed by
proteins in the cytoplasm used for the preassembly of the cilia
causing loss of both the ODA and the IDA leading to cilia
immotility.43,46–48 Recently, two proteins (CCNO and MCIDAS)
havebeen shown to affect cilia biogenesis.49,50 Specific classes of
mutations are associatedwith specific phenotypes.Mutations in
genes that lead to loss of function of the cilia also lead to low

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 2/2015

Primary Ciliary Dyskinesia Lobo et al. 173

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Table 2 Primary ciliary dyskinesia–associated genes in humans showing extensive locus heterogeneity

Human
gene

Chromosomal
location

Axonemal component Ultrastructure defect aPhenotype,
gene OMIM no.

PCD locus

DNAH5 5p15.2 ODA dynein HC ODA defect 608644, 603335 CILD3

DNAI1 9p21-p13 ODA dynein IC ODA defect 244400, 604366 CILD1

DNAI2 17q25 ODA dynein IC ODA defect 612444, 605483 CILD9

DNAL1 14q24.3 ODA dynein LC ODA defect 610062, 614017 CILD16

TXNDC3
(NME8)

7p14-p13 ODA dynein IC/LC Partial ODA defect (66%
cilia defective)

610852, 607421 CILD6

CCDC114 19q13.32 ODA DC ODA defect 615067, 615038 CILD20

CCDC151 19q13.32 ODA DC ODA defect 616037, 615956 CILD30

ARMC4 10p12.1-
p11.23

ODA transport
component

ODA defect 615451, 615408 CILD23

DNAAF1
(LRRC50)

16q24.1 Cytoplasmic DA preas-
sembly factor

ODA þ IDA defect 613193, 613190 CILD13

DNAAF2
(KTU)

14q21.3 Cytoplasmic DA preas-
sembly factor

ODA þ IDA defect 612518, 612517 CILD10

DNAAF3
(C19ORF51)

19q13.42 Cytoplasmic DA preas-
sembly factor

ODA þ IDA defect 606763, 614566 CILD2

CCDC103 17q21.31 Cytoplasmic DA attach-
ment factor

ODA þ IDA defect 614679, 614677 CILD17

C21orf59 21q22.1 Cytoplasmic DA assembly
or adaptor for transport

ODA þ IDA defect 615500, 615494 CILD26

DYX1C1 15q21.3 Cytoplasmic DA preas-
sembly factor

ODA þ IDA defect 615482, 608706, CILD25

LRRC6 8q24 Cytoplasmic DA preas-
sembly and/or transport

ODA þ IDA defect 614935, 614930 CILD19

HEATR2 7p22.3 Cytoplasmic DA preas-
sembly or transport

ODA þ IDA defect 614874, 614864 CILD18

SPAG1 8q22 Cytoplasmic DA preas-
sembly or transport

ODA þ IDA defect 615505, 603395 CILD28

ZMYND10 3p21.31 Cytoplasmic DA assembly ODA þ IDA defect 615444, 607070 CILD22

CCDC39 3q26.33 N-DRC IDA defect þ microtubu-
lar disorganization

613807, 613798 CILD14

CCDC40 17q25.3 N-DRC IDA defect þ microtubu-
lar disorganization

613808, 613799 CILD15

CCDC65
(DRC2)

12q13.12 N-DRC Mostly normal, CA defects
in small proportion of cilia

615504, 611088 CILD27

CCDC164
(DRC1)

2p23.3 N-DRC Nexin (N-DRC) link miss-
ing; axonemal disorgani-
zation in small proportion
of cilia

615294, 615288 CILD21

RSPH1 21q22.3 RS component Mostly normal, CA defects
in small proportion of cilia

615481, 609314 CILD24

RSPH4A 6q22.1 RS component Mostly normal, CA defects
in small proportion of cilia

612647, 612649 CILD11

RSPH9 6p21.1 RS component Mostly normal, CA defects
in small proportion of cilia

612650, 612648 CILD12

HYDIN 16q22.2 CA component Normal, very occasionally
CA defects

608647, 610812 CILD5

DNAH11 7p21 ODA dynein HC Normal 611884, 603339 CILD7

CCNO 5q11.2 Required for cilia
biogenesis

Ciliary a/oligoplasia 615872, 607752 CILD29
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nasal NO levels (<77 nL/min). Mutations that affect the dynein
arm’s ultrastructure lead to situs abnormalities, whilemutations
that affect the central apparatus do not. Mutations in patients
with normal TEM can have cilia with normal beat frequencies
and waveforms.

Overall, the more that is learnt about themolecular basis of
PCD, the more is learnt about the spectrum of phenotypes,
ranging from “classic” to mild, that is associated with late
presentation or normal cilia structure, analogous to the expe-
rience with CF—classic, early presentation disease versus non-
classic disease often presenting later in life, or even well into
adulthood.

Therapies

As there are currently no therapies available that can reverse
the underlying ciliary abnormalities, the goals of therapy are
to prevent exacerbations and slow down the progression of
the disease. As with other forms of CF and non-CF bronchiec-
tasis, patient education is a critical part of the care plan,
including imparting an understanding of the underlying
cause of the disease, its prognosis, and the various therapies
available to try to control the symptoms, especially airway
clearance. Currently, there are no data from randomized
clinical trials to support any particular forms of therapy;
thus, most management strategies (including those discussed
later) are extrapolated from CF and non-CF bronchiectasis. As
with any chronic disease, usual good health practices such as
refraining from smoking and administration of recom-
mended immunizations including influenza and pneumococ-
cal vaccines are recommended.

Surveillance

To guide the management plan, regular (twice yearly to
quarterly) lung function testing, together with microbiologic
assessments of airway flora (using either expectorated sputum
or induced samples using 3–7% hypertonic saline), is recom-
mended to establish clinical trends and detect exacerbations,

thus allowing targeted antimicrobial therapy. A baseline CT
scan is useful to assess the nature and extent of disease (as
noted earlier, bronchiectasis may be evident even in young
patients), followed by periodic chest imaging to track disease
progress or to assess the significance of new pathogens such as
multidrug-resistant gram-negative organisms or NTM.

Airway Clearance

Physiotherapy—There are no data to support any particular
form of airway clearance in PCD, but clinical experience
supports its use in a form acceptable to the patient. Daily
airway clearance with cardiovascular exercise, use of per-
cussion vests, manual chest physical therapy, and valve/
positive pressure expiratory devices help mobilize and aid
expectoration of bronchopulmonary secretions, improve
efficiency of ventilation, maintain/improve exercise toler-
ance, and reduce breathlessness.

Osmotic agents—“Hydration” therapy of the airway is an
attractive concept to augment clearance of secretions in a
disease such as PCD, in this case “cough clearance” given the
dysfunctional cilia.51 Nebulized hypertonic saline (3–7% hy-
pertonic saline) modulates the liquid content of the pericili-
ary fluid layer via increased hydration, thinning thick
secretions and triggering cough in the CF population. It has
been shown to improve lung function, quality of life, and
reduce antibiotic needs in the non-CF bronchiectasis popula-
tion.51,52 Recently, another agent which works via the osmot-
ic approach is inhaled mannitol, again studied in non-CF
bronchiectasis rather than specifically PCD.53 Although the
inhaled drug (400 mg BID) did not achieve its primary
outcome of reducing exacerbations, it did perform better
than placebo (low-dose mannitol) in slowing down the
time to first exacerbation and improving the quality of life
measures.

Deoxyribonuclease (Dornase-α)—Dornase-α is an enzyme
that hydrolyses eukaryotic DNA released from decaying
neutrophils to reduce mucus viscosity and aid airway clear-
ance in the CF population.54 It is, however, not beneficial in

Table 2 (Continued)

Human
gene

Chromosomal
location

Axonemal component Ultrastructure defect aPhenotype,
gene OMIM no.

PCD locus

MCIDAS 5q11.2 Required for cilia
biogenesis

Ciliary a/oligoplasia NA, 614086 NA

DNAH8b 6p21.1 ODA dynein HC NA 603337, NA NA

RPGRc Xp21.1 outer segment of Rod &
Con photoreceptors

Mixed 300455, 312610 NA

OFD1d Xq22 Centriole component,
required for cilia
biogenesis

NA 300209, 300170 NA

Abbreviations: CA, central apparatus; DA, dynein arm; DC, docking complex; HC, heavy chain; IC, intermediate chain; IDA, inner dynein arm; LC, light
chain; N-DRC, nexin-dynein regulatory complex; NA, not available; ODA, outer dynein arm; RS, radial spokes.
aOnline Mendelian Inheritance in Man (OMIM), http://www.omim.org/.
bCiliary ultrastructure not available50; however, DNAH8 is paralogous to DNAH5.
cCosegregation of X-linked PCD with X-linked retinitis pigmentosa.
dCosegregation of X-linked PCD with X-linked mental retardation.
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the non-CF bronchiectasis population, as studies show that
the drug is associated with pulmonary exacerbations and a
decline in lung function.55

Antibiotics
Given the propensity for chronic infection, as with other
forms of bronchiectasis, antibiotics are the cornerstone of
treatment for PCD exacerbations (usually associated with
an increase in cough, dyspnea, wheeze, with a change in
sputum volume or character, or purulence, or hemoptysis),
as they generally improve symptoms and hasten recov-
ery.56,57 Antibiotic therapy should be based on previous
respiratory culture data and previous therapeutic re-
sponses. Susceptibility patterns and clinical responses
may guide physicians between oral, inhaled, and intrave-
nous routes of administration. There are no randomized
data to support any particular drug, or route of administra-
tion, and clinical judgment is required; however, milder
exacerbations often respond to oral or oral–inhaled combi-
nations, while more significant exacerbations usually re-
quire systemic antibiotics (in combination, if gram-
negative organisms are cultured). There is a good deal of
interest in the development of inhaled antibiotics in recent
years in non-CF bronchiectasis, and over the next 5 to
10 years it is likely that there will be more approved drugs
with better evidence of efficacy available (a reduction in
exacerbation frequency, bacterial burden), for example,
inhaled aminoglycosides and quinolones.58–60 Early at-
tempts to eradicate newly acquired bacteria, especially P.
aeruginosa, are recommended; however, this has not
been shown to preserve lung function. Chronic or cycling
oral or inhaled antibiotics may be used in patients with
frequent exacerbation to try to improve quality of life,
reduce exacerbations, and (hopefully) stabilize lung
function.56,58,61,62

Anti-Inflammatories
A variety of anti-inflammatory agents including oral pred-
nisone, inhaled corticosteroids, and macrolides have been
used in airways disease associated with bronchiectasis.
Prednisone is generally not efficacious in the CF population
outside of coexistent asthma and ABPA, and there are no
studies in the PCD population. Inhaled corticosteroids have
not been shown to be beneficial in non-CF bronchiectasis.

The best data for “preventive” therapy come from recent
studies using oral macrolides, which have shown promising
outcomes in non-CF bronchiectasis, with reductions in ex-
acerbation frequency, delayed time to first exacerbation, and
reduced hospitalizations. It is unclear if this benefit is from an
anti-inflammatory or antimicrobial effect. Before initiating
therapy with a macrolide, patients should be tested for NTM,
in case macrolides should form part of a multidrug regimen,
and to avoid the emergence of resistance from chronic single-
agent macrolide use.63–65

Miscellaneous Approaches
Lung resection—Surgery may be considered in areas of
localized lung disease if it is causing severe systemic

symptoms, frequent exacerbations, or recurrent/life-
threatening hemoptysis despite aggressive medical
therapy. Patients in such situations have undergone
successful resection, but long-term data are lacking.66

Often the diffuse nature of disease elsewhere in the lung
mitigates against the likelihood of success in resecting
more diseased parts of the lung.

Lung transplant—PCD patients undergoing double-lung
transplant generally have good survival outcomes. The usual
concerns pertain to candidacy for the procedure, and also
specifically include multiple drug-resistant organisms, and
poor nutritional status. Interestingly, patients with situs
inversus do not pose any additional risk to posttransplant
outcomes; the anatomic disorientation is challenging but not
a contraindication.67

Extra-pulmonary Disease Management
Otitis media—Management may be controversial, especially
in the pediatric community. The long-term sequelae of chron-
ic disease in the upper airway include conductive hearing loss,
delayed speech and language development, and cholesteatoma
formation. Standard medical therapy is recommended for
acute episodes. There are no enough data on surgical tympa-
nostomy to make a definitive statement regarding its utility;
experts argue against the utility of this approach.27Regular
audiology assessments are encouraged.68,69

Chronic sinusitis—As with CF, the sinuses are usually
involved. Management includes nasal steroids, nasal lavage
and intermittent antibiotic lavages, and systemic antibiotics.
Otolaryngology evaluation for surgery and polypectomy to
promote sinus drainage is helpful for patients’ refractory to
medical therapy.70

Infertility—Male infertility is secondary to sperm immo-
tility and assisted fertilization techniques such as intra-
cytoplasmic sperm injections are promising. Female
infertility is secondary to sluggish fallopian tube transit
time, and direct ovum harvesting with in vitro fertilization
leads to successful pregnancy.

Prognosis

As compared with CF, the disease severity and deterioration
in lung function is less marked, especially with appropriate
medical therapy. A study by Ellerman and Bisgaard reported
that adults hadworse lung function at the time of diagnosis as
compared with adolescents; however, once diagnosed and
therapy started, no further lung deterioration was noted.71

However, other studies have shown progression to severe
lung disease before adulthood. These discrepancies in severi-
ty and survival may relate at least in part to the genetic and
phenotypic heterogeneity of PCD, as well as the usual aspects
of access to care, socioeconomic backgrounds of patients, and
accompanying comorbidities. Overall, the majority of pa-
tients with PCD appear to have a near-normal life expectancy
when compliant with recommended therapies. A minority of
patients develop progressive severe bronchiectasis, end-stage
lung disease, and early death, unless they undergo lung
transplant.71
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Summary and into the Future

In the past two decades, much has been learned about PCD.
Accurate and earlier diagnosis is possible, and access to
specialized centers has become easier. Standardized care
at specialized centers using a multidisciplinary approach is
expected to improve outcomes. The recent creation of the
PCD foundation has facilitated the creation of a network of
PCD clinical centers to help achieve this goal. As the network
grows, and clinicians and research scientists accumulate
more data from growing numbers of PCD patients, clinical
care and knowledge will undoubtedly improve. In parallel,
genetic correlates with larger clinical datasets have shown
that PCD is a genetically heterogenous diseasewith different
mutations in several genes resulting in a phenotype spec-
trum, across many races and ethnic groups. The severity of
disease ranges from mild to severe. Delays in recognition
may result in the development and progression of irrevers-
ible lung disease. In CF, early identification and diagnosis
leads to early treatment and frequent monitoring to de-
crease morbidity and mortality, and one assumes the same
principles apply to PCD, despite differences in pathogenesis.
Still, it must be remembered that PCD is not the same as CF,
and management is not identical. Without large numbers of
patientswith PCD, there has hitherto been little incentive for
industry to pursue drug development; thus, currently we
rely on studies in non-CF bronchiectasis (mucoactive agents,
macrolides, inhaled antibiotics). However, as noted earlier,
with the creation of clinical and research networks, with
improved identification, and more accurate diagnosis of
PCD, we can expect larger cohorts of PCD patients available
to participate in longitudinal studies of the natural history of
the disease, as well as studies of novel therapies, with the
goal of improving clinical care and outcomes in this rare
disease.

Acknowledgments and Conflict of Interest
The authors acknowledge many patients, colleagues,
the PCD Foundation, and the Genetics Consortium
who have supported the clinical investigation into
the PCD-related work reported in this review and
elsewhere.

Leonard J. Lobo—No conflicts of interest to disclose.
Maimoona Zariwala—Supported by National Institutes

of Health grants R01 HL071798 and 5U54HL096458. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.

Peadar Noone—Earlywork in PCDwas supported byNIH
HL04225. Has participated in clinical studies of the safety
and efficacy inhaled mannitol (supported by Pharmaxis),
inhaled aztreonam (supported by Gilead), and inhaled
liposomal ciprofloxacin (supported by Aradigm) in pa-
tients with non-CF bronchiectasis. Has sat on an advisory
committee for Bayer to develop novel therapies for non-CF
bronchiectasis.

References
1 Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia:

diagnostic and phenotypic features. Am J Respir Crit Care Med
2004;169(4):459–467

2 Afzelius BA. A human syndrome caused by immotile cilia. Science
1976;193(4250):317–319

3 Eliasson R, Mossberg B, Camner P, Afzelius BA. The immotile-cilia
syndrome. A congenital ciliary abnormality as an etiologic factor in
chronic airway infections and male sterility. N Engl J Med 1977;
297(1):1–6

4 Sturgess JM, Chao J, Wong J, Aspin N, Turner JA. Cilia with defective
radial spokes: a cause of human respiratory disease. N Engl J Med
1979;300(2):53–56

5 Wakefield S, Waite D. Abnormal cilia in Polynesians with bronchi-
ectasis. Am Rev Respir Dis 1980;121(6):1003–1010

6 Herzon FS, Murphy S. Normal ciliary ultrastructure in children
with Kartagener’s syndrome. Ann Otol Rhinol Laryngol 1980;89;
(1, Pt 1):81–83

7 LeighMW, O’Callaghan C, Knowles MR. The challenges of diagnos-
ing primary ciliary dyskinesia. Proc Am Thorac Soc 2011;8(5):
434–437

8 Toskala E, Smiley-Jewell SM, Wong VJ, King D, Plopper CG. Tem-
poral and spatial distribution of ciliogenesis in the tracheobron-
chial airways of mice. Am J Physiol Lung Cell Mol Physiol 2005;
289(3):L454–L459

9 Chilvers MA, Rutman A, O’Callaghan C. Functional analysis of cilia
and ciliated epithelial ultrastructure in healthychildren and young
adults. Thorax 2003;58(4):333–338

10 Satir P, Christensen ST. Overview of structure and function of
mammalian cilia. Annu Rev Physiol 2007;69:377–400

11 Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary
structure and function. Annu Rev Physiol 2007;69:423–450

12 Mitchell B, Stubbs JL, Huisman F, TaborekP, Yu C, Kintner C. The PCP
pathway instructs the planar orientation of ciliated cells in the
Xenopus larval skin. Curr Biol 2009;19(11):924–929

13 Mitchell B, Jacobs R, Li J, Chien S, Kintner C. A positive feedback
mechanism governs the polarity andmotion of motile cilia. Nature
2007;447(7140):97–101

14 Sears PR, Thompson K, KnowlesMR, Davis CW. Human airway ciliary
dynamics. AmJPhysiol LungCellMol Physiol 2013;304(3):L170–L183

15 Basu B, BruecknerM. Cilia multifunctional organelles at the center
of vertebrate left-right asymmetry. Curr Top Dev Biol 2008;
85:151–174

16 Sagel SD, Davis SD, Campisi P, Dell SD. Update of respiratory tract
disease in children with primary ciliary dyskinesia. Proc Am
Thorac Soc 2011;8(5):438–443

17 Ferkol T, Leigh M. Primary ciliary dyskinesia and newborn respi-
ratory distress. Semin Perinatol 2006;30(6):335–340

18 Brown DE, Pittman JE, Leigh MW, Fordham L, Davis SD. Early lung
disease in young children with primary ciliary dyskinesia. Pediatr
Pulmonol 2008;43(5):514–516

19 Santamaria F, Montella S, Tiddens HA, et al. Structural and
functional lung disease in primary ciliary dyskinesia. Chest
2008;134(2):351–357

20 Green K, Buchvald FF, Marthin JK, Hanel B, Gustafsson PM, Nielsen
KG. Ventilation inhomogeneity in children with primary ciliary
dyskinesia. Thorax 2012;67(1):49–53

21 Kennedy MP, Noone PG, Leigh MW, et al. High-resolution CT of
patients with primary ciliary dyskinesia. AJR Am J Roentgenol
2007;188(5):1232–1238

22 Jain K, Padley SP, Goldstraw EJ, et al. Primary ciliary dyskinesia in
the paediatric population: range and severity of radiological
findings in a cohort of patients receiving tertiary care. Clin Radiol
2007;62(10):986–993

23 Kennedy MP, Omran H, Leigh MW, et al. Congenital heart disease
and other heterotaxic defects in a large cohort of patients with
primary ciliary dyskinesia. Circulation 2007;115(22):2814–2821

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 2/2015

Primary Ciliary Dyskinesia Lobo et al. 177

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



24 Munro NC, Currie DC, Lindsay KS, et al. Fertility in men with
primary ciliary dyskinesia presenting with respiratory infection.
Thorax 1994;49(7):684–687

25 Engesaeth VG, Warner JO, Bush A. New associations of primary
ciliary dyskinesia syndrome. Pediatr Pulmonol 1993;16(1):9–12

26 Lundberg JO,Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM,
Alving K. Primarily nasal origin of exhaled nitric oxide and absence in
Kartagener’s syndrome. Eur Respir J 1994;7(8):1501–1504

27 Barbato A, Frischer T, Kuehni CE, et al. Primary ciliary dyskinesia: a
consensus statement on diagnostic and treatment approaches in
children. Eur Respir J 2009;34(6):1264–1276

28 WalkerWT, Jackson CL, Lackie PM, Hogg C, Lucas JS. Nitric oxide in
primary ciliary dyskinesia. Eur Respir J 2012;40(4):1024–1032

29 LeighMW,HazuchaMJ, Chawla KK, et al. Standardizing nasal nitric
oxide measurement as a test for primary ciliary dyskinesia. Ann
Am Thorac Soc 2013;10(6):574–581

30 Santamaria F, de Santi MM, Grillo G, Sarnelli P, CaterinoM, Greco L.
Ciliary motility at light microscopy: a screening technique for
ciliary defects. Acta Paediatr 1999;88(8):853–857

31 Olm MA, Kögler JE Jr, Macchione M, Shoemark A, Saldiva PH,
Rodrigues JC. Primary ciliary dyskinesia: evaluation using cilia
beat frequency assessment via spectral analysis of digital micros-
copy images. J Appl Physiol (1985) 2011;111(1):295–302

32 Stannard WA, Chilvers MA, Rutman AR, Williams CD, O’Callaghan
C. Diagnostic testing of patients suspected of primary ciliary
dyskinesia. Am J Respir Crit Care Med 2010;181(4):307–314

33 AltemeierWA, LilesWC, Villagra-Garcia A, Matute-Bello G, Glenny
RW. Ischemia-reperfusion lung injury is attenuated in MyD88-
deficient mice. PLoS ONE 2013;8(10):e77123

34 Shoemark A, Dixon M, Corrin B, Dewar A. Twenty-year review of
quantitative transmission electronmicroscopy for the diagnosis of
primary ciliary dyskinesia. J Clin Pathol 2012;65(3):267–271

35 Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is
associated with specific ultrastructural defects in primary ciliary
dyskinesia. J Allergy Clin Immunol 2003;112(3):518–524

36 O’Callaghan C, RutmanA,Williams GM, Hirst RA. Inner dynein arm
defects causing primary ciliary dyskinesia: repeat testing required.
Eur Respir J 2011;38(3):603–607

37 Jorissen M, Willems T. The secondary nature of ciliary (dis)
orientation in secondary and primary ciliary dyskinesia. Acta
Otolaryngol 2004;124(4):527–531

38 Olin JT, Burns K, Carson JL, et al; Genetic Disorders of Mucociliary
Clearance Consortium. Diagnostic yield of nasal scrape biopsies in
primary ciliary dyskinesia: a multicenter experience. Pediatr
Pulmonol 2011;46(5):483–488

39 Morillas HN, Zariwala M, Knowles MR. Genetic causes of bronchiec-
tasis: primary ciliary dyskinesia. Respiration 2007;74(3):252–263

40 Panizzi JR, Becker-HeckA, CastlemanVH, et al. CCDC103mutations
cause primary ciliary dyskinesia by disrupting assembly of ciliary
dynein arms. Nat Genet 2012;44(6):714–719

41 Genetic Disorders of Mucociliary Clearance Consortium(GDMCC).
Available at: http://rarediseasesnetwork.epi.usf.edu/gdmcc/in-
dex.htm

42 Merveille AC, Davis EE, Becker-Heck A, et al. CCDC39 is required for
assembly of inner dynein arms and the dynein regulatory complex
and for normal ciliary motility in humans and dogs. Nat Genet
2011;43(1):72–78

43 Antony D, Becker-Heck A, Zariwala MA, et al; Uk10k. Mutations in
CCDC39 and CCDC40 are the major cause of primary ciliary
dyskinesia with axonemal disorganization and absent inner dy-
nein arms. Hum Mutat 2013;34(3):462–472

44 Olbrich H, Schmidts M, Werner C, et al; UK10K Consortium.
Recessive HYDIN mutations cause primary ciliary dyskinesia
without randomization of left-right body asymmetry. Am J Hum
Genet 2012;91(4):672–684

45 Olbrich H, Horváth J, Fekete A, et al. Axonemal localization of the
dynein component DNAH5 is not altered in secondary ciliary
dyskinesia. Pediatr Res 2006;59(3):418–422

46 Horani A, Druley TE, ZariwalaMA, et al.Whole-exome capture and
sequencing identifies HEATR2 mutation as a cause of primary
ciliary dyskinesia. Am J Hum Genet 2012;91(4):685–693

47 Kott E, Duquesnoy P, Copin B, et al. Loss-of-function mutations in
LRRC6, a gene essential for proper axonemal assembly of inner and
outer dynein arms, cause primary ciliary dyskinesia. Am J Hum
Genet 2012;91(5):958–964

48 Mazor M, Alkrinawi S, Chalifa-Caspi V, et al. Primary
ciliary dyskinesia caused by homozygous mutation in DNAL1,
encoding dynein light chain 1. Am J Hum Genet 2011;88(5):
599–607

49 Boon M, Wallmeier J, Ma L, et al. MCIDAS mutations result in a
mucociliary clearance disorder with reduced generation of multi-
ple motile cilia. Nat Commun 2014;5:4418

50 Watson CM, Crinnion LA, Morgan JE, et al. Robust diagnostic
genetic testing using solution capture enrichment and a novel
variant-filtering interface. Hum Mutat 2014;35(4):434–441

51 Noone PG, Bennett WD, Regnis JA, et al. Effect of aerosolized
uridine-5′-triphosphate on airway clearance with cough in pa-
tients with primary ciliary dyskinesia. Am J Respir Crit Care Med
1999;160(1):144–149

52 Kellett F, Robert NM.Nebulised 7% hypertonic saline improves lung
function and quality of life in bronchiectasis. Respir Med 2011;
105(12):1831–1835

53 BiltonD, TinoG, Barker AF, et al; B-305 Study Investigators. Inhaled
mannitol for non-cystic fibrosis bronchiectasis: a randomised,
controlled trial. Thorax 2014;69(12):1073–1079

54 Fuchs HJ, Borowitz DS, Christiansen DH, et al; The Pulmozyme
Study Group. Effect of aerosolized recombinant human DNase on
exacerbations of respiratory symptoms and on pulmonary func-
tion in patients with cystic fibrosis. N Engl J Med 1994;331(10):
637–642

55 O’Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic
bronchiectasis with aerosolized recombinant human DNase I.
rhDNase Study Group. Chest 1998;113(5):1329–1334

56 Flume PA, O’Sullivan BP, Robinson KA, et al; Cystic Fibrosis
Foundation, Pulmonary Therapies Committee. Cystic fibrosis pul-
monary guidelines: chronic medications for maintenance of lung
health. Am J Respir Crit Care Med 2007;176(10):957–969

57 King PT, Holmes PW. Use of antibiotics in bronchiectasis. Rev
Recent Clin Trials 2012;7(1):24–30

58 Murray MP, Govan JR, Doherty CJ, et al. A randomized controlled
trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis.
Am J Respir Crit Care Med 2011;183(4):491–499

59 Barker AF, O’Donnell AE, Flume P, et al. Aztreonam for inhalation
solution in patients with non-cystic fibrosis bronchiectasis
(AIR-BX1 and AIR-BX2): two randomised double-blind, place-
bo-controlled phase 3 trials. Lancet Respir Med 2014;2(9):
738–749

60 Haworth CS, Foweraker JE, Wilkinson P, Kenyon RF, Bilton D.
Inhaled colistin in patients with bronchiectasis and chronic Pseu-
domonas aeruginosa infection. Am J Respir Crit Care Med 2014;
189(8):975–982

61 Evans DJ, Bara AI, GreenstoneM. Prolonged antibiotics for purulent
bronchiectasis in children and adults. Cochrane Database Syst Rev
2007;(2):CD001392

62 White L, Mirrani G, Grover M, Rollason J, Malin A, Suntharalingam
J. Outcomes of Pseudomonas eradication therapy in patients with
non-cystic fibrosis bronchiectasis. Respir Med 2012;106(3):
356–360

63 Serisier DJ, Martin ML, McGuckin MA, et al. Effect of long-term,
low-dose erythromycin on pulmonary exacerbations among pa-
tients with non-cystic fibrosis bronchiectasis: the BLESS random-
ized controlled trial. JAMA 2013;309(12):1260–1267

64 Altenburg J, de Graaff CS, Stienstra Y, et al. Effect of azithromycin
maintenance treatment on infectious exacerbations among pa-
tientswith non-cystic fibrosis bronchiectasis: the BATrandomized
controlled trial. JAMA 2013;309(12):1251–1259

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 2/2015

Primary Ciliary Dyskinesia Lobo et al.178

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

http://rarediseasesnetwork.epi.usf.edu/gdmcc/index.htm
http://rarediseasesnetwork.epi.usf.edu/gdmcc/index.htm


65 Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of
exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a
randomised, double-blind, placebo-controlled trial. Lancet 2012;
380(9842):660–667

66 Smit HJ, Schreurs AJ, Van den Bosch JM, Westermann CJ. Is
resection of bronchiectasis beneficial in patients with primary
ciliary dyskinesia? Chest 1996;109(6):1541–1544

67 Christie JD, Edwards LB, Kucheryavaya AY, et al; International
Society of Heart and Lung Transplantation. The Registry of the
International Society for Heart and Lung Transplantation: 29th
adult lung and heart-lung transplant report-2012. J Heart Lung
Transplant 2012;31(10):1073–1086

68 Campbell R. Managing upper respiratory tract complications of
primary ciliary dyskinesia in children. Curr Opin Allergy Clin
Immunol 2012;12(1):32–38

69 Prulière-Escabasse V, Coste A, Chauvin P, et al. Otologic features in
children with primary ciliary dyskinesia. Arch Otolaryngol Head
Neck Surg 2010;136(11):1121–1126

70 Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia:
efficacy of functional endoscopic sinus surgery. Laryngoscope
1993;103(11, Pt 1):1269–1272

71 Ellerman A, Bisgaard H. Longitudinal study of lung function in a
cohort of primary ciliary dyskinesia. Eur Respir J 1997;10(10):
2376–2379

Seminars in Respiratory and Critical Care Medicine Vol. 36 No. 2/2015

Primary Ciliary Dyskinesia Lobo et al. 179

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.


