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Abstract An enantioselective preparation of O-acetylcyanohydrins has
been accomplished by a three-step telescoped continuous process. The
modular components enabled an accurate control of two sequential
biotransformations, safe handling of an in situ generated hazardous gas,
and in-line stabilization of products. This method proved to be advanta-
geous over the batch protocols in terms of reaction time (40 min vs 345
min) and ease of operation, opening up access to reactions which have
often been neglected due to safety concerns.
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Biocatalysis has been gaining in popularity over the past
few years as a practical and more sustainable alternative to
conventional synthetic methods,3 especially where chemo-,
regio- and stereoselectivity are key issues.4 However, bio-
catalytic multistep approaches to chiral fine chemicals are
still rare.5 This is partially due to the high demands of ap-
propriate reaction parameters for different enzymes, which
can be difficult to implement on scale. Recently, continuous
processing technologies have been shown to be a powerful
concept in order to tune reaction conditions in a very pre-
cise manner,6 enhance the sustainability and facilitate the
scale-up of the chemical processes involving hazardous re-
agents.7 This becomes even more important during those
multistep approaches, where the use of modular compo-
nents for the downstream processing together with auto-
mated in-line analytics allow the control and coordination
of all the stages of the processes.7b,8 In spite of these advan-
tages, surprisingly few applications to multistep biocatalyt-

ic strategies in flow9 have been reported so far in contrast
to discrete single-step biotransformations.10 The applica-
tion of hydroxynitrile lyases (HNLs) to access chiral cyano-
hydrins from aldehydes or ketones and HCN has a long tra-
dition in bioorganic chemistry as well as for the production
of respective intermediates for synthesis.11 Over the last
few years, the (R)-selective hydroxynitrile lyase from Arabi-
dopsis thaliana AtHNL has been characterized thoroughly
with respect to its application for the preparation of chiral
cyanohydrins.12 The crucial reaction parameters affecting
its activity and enantioselectivity have been identified,
with a special regard to the pH, the temperature and the
amount of water in the reaction medium.13 Despite the im-
portance of the biocatalyzed hydrocyanation for the prepa-
ration of optically pure amino alcohols as chiral building
blocks,14 this reaction still suffers from safety limitations
related to the handling of the toxic and volatile hydrogen
cyanide (HCN).15 Some HCN surrogates are under investiga-
tion, among which are trialkylsilyl cyanide,16 acetone cy-
anohydrin,17 diethyl cyanophosphonate,18 benzoyl cya-
nide,19 and acyl cyanide.20 A relatively cheap and less toxic
cyanide source, ethyl cyanoformate (ECF), has enjoyed
some successes in asymmetric cyanation of aldehydes, ke-
tones, imines and olefins.21 To the best of our knowledge no
biocatalyzed hydrolysis of ECF has been reported in litera-
ture so far. Thus, we decided to test the efficiency of differ-
ent commercially available lipases for this transformation,
and found that CalB immobilized on acrylic resin (Novo-
zyme 435) in methyl tert-butyl ether (MTBE) showed the
best efficiency for this transformation.22 A packed-bed reac-
tor, PBR (microbore column 3 mm/100 mm), equipped with
a back pressure regulator (5 bar), containing different
amounts of CalB, was fed with a 1 M solution of ECF in
MTBE (Scheme 1).
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Scheme 1  Flow set-up of ECF hydrolysis

By adding a very small amount of ethanol or a potassi-
um phosphate buffer solution (Kpi, pH 6.5) to the reaction
medium, almost complete ECF hydrolysis (95–97%) could
be achieved with a residence time of 17.5 minutes (Table 1,
entries 4 and 5, see SI for details). Under these conditions
the CalB-flow reactor was able to convert continuously 6.6
mmol of ECF in 120 minutes. Although a micro-aqueous
system improved the ECF hydrolysis, it is noteworthy that
in the absence of CalB only a small amount of ECF (≤5%) was
converted to HCN.

Table 1  Optimization of the reaction parameters for the ECF hydroly-
sis in the flow set-up

Pleasingly, impressive system stability was observed
when a 1 M solution of ECF in micro-aqueous MTBE was
passed (0.04 mL/min) through the CalB-reactor, showing
only minor inactivation of the biocatalyst from 97% after
one hour to 80% after eight hours of continuous operation
(see SI for details).

When the same biotransformation was carried out in
batch mode in a screw-cap equipped glass vial (4 mL) a re-
action time of 120 minutes was necessary to hydrolyze 1
mmol of ECF quantitatively in the presence of 40 mg of No-
vozyme 453 (Figure 1, a), and a modest lifetime was ob-
served, with a 30% decrease in activity during the fourth cy-
cle (Figure 1, b).

This new in situ generation of HCN opens up further op-
portunities to use this hazardous reagent for reactions
which have often been neglected owing to safety reasons.
Recently, the flow preparation of protected mandelonitrile
derivatives by integrating an enzymatic step in aqueous
media with a chemical reaction in an organic solvent was
reported.23 However, the use of KCN as HCN source, lack of

biocatalyst recycling, and solvent switching were problem-
atic, despite this being an attractive application of flow
chemistry. With the aim of improving this approach, we de-
cided to use the HCN-containing solution derived from the
CalB-catalyzed reaction in a second AtHNL-catalyzed addi-
tion of HCN to aldehydes in a linked multistep flow process.
Initial experiments were performed in a closed sample vial
equipped with 25 mg of AtHNL immobilized on celite
(celite-AtHNL, 6.2 mg of pure enzyme). A mixture of benz-
aldehyde (0.5 M) and HCN solution (1.5 M) in micro-aque-
ous MTBE was introduced into the vial and stirred at room
temperature, affording after 125 minutes (R)-mandeloni-
trile with high conversion (99%) and high ee (98%; see SI for
more details). Similar reaction conditions were applied in a
flow system equipped with a packed bed reactor (micro-
bore column 3 mm/50 mm) containing AtHNL immobilized
on celite (Scheme 2).

Scheme 2  Flow set-up of celite-AtHNL catalyzed synthesis of (R)-man-
delonitrile

The effect of the residence time and the amount of the
biocatalyst were considered, changing respectively the
length of the reactor (l) and the amount of biocatalyst.
When the residence time was increased a good ee and a sat-
isfactory conversion was observed (Table 2, entry 3). How-
ever, doubling the quantity of biocatalyst resulted in a ben-
eficial effect, achieving good conversion and very high ee
values (Table 2, entry 4).

With these very promising data in hand, we attempted
to develop a coupled process, assembling the two biotrans-
formations consecutively in a continuous flow set-up. A
solution of ECF (1 M in micro-aqueous MTBE) was pumped
(0.04 mL/min) into a 10 cm PBR containing 277 mg of CalB.
The output of this first PBR, consisting of a 1 M solution of

Entry Flow rate (mL/min) CalB (mg) Conv. (%)a

1 0.15  34 55b

2 0.05  34 56b

3 0.04 277 84c

4 0.04 277 95d

5 0.04 277 97e

a The conversion was calculated by GC analysis checking for the ECF deple-
tion (see SI for details).
b A mixture of Novozyme 453 and celite was used to fill the reactor.
c Anhydrous MTBE was used.
d A mixture of MTBE/EtOH (3:1) was used.
e Micro-aqueous MTBE, prepared as described in SI, was used.
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Figure 1  (a) CalB-catalyzed hydrolysis of ECF in a sample vial over time. 
Reaction conditions: a mixture of Novozyme 435 (40 mg) and ECF (1 
mmol) in 1 mL of micro-aqueous MTBE was stirred at room tempera-
ture (b) Study on the recyclability of a Novozyme 435-containing ‘tea-
bag’ over four consecutive cycles (see SI for details).
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HCN, was mixed with a 0.5 M solution of benzaldehyde in
micro-aqueous MTBE (0.04 mL/min) by means of a tee
piece assembly. The resulting mixture was passed through a
second reactor (5 cm), containing 100 mg of celite-AtHNL
and equipped with a back pressure regulator to keep the
entire system pressurized at 5 bar (Scheme 3). As a proof of
concept, (R)-mandelonitrile 2a was successfully obtained in
very good conversion (97%) and excellent ee (99%).

Scheme 3  Synthesis of (R)-mandelonitrile by a two-step biotransfor-
mation (Novozyme-celite-AtHNL)

Although this two-step biocatalytic approach showed
persuasive advantages, the expensive and time-consuming
purification of isolated enzymes could become an issue, es-
pecially during scale-up. The application of recombinant
whole-cells as alternative biocatalyst appears more appeal-
ing in biotransformations, since no enzyme purification is
needed, and, typically, the microorganisms present a high
operational stability.24 The use of wild-type AtHNL-ex-
pressing E. coli BL21 (DE3) cells as whole-cell biocatalyst for
the synthesis of chiral cyanohydrins has been investigated
in detail by our group, demonstrating their efficiency and
extreme stability in the same micro-aqueous reaction sys-
tem as used in this study.12d We therefore studied AtHNL-
expressing E. coli cells as biocatalyst in our two-step cas-
cade synthesis of (R)-mandelonitrile, employing a PBR (10
cm) containing 250 mg of lyophilized cells (Scheme 4; see
SI for details). According to this protocol, the desired (R)-
mandelonitrile could be obtained in high conversion (99%)
and in very good ee (95%).

Although this new biocatalytic tactic in flow is very
promising, the well-known instability of cyanohydrins at
neutral to alkaline pH and at room temperature needed to

be addressed. The advantageous modularity of the flow sys-
tem allowed us to perform an in-line protection of the new-
ly formed cyanohydrins, as a three-step process. The new
flow configuration consisted of two consecutive PBRs, con-
taining Novozyme 435 and E. coli-AtHNL, respectively, a
back-pressure regulator (5 bar) and a 2.0 mL PTFE coil for
acetylation of the formed cyanohydrin (Scheme 5).

Scheme 5  Three-step chemo-biocatalytic cascade towards O-protect-
ed chiral cyanohydrins

This flow system was shown to be robust and applicable
to a range of O-acetylcyanohydrins,25 both electron-rich
(3c) and electron-poor (3f), with high conversions over
three steps (75–99%, Scheme 5, conversion has been deter-
mined by 1H NMR).

In conclusion, the advantages of the continuous flow
technology have been explored with regard to a novel or-
thogonal biocatalytic approach. CalB and AtHNL were em-
ployed in a robust continuous telescoped process, involving
an in situ HCN generation followed by addition to alde-

Table 2  Optimization of the reaction parameters for the celite-AtHNL-
Novozyme 435 catalyzed synthesis of (R)-mandelonitrile in the flow set-up

Entry l (cm) flow rate 
(mL/min)

Celite-AtHNL (mg) Conv.a (%) ee (%)

1 2.5 0.02  50b 33 93

2 2.5 0.04  50b 20 93

3 5.0 0.04  50c 74 88

4 5.0 0.04 100b 85 96
a Determined by 1H NMR.
b Celite-AtHNL was used to fill the PBR.
c A mixture of celite-AtHNL (50 mg) and pure celite (50 mg) was used to fill 
the PBR.
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Scheme 4  Synthesis (R)-mandelonitrile by a two-step biotransforma-
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hydes. High stereocontrol was observed in the subsequent
hydrocyanation reaction. An in-line chemical acetylation
enabled stabilization of newly formed cyanohydrins, giving
access to a class of O-acetylcyanohydrins with very good
conversions and ee values over three steps (75–99% conver-
sion; 40–98% ee). The remarkable efficiency of whole re-
combinant cells as biocatalysts opens up further opportuni-
ties to more complex transformations, involving a combina-
tion of enzymes in flow reactor systems.
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