J Neurol Surg A Cent Eur Neurosurg 2016; 77(04): 344-353
DOI: 10.1055/s-0035-1558821
Technical Note
Georg Thieme Verlag KG Stuttgart · New York

True Percutaneous Transforaminal Lumbar Interbody Fusion: Case Illustrations, Surgical Technique, and Limitations

Hasan Syed
1   Department of Neurological Surgery, Medstar Georgetown University Hospital, Washington, DC, United States
,
Jean-Marc Voyadzis
1   Department of Neurological Surgery, Medstar Georgetown University Hospital, Washington, DC, United States
› Author Affiliations
Further Information

Publication History

24 November 2014

15 May 2015

Publication Date:
20 August 2015 (online)

Abstract

Objective The last decade has seen significant advances in minimally invasive techniques for lumbar interbody fusion that have reduced approach-related morbidity. Percutaneous lumbar interbody fusion involves a posterior transforaminal approach to the disk space with a minimal access port through the Kambin triangle. This technique obviates the need for the facetectomy or laminectomy required in a traditional transforaminal approach. This article describes the surgical technique, potential advantages and limitations, and representative case illustrations.

Methods Percutaneous transforaminal interbody fusion was performed on two patients with axial back and leg pain as a result of degenerative disk disease. Diskectomy and interbody cage insertion were completed through a tubular dilator placed onto the disk space in the Kambin triangle. Posterior fixation was achieved with percutaneous transfacet screws. Clinical outcome and postoperative complications are discussed.

Results Both patients demonstrated significant clinical improvement after surgery with > 1 year follow-up despite experiencing transient neurologic symptoms.

Conclusion Although this report demonstrates the feasibility and advantages of the approach, the technique is limited by the potential for nerve root injury and pseudoarthrosis.

 
  • References

  • 1 Fritzell P, Hägg O, Wessberg P, Nordwall A ; Swedish Lumbar Spine Study Group. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine 2001; 26 (23) 2521-2532 ; discussion 2532–2534
  • 2 Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine 2003; 28 (15, Suppl): S26-S35
  • 3 German JW, Foley KT. Minimal access surgical techniques in the management of the painful lumbar motion segment. Spine 2005; 30 (16, Suppl): S52-S59
  • 4 Khoo LT, Palmer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery 2002; 51 (5, Suppl): S166-S1
  • 5 Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 1999; 24 (10) 1023-1028
  • 6 Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 2005; 18 (Suppl): S1-S6
  • 7 Isaacs RE, Podichetty VK, Santiago P , et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 2005; 3 (2) 98-105
  • 8 Capener N. Spondylolisthesis. Br J Surg 1932; 19: 374-386
  • 9 Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 1953; 10 (2) 154-168
  • 10 Ray CD. Threaded titanium cages for lumbar interbody fusions. Spine 1997; 22 (6) 667-679; discussion 679–680
  • 11 Harms J, Rolinger H. A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion [author's translation]. Z Orthop Ihre Grenzgeb 1982; 120 (3) 343-347
  • 12 Datta G, Gnanalingham KK, Peterson D , et al. Back pain and disability after lumbar laminectomy: is there a relationship to muscle retraction?. Neurosurgery 2004; 54 (6) 1413-1420 ; discussion 1420
  • 13 Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine 1996; 21 (8) 941-944
  • 14 Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 1994; 19 (22) 2598-2602
  • 15 Mayer TG, Vanharanta H, Gatchel RJ , et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine 1989; 14 (1) 33-36
  • 16 Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 1993; 18 (5) 575-581
  • 17 Styf JR, Willén J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine 1998; 23 (3) 354-358
  • 18 Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 2006; 31 (6) 712-716
  • 19 Kambin P, Sampson S. Posterolateral percutaneous suction-excision of herniated lumbar intervertebral discs. Report of interim results. Clin Orthop Relat Res 1986; 207 (207) 37-43
  • 20 Morgenstern R, Morgenstern C. Endoscopically assisted transforaminal percutaneous lumbar interbody fusion. In: Lewandrowski KU, Lee SH, Iprenburg M, , eds. Endoscopic Spinal Surgery. London, UK: JP Medical; 2013: 129-134
  • 21 Su BW, Cha TD, Kim PD , et al. An anatomic and radiographic study of lumbar facets relevant to percutaneous transfacet fixation. Spine 2009; 34 (11) E384-E390
  • 22 Voyadzis JM, Anaizi AN. Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech 2013; 26 (2) 98-106
  • 23 Moskowitz A. Transforaminal lumbar interbody fusion. Orthop Clin North Am 2002; 33 (2) 359-366
  • 24 Rosenberg WS, Mummaneni PV. Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 2001; 48 (3) 569-574; discussion 574–575
  • 25 Foley K, Smith M. Microendoscopic discectomy. Tech Neurosurg 1997; 3: 301-307
  • 26 Scheufler KM, Dohmen H, Vougioukas VI. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 2007; 60 (4) (Suppl. 02) 203-212 ; discussion 212–213
  • 27 Ghahreman A, Ferch RD, Rao PJ, Bogduk N. Minimal access versus open posterior lumbar interbody fusion in the treatment of spondylolisthesis. Neurosurgery 2010; 66 (2) 296-304 ; discussion 304
  • 28 Zairi F, Arikat A, Allaoui M, Assaker R. Transforaminal lumbar interbody fusion: comparison between open and mini-open approaches with two years follow-up. J Neurol Surg A Cent Eur Neurosurg 2013; 74 (3) 131-135
  • 29 Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 2006; 6 (4) 435-443
  • 30 Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C. Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 2012; 21 (Suppl. 01) S37-S42
  • 31 Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 2010; 35 (26, Suppl): S331-S337
  • 32 Ozgur BM, Agarwal V, Nail E, Pimenta L. Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J 2010; 4 (2) 41-46
  • 33 Rodgers WB, Cox C, Gerber EJ. Experience and early results with a minimally invasive technique for anterior column support through extreme lateral interbody fusion (XLIF). US Musculoskelet Rev 2007; 2: 28-32
  • 34 Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive anterior lumbar interbody fusion: analysis of extreme lateral interbody fusion by computed tomography. SAS J 2010; 4 (2) 63-66
  • 35 Youssef JA, McAfee PC, Patty CA , et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine 2010; 35 (26, Suppl): S302-S311
  • 36 Krishna M, Pollock RD, Bhatia C. Incidence, etiology, classification, and management of neuralgia after posterior lumbar interbody fusion surgery in 226 patients. Spine J 2008; 8 (2) 374-379
  • 37 Okuda S, Miyauchi A, Oda T, Haku T, Yamamoto T, Iwasaki M. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 2006; 4 (4) 304-309
  • 38 Barnes B, Rodts Jr GE, Haid Jr RW, Subach BR, McLaughlin MR. Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery 2002; 51 (5) 1191-1198 ; discussion 1198
  • 39 Schizas C, Tzinieris N, Tsiridis E, Kosmopoulos V. Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop 2009; 33 (6) 1683-1688
  • 40 Habib A, Smith ZA, Lawton CD, Fessler RG. Minimally invasive transforaminal lumbar interbody fusion: a perspective on current evidence and clinical knowledge. Minim Invasive Surg 2012; 2012: 657342
  • 41 Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine 2013; 18 (3) 289-297
  • 42 Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD. Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine 2012; 17 (3) 227-231
  • 43 Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 2011; 15 (1) 11-18
  • 44 Le TV, Burkett CJ, Deukmedjian AR, Uribe JS. Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine 2013; 38 (1) E13-E20
  • 45 Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 2009; 10 (2) 139-144
  • 46 Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 2011; 20 (4) 550-556
  • 47 Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 2010; 23 (4) 223-228
  • 48 Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 2010; 13 (2) 260-266
  • 49 Wang MY. Improvement of sagittal balance and lumbar lordosis following less invasive adult spinal deformity surgery with expandable cages and percutaneous instrumentation. J Neurosurg Spine 2013; 18 (1) 4-12
  • 50 Pajewski TN, Arlet V, Phillips LH. Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur Spine J 2007; 16 (2) (Suppl. 02) S115-S129
  • 51 Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine 2004; 29 (6) 677-684
  • 52 Rodgers WB, Cox C, Gerber E. Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. Internet J Minimally Invasive Spine Technol 2009; 3 (4) . Available at: https://ispub.com/IJMIST/3/4/7005
  • 53 Singh K, Smucker JD, Gill S, Boden SD. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years. J Spinal Disord Tech 2006; 19 (6) 416-423
  • 54 Haid Jr RW, Branch Jr CL, Alexander JT, Burkus JK. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 2004; 4 (5) 527-538 ; discussion 538–539
  • 55 Mummaneni PV, Pan J, Haid RW, Rodts GE. Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 2004; 1 (1) 19-23
  • 56 Chen NF, Smith ZA, Stiner E, Armin S, Sheikh H, Khoo LT. Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. J Neurosurg Spine 2010; 12 (1) 40-46
  • 57 Voyadzis JM. The learning curve in minimally invasive spine surgery. Semin Spine Surg 2011; 23 (1) 9-13
  • 58 Ferrara LA, Secor JL, Jin BH, Wakefield A, Inceoglu S, Benzel EC. A biomechanical comparison of facet screw fixation and pedicle screw fixation: effects of short-term and long-term repetitive cycling. Spine 2003; 28 (12) 1226-1234
  • 59 Mahar A, Kim C, Oka R , et al. Biomechanical comparison of a novel percutaneous transfacet device and a traditional posterior system for single level fusion. J Spinal Disord Tech 2006; 19 (8) 591-594
  • 60 Eskander M, Brooks D, Ordway N, Dale E, Connolly P. Analysis of pedicle and translaminar facet fixation in a multisegment interbody fusion model. Spine 2007; 32 (7) E230-E235
  • 61 Agarwala A, Bucklen B, Muzumdar A, Moldavsky M, Khalil S. Do facet screws provide the required stability in lumbar fixation? A biomechanical comparison of the Boucher technique and pedicular fixation in primary and circumferential fusions. Clin Biomech (Bristol, Avon) 2012; 27 (1) 64-70