
Abstract
!

Flow injection mass spectrometry and proton nu-
clear magnetic resonance spectrometry, two
metabolic fingerprinting methods, and DNA se-
quencing were used to identify and authenticate
Actaea species. Initially, samples of Actaea race-
mosa from a single source were distinguished
from other Actaea species based on principal
component analysis and soft independent model-
ing of class analogies of flow injection mass spec-
trometry and proton nuclear magnetic resonance
spectrometry metabolic fingerprints. The chemo-
metric results for flow injection mass spectrome-
try and proton nuclear magnetic resonance spec-
trometry agreed well and showed similar agree-
ment throughout the study. DNA sequencing us-

ing DNA sequence data from two independent
gene regions confirmed the metabolic finger-
printing results. Differences were observed be-
tween A. racemosa samples from four different
sources, although the variance within species
was still significantly less than the variance be-
tween species. A model based on the combined
A. racemosa samples from the four sources consis-
tently permitted distinction between species. Ad-
ditionally, the combined A. racemosa samples
were distinguishable from commercial root sam-
ples and from commercial supplements in tablet,
capsule, or liquid form. DNA sequencing verified
the lack of authenticity of the commercial roots
but was unsuccessful in characterizing many of
the supplements due to the lack of available DNA.
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Introduction
!

This study describes the application of two chem-
ical fingerprinting methods and a genetic se-
quencing method for the authentication of black
cohosh [Actaea racemosa L. (Ranunculaceae)],
one of the top ten selling dietary supplements in
the U.S. [1]. The three methods include flow in-
jection mass spectrometry (FIMS), proton nuclear
magnetic resonance (1H‑NMR), and DNA se-
quencing using universal primer regions. A. race-
mosa is a particularly appropriate target botanical
for this study as its increasing commercial de-
mand has resulted in frequent adulteration and
substitution for economic purposes.
Identification and authentication of botanical ma-
terials is a challenging task due to their complex
chemistry, phylogeny, and numerous material
forms which include dried plant material, ground
powder, liquid extracts, and dried extracts. The
gold standard for taxonomy is based on morpho-
logical characteristics from awhole plant, primar-
ily of the flower and/or fruit by an expert botanist
Planta Med 2016; 82: 250–262
[2]. Even this approach, however, has its limita-
tions, as plant material received for commercial
production may not match the original voucher
specimen or may contain organs or plant parts
that arenʼt typically used for taxonomic identifi-
cation (i.e., roots). Macroscopic and microscopic
methods have also been used extensively, but as
raw plant materials are ground and extracted,
qualitative methods become less applicable.
Ground botanical materials lose their morpholog-
ical characteristics but can retain their genetic
identity. As a result, DNA sequencing is becoming
an increasingly routine and affordable method for
taxonomic discrimination of ground plant mate-
rials.
Identification of extracted botanical materials can
be highly problematic. Extraction targets broad
groups of compounds based on the polarity of
the solvent and is frequently used for enrichment
of desirable components and/or removal of unde-
sirable components. Consequently, extraction
will alter the chemical composition of a botanical
as compared to the original solid material. Extrac-
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tion can also be problematic for DNA sequencing. The availability
of sufficient lengths of DNA sequences is highly dependent on the
extraction technique and the DNA sequencing method.
One of the most comprehensive approaches to botanical authen-
tication based on chemical composition is metabolic fingerprint-
ing. Hall [3] defined metabolic fingerprinting as “High through-
put qualitative screening of the metabolic composition of an or-
ganism or tissue with the primary aim of sample comparison
and discrimination analysis. Generally no attempt is initially
made to identify the metabolites present. All steps from sample
preparation, separation, and detection should be rapid and as
simple as is feasible”. Chromatographic and spectral (with no pri-
or separation) fingerprinting can meet Hallʼs definition. Both ap-
proaches generate complex fingerprints that may require multi-
variate analysis for discrimination. A general approach to the val-
idation of botanical identification methods using multivariate
analysis has been described by AOAC International [4,5].
Numerous methods have been developed and utilized for the au-
thentication of A. racemosa [6–9], although none of them include
chemical fingerprinting methods. The most commonly used
methods rely on the identification and quantification of specific
metabolites (chemical markers), an approach defined as meta-
bolic profiling. Ma et al. [6] described a method based on high-
performance liquid chromatography coupled with electrospray
ionization/mass spectrometry (HPLC‑ESI/MS) to identify 15
chemical markers. Qiu et al. [7] described a method using NMR
for the measurement of triterpenes in A. racemosa. The two-di-
mensional plots obtained from heteronuclear single-quantum
coherence (HSQC) measurements (combining 1H‑NMR and
13C‑NMR) were used to generate patterns for distinguishing the
various Actaea species. Neither of thesemethods are comprehen-
sive because they depended solely on identified components and
ignore the bulk of the components observed in the MS and NMR
spectra. Furthermore, neither study validated the markers by
measuring identification rates.
In previous studies, Harnlyʼs lab [10–15] has demonstrated the
use of spectral fingerprints obtained by IR, NIR, FIMS (with both
positive and negative ionization), and UV spectrometry for char-
acterizing botanicals (bitter orange, black cohosh, Ginkgo, and
ginseng) and food plants and materials (broccoli, dry beans,
grapefruit, skim milk powder). Spectral fingerprinting allowed
for the discrimination between species, growing locations, grow-
ing conditions, and processing. FIMS proved to be a particularly
useful method [14–16]. Whereas chromatographic methods re-
quire special care for retention time alignment, normal mass cal-
ibration procedures for nominal and high-resolution FIMS pro-
vide suitably stable fingerprints. The advantages of FIMS are the
excellent sensitivities and potential for identifying discriminating
components (especially with high-resolution FIMS) from the var-
iable loadings obtained from the chemometric models. However,
ion counts are highly dependent on the ionization process and re-
producibility between experiments on the same instrument and
between different instrument designs can be poor. This generally
necessitates a batch type of operation, i.e., fingerprints can only
be compared between new and reference samples analyzed
under the same conditions and at the same time. This process
rapidly depletes the supply of reference samples.
NMR, by comparison, has not been used as frequently for spectral
fingerprinting, although several excellent studies have been re-
ported [17–21]. In general, NMRmay be considered less sensitive
than MS, more expensive with respect to cost and consumables,
and requires an extra sample preparation step of drying and re-
constitution in a deuterated solvent. However, its inherent stabil-
ity makes it an excellent candidate for fingerprinting, allowing
the possibility of simply comparing spectra of newmaterials with
archived spectra to determine authenticity. Like MS, the NMR
spectra provide the added possibility of identifying specific com-
ponents that provide sample discrimination. In addition, the uni-
form response of 1H‑NMR facilitates calibration and allows for
the quantification of compounds.
Fingerprint comparisons of FIMS and NMR spectra are assisted by
multivariate analysis methods. There are two general ap-
proaches: modeling (a soft method) and classification (a hard
method). Soft models, such as the soft independent modeling of
class analogy (SIMCA) [22] and the fuzzy optimal associative
memory (FOAM) [23], fit a model to a single class. They are also
referred to as one-class classifiers because they model the simi-
larities among features of the spectra within just a single class.
As a result, they are a useful tool for authentication. A set of au-
thentic objects is used to construct a model that is used to judge
whether the test samples are authentic or not. Compared to clas-
sification methods, modeling methods tend to have less discrim-
inating power. However, they have the advantage of being able to
reject novel spectral fingerprints with characteristics not in-
cluded in the model.
Hard models, or classification methods, such as the partial least
squares-discriminant analysis (PLS‑DA) [24] and the fuzzy rule-
building expert system (FuRES) [25], require identification of
every class to be considered in the model and force an unknown
sample into one of the classes. PLS‑DA builds harder models as
the number of components increase. FuRES is a soft classification
method by its fuzzy constraints. Classification works well when
the classes of samples are well known and potential adulterants
are known ahead of time. Classification models will typically
misclassify new fingerprints that do not belong to any of the
classes, i.e., have features not incorporated into the model.
A third method that can be used for authentication is DNA se-
quencing, which uses universal gene regions to identify orga-
nisms [26]. Like metabolic fingerprinting, the pattern of the se-
quence is matched with reference sequences to authenticate the
botanical identity. DNA sequencing provides a genotypic finger-
print, not a metabolic fingerprint. The “DNA barcode”, which the
DNA sequence is often referred as, is complementary to metabol-
ic fingerprinting, allowing for the identification of species and, in
some cases, subspecies or variety. It is not appropriate for dis-
criminating between plant parts or the influence of the environ-
ment on metabolite expression. As the cost of DNA sequencing
drops, it is becoming the method of choice for the authentication
of raw animal and plant materials. For finished product supple-
ments, the method may be inappropriate as the absence of DNA,
or presence of low quality DNA, is problematic [27]. However,
new sequencing methods are being developed with more spe-
cies-specific primers that target short fragments of DNA as would
be expected in finished products [28].
The purpose of this study was to examine the ability of NMR and
FIMS, in combination with multivariate analysis, to discriminate
between Actaea species, between raw materials and commercial
products, and to compare spectral classification with DNA se-
quencing. First, FIMS and1H‑NMR fingerprints of Actaea species
obtained from a single source were compared using principal
component analysis (PCA) and SIMCA. Identification of the spe-
cies was confirmed using DNA sequencing based on two inde-
pendent nuclear ribosomal and chloroplast gene regions as vali-
dated for Actaea [29]. Samples of authentic Actaea species from
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262



Table 1 American Herbal Pharmacopoeia samples.

ID # Species Part Form Source Location nrDNA Mix Hybrid cpDNA Mix

American Herbal Pharmacopoeia

BCR01 A. racemosa r/r powder AHP North Carolina A. racemosa yes n/a A. racemosa no

BCR02 A. pachypoda r/r powder AHP North Carolina A. pachypoda no no A. pachypoda no

BCR03 A. racemosa r/r powder AHP China A. pachypoda no no pqs n/a

BCR04 A. racemosa r/r powder AHP New Jersey A. racemosa little no A. racemosa no

BCR05 A. pachypoda r/r powder AHP North Carolina A. pachypoda no no A. pachypoda no

BCR06 A. racemosa r/r powder AHP NA A. racemosa no maybe A. racemosa no

BCR07 A. racemosa r/r powder AHP North Carolina A. racemosa little maybe No ID yes

BCR08 A. racemosa r/r powder AHP North Carolina A. racemosa little maybe No ID yes

BCR09 A. racemosa r/r powder AHP North Carolina A. racemosa no maybe A. racemosa no

BCR10 A. podocarpa r/r powder AHP North Carolina A. podocarpa no no A. podocarpa no

BCR11 A. podocarpa r/r powder AHP North Carolina A. podocarpa no no A. podocarpa no

BCR12 A. podocarpa r/r powder AHP North Carolina A. podocarpa no no A. podocarpa no

BCR13 A. cimcifuga r/r powder AHP China A. dahurica no no A. dahurica no

BCR14 A. rubra r/r powder AHP Quebec, Canada A. rubra no yes A. pachypoda no

BCR15 A. rubra r/r powder AHP Oregon A. rubra no no A. rubra no

BCR16 A. racemosa r/r powder AHP commercial A. racemosa no maybe A. racemosa no

BCR17 A. racemosa r/r powder AHP commercial A. racemosa no maybe A. racemosa no

BCR18 A. cimcifuga r/r powder AHP commercial Erotium yes n/a No ID n/a

BCR19 A. cimcifuga r/r powder AHP China Erotium yes n/a No ID yes

BCR20 A. cimcifuga r/r powder AHP China Erotium yes n/a No ID yes

BCR21 A. cimcifuga r/r powder AHP commercial Erotium yes n/a No ID n/a

BCR22 A. cimcifuga r/r powder AHP commercial A. dahurica yes n/a A. dahurica no

BCR23 A. cimcifuga r/r powder AHP China A. dahurica yes n/a A. dahurica no

BCR24 A. cimcifuga r/r powder AHP China A. dahurica yes n/a A. dahurica no

nrDNA: nuclear ribosomal DNA; cpDNA: chloroplast DNA; r/r: roots/rhizomes; n/a: not analyzed; pqs: poor quality sequence; NA: not available

Table 2 National Institute of Standards and Technology and Strategic Sources samples.

ID # Species Part Form Source Location nrDNA Mix Hybrid cpDNA Mix

National Institute of Standards and Technology

SRM3295 A. racemosa r/r powder NIST NA A. racemosa yes no A. racemosa yes

SRM3296 A. racemosa r/r powder NIST NA

SRM3297 A. racemosa r/r powder NIST NA

SRM3298 A. racemosa r/r powder NIST NA

Strategic Sources

SS01 A. racemosa r/r r/r SS Madison, AL A. racemosa no maybe A. racemosa no

SS02 A. racemosa r/r r/r SS Bell, KT A. racemosa no maybe A. racemosa no

SS03 A. racemosa r/r r/r SS Logan, WV A. racemosa yes n/a A. racemosa no

SS04 A. racemosa r/r r/r SS Carter, MO A. racemosa yes n/a A. racemosa no

SS05 A. racemosa r/r r/r SS Washington,MO A. racemosa yes maybe A. racemosa no

SS06 A. racemosa r/r r/r SS Clay, KT A. racemosa no no A. racemosa no

SS07 A. racemosa r/r r/r SS Pike, KT A. racemosa yes maybe A. racemosa no

nrDNA: nuclear ribosomal DNA; cpDNA: chloroplast DNA; r/r: roots/rhizomes; n/a: not analyzed; NA: not available
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multiple sources were then examined using FIMS, 1H‑NMR, and
DNA sequencing and compared to the supplierʼs identification.
Similarly, metabolic fingerprints and DNA sequences were used
to compare authentic A. racemosa samples with both commer-
cially available root samples and with commercially available
supplements. Four multivariate methods (SIMCA FOAM, PLS‑DA,
and FuRES) were used to evaluate the data in this study.
Results and Discussion
!

MS and NMR spectra were acquired for the Actaea species listed
in l" Tables 1–4. Typical spectra for A. racemosa are given in
l" Fig. 1. The FIMS spectra were acquired with flow injection (no
separation) for m/z 150 to 1500. The NMR spectra were acquired
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262
from − 3.0 to 16.0 ppm, but only the region from 0.5 to 9.0 ppm
was used in this study. The top spectra ofl" Fig. 1 have not under-
gone any preprocessing. The bottom plots show both spectra
after normalization to unit vector length and autoscaling with re-
spect to the A. racemosa spectra. The NMR spectra had the DMSO
solvent peak at 2.53 ppm removed before the preprocessing
steps. The solvent peak can potentially introduce added undesir-
able variance to the data and may confound classification and
modeling, although this was not the case (data not shown).
The initial goal was to compare the ability of FIMS and NMR to
discriminate between species. Because the PCA of the spectra for
all the samples in l" Tables 1–4 produced very complex score
plots that were difficult to interpret, a reductionist approach
was deemed necessary for this phase of the investigation. Conse-
quently, only spectra for A. racemosa and four other Actaea spe-



Table 3 The North Carolina Arboretum Germplasm Repository samples.

ID # Species Part Form Source Location nrDNA Mix Hybrid cpDNA Mix

NCC1 A. racemosa r/r powder NCA composite 2 A. racemosa no no A. racemosa no

NCC2 A. racemosa r/r powder NCA composite 2 A. racemosa no no A. racemosa no

NC01a A. racemosa r/r powder NCA NC

NC01b A. racemosa r/r powder NCA NC

NC01c A. racemosa r/r powder NCA NC

NC02a A. racemosa r/r powder NCA VA

NC02b A. racemosa r/r powder NCA VA

NC02c A. racemosa r/r powder NCA VA

NC03a A. racemosa r/r powder NCA PA

NC03b A. racemosa r/r powder NCA PA

NC03c A. racemosa r/r powder NCA PA

NC04a A. racemosa r/r powder NCA NY

NC04b A. racemosa r/r powder NCA NY

NC04c A. racemosa r/r powder NCA NY

NC05a A. racemosa r/r powder NCA AR

NC05b A. racemosa r/r powder NCA AR

NC05c A. racemosa r/r powder NCA AR

NC06a A. racemosa r/r powder NCA MO

NC06b A. racemosa r/r powder NCA MO

NC06c A. racemosa r/r powder NCA MO

NC07a A. racemosa r/r powder NCA WV

NC08a A. racemosa r/r powder NCA WV

NC08b A. racemosa r/r powder NCA WV

NC08c A. racemosa r/r powder NCA WV

NC09a A. racemosa r/r powder NCA WV

NC09b A. racemosa r/r powder NCA WV

NC09c A. racemosa r/r powder NCA WV

NC10a A. racemosa r/r powder NCA VA

NC11a A. racemosa r/r powder NCA TN

NC11b A. racemosa r/r powder NCA TN

NC11c A. racemosa r/r powder NCA TN

NC12a A. racemosa r/r powder NCA PA

NC12b A. racemosa r/r powder NCA PA

NC12c A. racemosa r/r powder NCA PA

NC13a A. racemosa r/r powder NCA NY

NC13b A. racemosa r/r powder NCA NY

NC13c A. racemosa r/r powder NCA NY

NC14a A. racemosa r/r powder NCA NC

NC14b A. racemosa r/r powder NCA NC

NC14c A. racemosa r/r powder NCA NC

NC15a A. racemosa r/r powder NCA NC

NC15b A. racemosa r/r powder NCA NC

NC15c A. racemosa r/r powder NCA NC

NC16a A. racemosa r/r powder NCA NC

NC16b A. racemosa r/r powder NCA NC

NC16c A. racemosa r/r powder NCA NC

NC18a A. racemosa r/r powder NCA MD

NC19a A. racemosa r/r powder NCA KY

NC19b A. racemosa r/r powder NCA KY

NC20a A. racemosa r/r powder NCA IN

NC20b A. racemosa r/r powder NCA IN

NC20c A. racemosa r/r powder NCA IN

NC21a A. racemosa r/r powder NCA DE

NC21b A. racemosa r/r powder NCA DE

NC21c A. racemosa r/r powder NCA DE

NC22a A. racemosa r/r powder NCA DE

nrDNA: nuclear ribosomal DNA; cpDNA: chloroplast DNA; r/r: roots/rhizomes
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cies [Actaea cimicifuga L., Actaea pachypoda Ell., Actaea podocar-
pa DC., and Actaea rubra (Aiton) Willd.] purchased from AHP
(l" Table 1) were submitted to PCA and SIMCA. The same samples
were submitted to PCA and SIMCA so that the FIMS and NMR re-
sults may be compared.
l" Fig. 2 comprises PCA score plots and SIMCA influence plots ob-
tained by FIMS in the left column and NMR in the right column.
There are strong similarities between the responses of the two
methods as can be seen by the PCA scores. For both instruments:
1) the A. racemosa clustered separately from the other species, 2)
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262



Table 4 Commercial roots and supplements.

ID # Species Part Form Source Location nrDNA Mix Hybrid cpDNA Mix

CA01 A. racemosa r/r r/r – Liaoning, China A. dahurica yes n/a A. dahurica no

CA02 A. heracleifolia r/r r/r – Heilongjiang, China A. dahurica yes n/a No ID yes

CA03 A. heracleifolia r/r r/r – Sichuan, China Acanthaceae no n/a Baphicacanthus no

CA04 A. foetida r/r r/r – Hebei, China Eurotium sp. yes n/a No ID n/a

CA05 A. foetida r/r r/r – suzhou,China A. dahurica yes n/a A. dahurica no

CA06 A. dahurica r/r r/r – Hebei, China No ID yes n/a A. dahurica yes

CA07 A. dahurica r/r r/r – Sichuan, China Pichia sp. yes n/a A. dahurica no

CA08 A. dahurica r/r r/r – North Korea A. dahurica yes no A. dahurica no

CA09 A. foetida r/r r/r – North Korea A. brachycarpa yes no A. brachycarpa no

CA10 A. foetida r/r r/r – Yunnan, China A. dahurica yes yes A. dahurica no

CA11 A. foetida r/r r/r – Henan, China A. dahurica yes yes A. dahurica yes

CA12 Vernonia aspera r/r r/r – Hebei, China Eupatorium no n/a E. fortunei no

CA13 V. aspera r/r r/r – Yunnan, China Astereae yes n/a E. fortunei no

CA14 V. aspera r/r r/r – Yunnan, China

CS01 A. racemosa – tab NA

CS02 A. racemosa – tab NA

CS03 A. racemosa – liq NA

CS04 A. racemosa – liq NA

CS05 A. racemosa – liq NA

CS06 A. racemosa – liq NA

CS07 A. racemosa – liq NA

CS08 A. racemosa – cap NA A. racemosa no no A. racemosa no

CS09 A. racemosa – cap NA A. racemosa no no A. racemosa no

CS10 A. racemosa – cap ? A. racemosa no no A. racemosa no

CS11 A. racemosa – cap ? no DNA n/a no no DNA n/a

CS12 A. racemosa – cap ? A. brachycarpa no no pqs n/a

CS13 A. racemosa – cap ? A. racemosa yes no pqs n/a

CS14 A. racemosa – cap ? Oryza sativa yes n/a O. sativa no

nrDNA: nuclear ribosomal DNA; cpDNA: chloroplast DNA; r/r: roots/rhizomes; n/a: not analyzed; pqs: poor quality sequence; NA: not available; tab: tablet; liq: liquid; cap: capsule

Fig. 1 Comparison of A. racemosa spectra before and after preprocessing,
which comprised normalization to unit length followed by autoscaling to the

A. racemosa species. For the NMR, the DMSO solvent peak was removed at
2.54 ppm before preprocessing. (Color figure available online only.)
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sample BCR02, identified by AHP as A. pachypoda, appears in the
A. racemosa, cluster, and 3) sample BCR16, identified by AHP as
A. racemosa, appears outside the A. racemosa cluster. Samples
BCR02 and BCR16 were analyzed twice by NMR two months
apart; the repeat analyses agreed well with the original analyses.
In general, the discrimination between the Actaea species pro-
vided by the two methods is in close agreement.
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262
The influence plots (i.e., Q statistic plotted as a function of the
Hotelling T2 statistic) are given at the bottom of l" Fig. 2 for the
FIMS and NMR data, respectively, for single component SIMCA
models based on A. racemosa identified in l" Table 1. The T2 and
Q statistics provide the variance accounted for by the SIMCA
model and the residual variance unaccounted for by the model,
respectively. In both cases, preprocessing consisted of normaliza-
tion and autoscaling. For both instruments, the models for



Fig. 2 Top left, scores of the preprocessed mass spectra; bottom left, one
component SIMCA influence plot based on the AHP A. racemosa spectra. Top
right, scores of the preprocessed NMR spectra; bottom right, one compo-

nent SIMCA influence plot of the same samples at the mass spectra. A (red)
A. racemosa, B (green) A. rubra, C (cyan) A. cimicifuga, D (magenta)
A. pachypoda, E (black) A. podocarpa. (Color figure available online only.)
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A. racemosa included sample BCR16, even though it did not clus-
ter with the other A. racemosa scores in the PCA plots. The SIMCA
models were based on one principal component, and the auto-
scale mean and standard deviations were only calculated from
the set of A. racemosa spectra.
It is not appropriate to use influence plots without validation.
Models are traditionally validated using bootstrapping. However,
the limited number of samples in this phase of the project makes
bootstrapping problematic. Dropping a single sample from the
NMR data or a set of five repeats for a single sample from the
FIMS data can produce dramatically different results. Still, the re-
sults for bootstrapping showed sensitivities of 91.4% and 91.7%
for FIMS and NMR, respectively (data not shown). The specifici-
ties were 100.0% for both methods.
The results in l" Fig. 2 show the close agreement of the models
based on the FIMS and NMR spectral fingerprinting and show
that both are highly sensitive to changes in the sample chemical
composition. Both methods can discriminate between the five
Actaea species. Thus, for the purpose of identification and au-
thentication, both FIMS and NMR perform equally well.
The third method used to characterize the Actaea species was
DNA sequencing. Barcodes were determined at two loci: one nu-
clear ribosomal (nrDNA) and one chloroplast DNA (cpDNA). The
nrDNA were examined to determine if there was a mixture of
DNA (contamination) or if the DNA represented a hybrid (species
interbreeding). The cpDNAwas also used to look for mixtures. Re-
sults for the DNA sequencing are presented in l" Tables 1–4.
In general, DNA sequencing confirmed the species identification
provided by AHP (l" Table 1). The exceptions were samples
BCR03 and BCR18–BCR24. In each case, identification was com-
plicated by the purity of the material. BCR03 was identified as
A. pachypoda using nrDNA, but gave a poor quality sequence
(PQS) with cpDNA. Samples BCR18 to BCR21 appeared moldy
upon visual examination and were identified as the fungus Eroti-
um by nrDNA. Both loci (nrDNA and cpDNA) indicated a mixture
of DNA materials. BCR21 to BCR24 were identified as Actaea da-
hurica (Turcz. ex Fisch. & C.A.Mey.) Franch. and not A. cimicifuga.
Previously, next generation sequencing of SRM 3295 A. racemosa
Rhizome had revealed that 2% of the DNA present was fungal
[29]. Eurotium herbariorum, for example, was found in SRM
3295 and is a soil born fungus that is frequently found on dried
plant products and is common in stored seeds. Thus, identifica-
tion of BCR18 to BCR21 as the Eurotium genus is not surprising.
These results do not preclude that A. cimicifuga is present in sam-
ples BCR18 to BCR21. The other samples in this study were not
analyzed using next generation sequencing, which is unfortunate
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262



Fig. 3 Left, PCA scores of preprocessed A. racemosamass spectra with re-
spect to the different suppliers; right, PCA scores of preprocessed A. race-
mosa NMR spectra; right bottom, corresponding influence plot for a one
component SIMCA model of the NMR spectra. A (red) American Herbal

Pharmacopoeia, B (green) North Carolina Arboretum, C (cyan) National In-
stitutes of Standards, D (magenta) Strategic Sources. (Color figure available
online only.)
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because understanding the level of fungal load may be a signifi-
cant factor in interpreting the chemical profiles.
Interestingly, samples BCR02 and BCR16, which appeared to be in
thewrong clusters inl" Fig. 2, were in fact accurately identified as
A. pachypoda and A. racemosa, respectively, by DNA sequencing.
The PCA scores inl" Fig. 2 suggested that they were misidentified
and led to the purchase of new samples from AHP. The new sam-
ples were analyzed by MS, NMR, and DNA sequencing, and pro-
duced the same results as initially obtained. The positions of
BCR02 and BCR16 suggest that they contain components (or are
missing components) that make them slightly different from the
other samples of the same species. However, for both FIMS and
NMR, the influence plots showed that the spectral fingerprints
of BCR02 samples were closest to the other A. pachypoda sam-
ples, and fingerprints for BCR16 were closest to A. racemosa.
These results emphasize the fact that these are complex biologi-
cal samples and the phenotypes display far greater variation than
the genotype.
As listed in l" Tables 1–3, authentic A. racemosa roots/rhizomes
were obtained from four major sources. l" Fig. 3 comprises PCA
score plots from spectra acquired by FIMS and NMR for
A. racemosa samples from the American Herbal Pharmacopoeia
(AHP), The North Carolina Arboretum Germplasm Repository
(TNCAGR), Strategic Sources, Inc. (SSI), and the National Institute
of Standards and Technology (SRM 3295, Black Cohosh Rhizome).
TNCAGR furnished two composite A. racemosa materials that
were used for method development and 55 samples collected
from 22 sites from the east coast and as far west as Missouri.
The scores in the PCA plot in l" Fig. 3 characterize the variation
between the sources of the authentic A. racemosa samples. For
MS, the differentiation of the sources is more apparent when in-
corporating the third principal component and viewed in three
dimensions (score plot not shown). However, the distinction be-
tween sources was seen clearly by the NMR scores for the first
two components. The samples were prepared independently for
FIMS and run on the same day in a random order. When the FIMS
and NMR are subjected to class modeling, the influence plots (us-
ing A. racemosa samples from AHP, TNCAGR, or SS as the class
model) show specificities (fraction of the non-model samples
identified as non-model) ranging from 75% to 99% (plots not
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262
shown). This indicates that the samples from the three sources
are different from each other. Similarly, pooled ANOVA showed
that the probability that the means of the three sources were
the same was < 0.0001 (data not shown).
The samples were prepared independently for FIMS and run on
the same day in a random order. The same samples were dried,
reconstituted in DMSO, and analyzed randomly by NMR. The
agreement of the statistical analysis of the data from the two
methods strongly suggests chemical differences between the dif-
ferent sources of authentic samples. These differences may arise
from the geographic source of the samples (e.g., local genetic var-
iations, different growth conditions, and/or different local patho-
gens) and/or systematic differences in post-harvest processing.
Metadata for the A. racemosa roots are presented inl" Tables 1–3.
Samples from TNCAGR and SSI were collected in the U.S. TNCAGR
samples were originally harvested from native populations six
years ago and cultivated under controlled conditions. All samples
were harvested in October 2012. In general, most of the SS sam-
ples come from further west. The AHP samples come from a vari-
ety of sources across the U.S. as well as from Canada, China, and
commercial sources. NIST SRM 3295 was obtained in bulk from a
commercial source and the point of origin has not been disclosed.
In most cases, the year of harvest is not available. DNA sequenc-
ing confirmed that the samples identified as A. racemosa by their
supplier were genetically consistent with A. racemosa. The mis-
identification of one sample (BCR03) was discussed above. This
sample was removed from the analyses.
Added insight into the variation within species can be gained by
taking a closer look at the A. racemosa samples furnished by
TNCAGR. l" Fig. 4 contains PCA score plots for those ten sites for
which three samples were received (only one or two samples
were received for the other five sites) and were analyzed by both
FIMS and NMR. Both sets of profiles have a non-homogeneous
distribution of the data from the different sites. The FIMS data
demonstrate that the within site variance is considerably less
than the between site variance and data from both methods
demonstrate that the variance between sites is considerably less
than the total variance for all sites. This was verified using pooled
ANOVA. The probability that the means of the ten sites were sim-



Fig. 4 Left, PCA scores of the preprocessed mass spectra with respect to 10
sites from the North Carolina Arboretum; right, PCA scores of the prepro-

cessed NMR spectra with respect to the same 10 sites. (Each site has a dif-
ferent letter and color.) (Color figure available online only.)

Fig. 5 Influence plots of the preprocessed mass (left) and NMR (right)
spectra for the Actaea roots of the five species and all suppliers. A (red)

A. racemosa, B (green) A. rubra, C (cyan) A. cimicifuga, D (magenta)
A. pachypoda, E (black) A. podocarpa. (Color figure available online only.)
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ilar was < 0.0001 (data not shown). Thus, the individual sites pro-
vide subclusters within the A. racemosa cluster.
Differences in the chemical fingerprints of the A. racemosa sam-
ples from the 22 sites could arise from a number of sources. Envi-
ronmental conditions (e.g., temperature, sunlight, rainfall, soil
quality, and altitude) could be important factors. Post-harvest
handling (e.g., drying conditions, shelf life, and storage tempera-
tures) can influence enzymatic changes and long-term composi-
tion. Isolated plant colonies may also be subject to local genetic
mutations. It has also been hypothesized that some of the pur-
ported health promoting chemical components of A. racemosa
may come from endophytic fungi and not the plant itself [30]. Ge-
netic mutation and endophytic fungi variation could potentially
be major causes of variation between TNCAGR sites as all samples
were grown under separate but similar conditions since their
harvest from their original site six years ago. Future studies using
second generation sequencing to determine the level of endo-
phytic fungi will be informative.
l" Fig. 5 presents the influence maps for a single component
SIMCA model based on all of the A. racemosa samples using the
FIMS and NMR spectra. l" Fig. 5 is similar to l" Fig. 2 influence
plots, except the spectra from A. racemosa samples from all four
sources are used for the class model to test the other four Actaea
species obtained from AHP. The Q statistic is effective for differ-
entiating A. racemosa from the other species with the exception
of A. pachypoda for FIMS and A. rubra for NMR. There are a num-
ber of A. racemosa samples that fall above the confidence
boundary.
As stated earlier, it is not appropriate to use influence plots with-
out validation. Models are traditionally validated using indepen-
dent sets of data. In this study, the A. racemosa fingerprints from
65 samples comprise the model building set of data and the 14
samples from the other species correspond to the negative spec-
tra to evaluate the specificity of the model. To validate the model,
the 65 A. racemosa samples were randomly split into quarters so
that 75%were used for constructing themodel and the other 25%
for evaluating the model. The FIMS data were randomly parti-
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262



Table 5 Modeling and classifica-
tion results with 100 × 4 boot-
strapped Latin partitions.

Modeling (α = 0.05) Classification

Data set Number FOAM SIMCA FuRES PLS‑DA

MS sensitivity 324 96.7 ± 0.2% 91.1 ± 0.2% 98.2 ± 0.3% 95.4 ± 0.3%

MS specificity 70 86.7 ± 0.1% 85.7 ± 0.1% 59.4 ± 0.8% 63.4 ± 0.3%

NMR sensitivity 65 91.0 ± 0.3% 77.7 ± 0.3% 96.2 ± 0.3% 98.4 ± 0.1%

NMR specificity 14 78.5 ± 0.6% 85.7 ± 0.1% 68.6 ± 0.3% 66.7 ± 0.4%
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tioned by samples, i.e., inmultiples of five spectra. This procedure
is comparable to the partitioning of the NMR data, which only
consisted of a single spectrum per sample. For modeling, the sen-
sitivity was determined as the fraction of A. racemosa samples
that were correctly identified as A. racemosa. The specificity is
the fraction of the other species that were correctly identified as
not belonging to the A. racemosa model.
l" Table 5 reports the validation results obtained using both class
modeling and classification. For classmodeling, SIMCA and FOAM
(see Materials and Methods section) were compared using 100
bootstraps with four Latin partitions. Neither SIMCA nor FOAM
were optimized in any way, but were used with standard param-
eters for all the evaluations with the exception that FOAM al-
lowed the internal bootstrap validation to partition by sample to
provide a better estimate of the residual error. While the same
modification could have beenmade to SIMCA, it was left unmodi-
fied so that it would remain consistent with SIMCA calculations
that are commercially available. SIMCA and FOAM tended to per-
form complementarily with one furnishing higher specificity
while the other yielded higher sensitivity.
FIMShad thebestperformancewitha96.7 ± 0.2%averagesensitiv-
ity and an average specificity of 86.7 ± 0.1% using FOAM. The SIM-
CA results were slightly worse with 91.1 ± 0.2% and 85.7 ± 0.1%
average sensitivity and specificity, respectively. For NMR, the
FOAM average sensitivity and specificity were 91.0 ± 0.3% and
78.5 ± 0.6%, respectively. For SIMCA, the average specificity of
85.7 ± 0.1%was greater than the average sensitivity of 77.7 ± 0.3%.
NMR was at a slight disadvantage because fewer spectra were
available for building statisticalmodels. These results for the spec-
ificities are not so bad when one considers that the A. rubra and
A. pachypoda speciesonlycontained twosamples eachandneither
the FOAMnor the SIMCAmodelswere optimized in anyway.
The relationship between sensitivity and specificity is dependent
on the confidence limit or criterion for group membership that
can be controlled to favor the sensitivity or specificity of the
model. The 95% confidence interval, which is the red horizontal
dashed lines in l" Fig. 5A,B, is an example of the model accept-
ance criterion. A useful approach to evaluate a model is the re-
ceiver operating characteristic (ROC) curve, which plots the sen-
sitivity with respect to the false positive rate (i.e., 1-specificity) as
a function of the models acceptance criterion [31,32].
The bootstrap Latin partition results were saved to generate the
average ROC curves inl" Fig. 6. The best compromise of the sensi-
tivity-specificity tradeoff occurs at the point along the curve clos-
est to the upper left hand corner. By visual inspection one can see
that this point corresponds to 90% sensitivity and 90% specificity.
In general, FOAM appears to perform a little better that SIMCA. It
is not possible to directly compare MS and NMR because much
fewer samples were analyzed by NMR.
Twoclassificationmethods,PLS‑DAandFuRES,werecompared.As
with the modeling evaluation, the FIMS spectra for A. racemosa
were partitioned by sample (multiples of five spectra) to be com-
parable to the partitioningof theNMR spectra. The average classi-
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262
fication results of the bootstrapped Latin partitions are reported
in l" Table 5. As mentioned in the introduction, classification is a
targeted analysis that, in this case, assigns spectra or fingerprints
to one of four classes (A. cimicifuga, A. podocarpa, A. racemosa,
and A. rubra). Specificity, defined as the correct identification
for species other than Racemosa, is challenging because two of
these species had only two samples, and the third species only
had three samples. Therefore, models were built from one sample
and applied to recognize the other samples of the same species
for three of the classes, A. pachypoda, A. rubra, and A. podocarpa.
Average classification results in l" Table 5 indicate that PLS‑DA
and FuRES are comparable for both FIMS and NMR. In this case,
when one classifier yielded a greater sensitivity, the other classi-
fier gave a greater specificity. The sensitivities were all above 95%
for FIMS and NMR. The specificities were lower and ranged be-
tween 60–70%, which was not surprising with the small sample
sizes for the non-A. racemosa spectra. Classification is most effec-
tive if the populations of each class are equal. Despite the excel-
lent sensitivity, the two smallest classes, A. pachypoda and
A. rubra,were misclassified (data not shown). These data empha-
size the importance of having large representative sets of sam-
ples for classifier construction.
l" Fig. 7 presents the influence models for FIMS and NMR based
on the SIMCA for the same A. racemosa samples used in l" Fig. 5
to test commercial Asian root samples (l" Table 4, CA01 to CA14).
The samples were purported to be A. racemosa, A. heracleifolia,
A. foetida, and A. dahurica. In l" Fig. 6, all of the commercial sam-
ple scores are above the 95% Q confidence limit, even the sample
of A. racemosa. All the samples were subjected to DNA sequenc-
ing. Seven of the samples were identified as A. dahurica, includ-
ing the sample purported to be A. racemosa. DNA sequencing
identified one of the samples as A. brachycarpa and four of the
samples were other plant materials. All of the samples were a
mixture of materials and two could only be identified as a yeast
(Pichia spec.) and a fungi (Erotium spec.).
l" Fig. 8 again uses the same influence SIMCA plots for FIMS and
NMR as l" Fig. 5 to test 14 commercial supplements of A. racemo-
sa purchased from local stores (l" Table 4, CS01 to CS14). Two
were tablets, seven were capsules, and five were in liquid form.
All the supplements, with the exception of one capsule (by both
FIMS and NMR), were differentiated from A. racemosa root at the
95% Q confidence level. Most likely, this capsule (CS09) contained
powdered A. racemosa root as DNA sequencing confirmed the
presence of A. racemosa DNA.
A SIMCA model was constructed based on the NIST extracted
SRMs (3297 and 3298). Since the SRM materials were obtained
from a commercial source that used standard methods for their
preparation, it was hypothesized that they would serve as a suit-
able model for the commercial samples. However, all the com-
mercial supplements were excluded from the model at the 95%
confidence level (data not shown). This result indicates that the
different preparations of the SRMs and the commercial supple-
ments have resulted in different chemical fingerprints. This result



Fig. 6 Average receiver operating curves for
100 × 4 bootstrapped Latin partitions that averaged
100 sensitivities and 400 specificities for the MS and
NMR modeling evaluations that were built with the
racemosa A. racemosa data. (Color figure available
online only.)

Fig. 7 Influence plots of commercial species on a
model built from the A. racemosa one component
SIMCA reference model. Mass spectra (left) and
NMR spectra (right). A (red) A. racemosa, B (green)
A. cimicifuga, C (cyan) A. dahurica, D (magenta)
A. heracleifolia, E (black) commercial A. racemosa.
(Color figure available online only.)
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does not preclude the presence of A. racemosa extract in the sup-
plements.
DNA sequencing showed that four of the seven capsules con-
tained DNA from A. racemosa. One contained A. brachycarpa
DNA and two contained no Actaea DNA. Of the latter, one had no
DNA at all and the other had only rice DNA (Oryza sativa L.; Poa-
ceae), presumably from a rice excipient. Five of the seven showed
no indications of a mixture, indicating that the excipient was a
refined chemical component, such as a crystalline starch, with
no DNA present. None of the liquid supplements were subjected
to DNA sequencing as it was assumed there would be no DNA
present. These data suggest that a more rigorous metabolomics
study is necessary to verify the presence of specific A. racemosa
marker compounds in the supplements.
In summary, FIMS and NMR produced metabolic fingerprints
that were equally capable of discriminating between Actaea spe-
cies and authenticating A. racemosawhen looking at rawmateri-
als. DNA sequencing of the root materials could be used to iden-
tify species and was useful in validating anomalies in the clusters
observed by both metabolic fingerprinting methods. FIMS and
NMR detected differences between sources of samples of
A. racemosa, suggesting systematic geographical and/or pro-
cessing differences. All three methods demonstrated that none of
the tested commercially available root samples were A. racemosa.
FIMS and NMR fingerprints indicated that commercially available
supplements were not similar to any of the raw Actaeamaterials,
suggesting that preparation produced significantly different
metabolic profiles. DNA sequencing was successful for identifying
four of the seven supplements tested as A. racemosa. The others
were adifferent speciesorhadnoDNApresent. Receiveroperating
characteristic curves are useful for evaluating and optimizing au-
thenticationmodels of complex data sets.
Materials and Methods
!

Actaea samples
Root materials from various species of Actaea, some vouchered,
were collected from four reliable sources and from a variety of
commercial sources (l" Tables 1–4). The sources of samples were
the American Herbal Pharmacopoeia (AHP; samples BCR01 to
BCR24 in l" Table 1), Strategic Sourcing, Inc. (SSI; samples SS01
to SS07 in l" Table 2), The North Carolina Arboretum Germplasm
Repository (TNCAGR; samples NCC1, NCC2, and NC01 to NC22 in
l" Table 3), and the National Institutes of Standards and Technol-
ogy (NIST; samples SRM 3295, 3296, 3297, and 3298 in l" Table
2). Commercial root samples were purchased from the Internet
and local stores in China (samples CA01 to CA14 in l" Table 4).
Commercial liquid, tablet, and capsule supplements were pur-
chased from local stores in Maryland (CS01 to CS14). TNCAGR
samples were collected from the permanent national A. racemosa
germplasm collection in collaboration with the USDA NPGS (Na-
tional Plant Germplasm System).

DNA sequencing
All root materials and finished products were authenticated us-
ing validated DNA sequencing authentication methods for Actaea
[29] at AuthenTechnologies LLC. The methods utilized consisted
of the extraction of total genomic DNA using a modified silica-
spin column approach (Qiagen, Inc.). Next, the nuclear (ITS) and
chloroplast (psbA-trnH) genes validated by the National Institute
of Standards and Technology [29] for black cohosh identification
were amplified using a polymerase chain reaction (PCR) machine
using standard cycling parameters. The PCR products were visu-
alized using an E‑Gel (Invitrogen) apparatus and visualized using
a blue LED box. Positive PCR products were then sequenced on a
Sanger sequencing (capillary electrophoresis) machine (Applied
Biosystems). The resultant sequence from both the forward and
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262



Fig. 8 Influence plots of the A. racemosa SIMCA model with respect to different supplement forms. A (red) root, B (green) tablet, C (cyan) capsule, and
D (magenta) liquid. (Color figure available online only.)
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reverse directions was assembled into contigs. Overlapping bases
indicative of hybrids were scored using standard IUPAC codes.
The final assembled sequences were then aligned in a matrix by
eye and compared to reference sequences obtained from authen-
ticated herbarium vouchers for the target and closely related
nontarget species of Actaea.

Mass spectrometry sample preparation
Root samples were ground into fine powders. Ten mg of each
sample were mixed with 5mL of methanol-water (70–30, v/v) in
15mL centrifuge tubes and sonicated for 60min at room temper-
ature. The extracted samples were centrifuged at 5000 × g for
10min (IEC Clinical Centrifuge, Danon/IEC Division). The super-
natant was diluted 1 to 10 (v/v) with methanol and filtered
through a 17-mm (0.45 µm) PVDF syringe filter (VWR) prior to
injection. To avoid errors arising from unexpected degradation
of some compounds, the sample analysis was completed within
24 h of the extraction. Tablets were prepared the same as root
samples. Capsules were opened and the contents were emptied
onto a weighing paper. Ten mg were mixed with 5mL of metha-
nol-water (70–30, v/v) in a 15-mL centrifuge tube and then treat-
ed in the same manner as the root samples. Ten µL of liquid sup-
plement weremixedwith 5ml of methanol-water (70–30, v/v) in
a 15-mL centrifuge tube and then treated in the same manner as
the root samples.

Nuclear magnetic resonance sample preparation
Aliquots of the samples prepared in methanol-water for analysis
by FIMS were taken to dryness for transportation to the Bruker
Bio-Spin laboratory. Samples were prepared for NMR by dissolv-
ing 25mg of each dried sample in 1.0mL of DMSO-d6 containing
0.47mM DSS to provide a final concentration of 25mg/ml. Each
sample was vortexed for 1min and sonicated for 5min. The sam-
ples were then centrifuged for 15min at 13500 rpm (Eppendorf
5810 R, Eppendorf AG) to remove any undissolved materials.
Then, 600 µL of the supernatant was transferred to a 5-mm NMR
tube (Wilmad PP-5 and Bruker Z107374) for spectroscopy.
Harnly J et al. Comparison of Flow… Planta Med 2016; 82: 250–262
Mass spectrometry instrumentation
The FIMS system consisted of a Q Exactive mass spectrometer
(Thermo Fisher Scientific) with an Agilent 1200 HPLC system (a
quaternary pump with a vacuum degasser, a thermostated col-
umn compartment, an autosampler, and a diode array detector).
The flow injection used a guard column (Adsorbosphere All-
Guard Cartridge, C18, 5 µm, 4.6 × 7.5mm, Alltech Associates,
Inc.) to minimize potential contamination of the FIMS system.
Mobile phases consisted of 0.1% formic acid in H2O (A) and 0.1%
formic acid in acetonitrile (B) with isocratic elution at 50:50 (v/v)
at a flow rate of 0.5mL/min for 2min. Electrospray ionizationwas
performed in the negative ion mode from m/z 150–1500 to ob-
tain the FIMS fingerprints. The following conditions were used
for the mass spectrometer: sheath gas flow rate, 80 (arbitrary
units); aux gas flow rate, 10 (arbitrary units); spray voltage,
4.50 kV; heated capillary temperature, 220°C; capillary voltage,
4.0 V; tube lens offset, 25 V. The injection volume for all samples
was 10 µL.

Nuclear magnetic resonance instrumentation
All NMR experiments were performed with a Bruker AVANCE III
spectrometer (600.13MHz) at 298 K with a Bruker 5-mm TCI
CryoProbe. Spectra were collected using the software program
TopSpin 3.1 (Bruker BioSpin). One-dimensional proton nuclear
Overhauser effect spectroscopy with an inverse gated decoupling
pulse sequence (noesyigld1 d) using a base opt filter was per-
formed using 64 scans, four dummy scans, and 65536 data
points. A relaxation delay of 10 s with a mixing time of 0.01 sec-
onds was used to allow an acquisition time of 14min for each ex-
periment.

Sample analysis
The sequence of the samples was randomized for both FIMS and
NMR. For FIMS, each sample in l" Tables 1–4 (with the exception
of BCR21 which was not run) was run five times for a total of
1140 analyses. After running each sample once in random order,
a new random sequence of measurements was made. Spectra
were summed over the 1.0min interval from 0.5min to 1.5min
of the sample bolus.
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For NMR, each sample was run only once. Exceptions were BCR03
and BCR21, which were not run, and BCR02 and BCR16, which
were analyzed twice. Each of the second analyses was on a sepa-
rate day two weeks later to check for possible mislabeling of the
samples. This sampling provided a total of 130 analyses. The NMR
spectra were acquired from − 3.0 to 16.0 ppm, but only the region
from 0.5 to 9.0 ppmwas used in this study.

Mass spectrometry data processing
The FIMS fingerprints of each sample were mass spectra, i.e., ion
counts with respect to the mass-to-charge ratio for a range ofm/z
150 to 1500. The spectra were exported as Excel files (Microsoft,
Inc.) for data preprocessing and then imported into either Solo
(Eigenvector Research, Inc.), for principal component analysis
(PCA) and soft independent modeling of class analogy (SIMCA),
or to MATLAB 2014a (MathWorks) for classification and val-
idation studies.

Nuclear magnetic resonance data processing
The NMR fingerprints for each samplewere spectra, i.e., signal in-
tensity with respect to chemical shift from 0.5 ppm to 9.0 ppm.
The spectra were exported as Excel files and then imported into
Solo or MATLAB 2014a. Prior to preprocessing, the solvent peaks
were removed at 2.53 ppm (DMSO) and 3.19 ppm (methanol) by
excising the respective ranges 2.51–2.56 ppm and 3.18–3.21 ppm
from all of the spectra.

Chemometrics
The same processing was used for the FIMS and NMR data. The
spectra were normalized to unit vector length (i.e., the sum of
the squares of the data points for each spectrum was unity), au-
toscaled, and mean-centered prior to PCA or SIMCA.

Classifiers
There are two general types of classifiers: modeling (soft model-
ing or one-class classifiers) and classification (hard modeling or
multiclass classifiers). The first category comprised SIMCA [22]
and FOAM [23] and the latter comprised PLS‑DA [24] and FuRES
[25]. All four approaches (SIMCA, FOAM, PLS‑DA, and FuRES)
were applied to the data in this study.
SIMCA models were constrained to a single component. FOAM
was used with standard parameters for the fuzzy grid encoding.
The grid size was 100 and a 19-point triangular fuzzy member-
ship function was applied to the intensities of the FIMS and
NMR spectra. Both SIMCA and FOAM used the Q statistic to deter-
mine the fit to the model at a 95% confidence interval. A simple
empirical method set the boundary condition to distance that
would exclude 5% of the objects in the calibration set. FOAM,
however, uses an internal bootstrap Latin partition to determine
the average residual error for the objects in the calibration set.
The boundary conditionwas calculated from the average residual
errors. FOAM was later modified to estimate the error by parti-
tioning by sample as opposed to spectrum, because the internal
bootstrap was underestimating the error. A similar approach
could be used with SIMCA and the results would be similar. Note
that the internal bootstrap error estimation is only applied to the
training set of data.
A self-optimizing version of PLS‑DA was used. This method ap-
plies a bootstrap Latin partition [33] to the calibration data set
and determines the number of components (i.e., latent variables)
that minimizes the average prediction error across the boot-
straps. For all cases, the calibration data was divided into two
partitions and averaged ten times within the PLS‑DA computa-
tion. A model is constructed using the entire calibration data
with the number of components that achieved the lowest predic-
tion error. There are no adjustable parameters for FuRES, the soft-
ness of the model is determined by maximizing the magnitude of
the first derivative of the fuzzy entropy of classification with re-
spect to the computational temperature (i.e., discriminant vector
length).

Validation
The NMR data contained two samples for which repeat measure-
ments were made. For the sensitivity and specificity calculations,
the replicate samples that were collected last were removed from
the evaluation, so that each sample had only a single spectrum in
the data set. The FIMS data set had 81 samples while the NMR da-
ta set had 77 samples. The FIMS data set was reduced to the same
set of 77 samples that were measured by NMR. In addition, both
data sets were reduced to subsets of 20 samples that corre-
sponded to samples obtained from AHP. Validation was accom-
plished by partitioning the data by sample, so that all five repli-
cates of the same sample would be in either the calibration set or
prediction set. This mode allows the FIMS results to be compared
with the NMR results. In addition, this method is more rigorous
and assesses the performance to generalize to new samples,
which is most typically encountered in practical applications.
Prior to classification the principal component transform (PCT)
[34], which is a form of lossless compression, was applied to the
data to increase the speed for FuRES and PLS‑DA. For each boot-
strap, the principal components were constructed from the cali-
bration data, and then the prediction data were projected onto
those same components. The PCT was unnecessary for SIMCA
and FOAM because both of these methods are computationally
very fast.

Pooled analysis of variance
This method has been previously described [10]. In brief, classic
ANOVA is performed for every variable in the MS or NMR spectra
and the resulting ratios are pooled to obtain an overall F value.
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