Semin Neurol 2018; 38(01): 062-072
DOI: 10.1055/s-0037-1620274
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Concepts for Immunotherapies in Gliomas

Michael Platten
1   Department of Neurology, University of Heidelberg, Mannheim Medical Center, Mannheim, Germany
2   CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
,
David A. Reardon
3   Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2018 (online)

Abstract

Strategies to empower the immune system to successfully attack cancers, including vaccination approaches, adaptive T cell therapies, and immune checkpoint modulators, have recently achieved remarkable success across a spectrum of cancer indications. Nonetheless, with rare exception, only a minority of patients with a given type of cancer respond to an immunotherapeutic when administered as single-agent therapy. Although under extensive laboratory and clinical investigation, the role of these approaches for glioma patients remains to be determined. While the central nervous system (CNS) is no longer regarded as an immunoprivileged sanctuary, nuances regarding immune responses in the CNS may impact on the activity of immunotherapy treatments of brain tumor patients. Furthermore, many common CNS tumors such as World Health Organization grade III and IV (high grade) gliomas utilize myriad, nonoverlapping strategies to dampen or extinguish antitumor immune responses. For these reasons, critical research efforts are focused on identifying biomarkers that predict patients with a heightened likelihood of therapeutic benefit as well as evaluating rationally designed combinatorial immunotherapy approaches with potentially complementary mechanisms of immune-activation for brain cancer patients.

 
  • References

  • 1 Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015; 15 (09) 545-558
  • 2 Höftberger R, Rosenfeld MR, Dalmau J. Update on neurological paraneoplastic syndromes. Curr Opin Oncol 2015; 27 (06) 489-495
  • 3 Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci 2012; 15 (08) 1096-1101
  • 4 Bauer J, Gold R, Adams O, Lassmann H. Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS). Acta Neuropathol 2015; 130 (06) 751-764
  • 5 Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 2017; 20 (02) 136-144
  • 6 Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J. Myeloid cells in the central nervous system. Immunity 2017; 46 (06) 943-956
  • 7 Dubinski D, Wölfer J, Hasselblatt M. , et al. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 2016; 18 (06) 807-818
  • 8 Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31 (03) 326-341
  • 9 Platten M, Ochs K, Lemke D, Opitz C, Wick W. Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep 2014; 14 (04) 440
  • 10 Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100 (1-2): 216-232
  • 11 Fontana A, Frei K, Bodmer S. , et al. Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice. J Immunol 1989; 143 (10) 3230-3234
  • 12 Brandes AA, Carpentier AF, Kesari S. , et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 2016; 18 (08) 1146-1156
  • 13 Bogdahn U, Hau P, Stockhammer G. , et al; Trabedersen Glioma Study Group. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 2011; 13 (01) 132-142
  • 14 Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 2012; 72 (21) 5435-5440
  • 15 Opitz CA, Wick W, Steinman L, Platten M. Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci 2007; 64 (19-20): 2542-2563
  • 16 Sahm F, Oezen I, Opitz CA. , et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 2013; 73 (11) 3225-3234
  • 17 Opitz CA, Litzenburger UM, Sahm F. , et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478 (7368): 197-203
  • 18 Wainwright DA, Balyasnikova IV, Chang AL. , et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 2012; 18 (22) 6110-6121
  • 19 Litzenburger UM, Opitz CA, Sahm F. , et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 2014; 5 (04) 1038-1051
  • 20 Pilotte L, Larrieu P, Stroobant V. , et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012; 109 (07) 2497-2502
  • 21 Roth-Walter F, Bergmayr C, Meitz S. , et al. Janus-faced acrolein prevents allergy but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: mouse model for passive respiratory exposure. Sci Rep 2017; 7: 45067
  • 22 Kamran N, Chandran M, Lowenstein PR, Castro MG. Immature myeloid cells in the tumor microenvironment: implications for immunotherapy. Clin Immunol 2016; S1521-6616(16)30518-6
  • 23 Platten M, Kretz A, Naumann U. , et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 2003; 54 (03) 388-392
  • 24 Pyonteck SM, Akkari L, Schuhmacher AJ. , et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19 (10) 1264-1272
  • 25 Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain 2017; 140 (06) 1548-1560
  • 26 Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5 (01) 3-8
  • 27 Kim YH, Jung TY, Jung S. , et al. Tumour-infiltrating T-cell subpopulations in glioblastomas. Br J Neurosurg 2012; 26 (01) 21-27
  • 28 Kmiecik J, Poli A, Brons NH. , et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol 2013; 264 (1-2): 71-83
  • 29 Donson AM, Birks DK, Schittone SA. , et al. Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J Immunol 2012; 189 (04) 1920-1927
  • 30 Sawamura Y, Hosokawa M, Kuppner MC. , et al. Antitumor activity and surface phenotypes of human glioma-infiltrating lymphocytes after in vitro expansion in the presence of interleukin 2. Cancer Res 1989; 49 (07) 1843-1849
  • 31 Lowther DE, Goods BA, Lucca LE. , et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 2016; 1 (05) e85935
  • 32 Jacobs JF, Idema AJ, Bol KF. , et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 2010; 225 (1-2): 195-199
  • 33 Lohr J, Ratliff T, Huppertz A. , et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 2011; 17 (13) 4296-4308
  • 34 Maes W, Verschuere T, Van Hoylandt A, Boon L, Van Gool S. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain. Clin Dev Immunol 2013; 2013: 952469
  • 35 Mathews VP, Alo PL, Glass JD, Kumar AJ, McArthur JC. AIDS-related CNS cryptococcosis: radiologic-pathologic correlation. AJNR Am J Neuroradiol 1992; 13 (05) 1477-1486
  • 36 Sampson JH, Schmittling RJ, Archer GE. , et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 2012; 7 (02) e31046
  • 37 Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of malignant tumors in the brain: how different from other sites?. Front Oncol 2016; 6: 256
  • 38 Dutoit V, Herold-Mende C, Hilf N. , et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 2012; 135 (Pt 4): 1042-1054
  • 39 Morgan RA, Chinnasamy N, Abate-Daga D. , et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36 (02) 133-151
  • 40 Platten M, Offringa R. Cancer immunotherapy: exploiting neoepitopes. Cell Res 2015; 25 (08) 887-888
  • 41 Rampling R, Peoples S, Mulholland PJ. , et al. A Cancer Research UK first time in human phase I trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016; 22 (19) 4776-4785
  • 42 Congdon KL, Gedeon PC, Suryadevara CM. , et al. Epidermal growth factor receptor and variant III targeted immunotherapy. Neuro Oncol 2014; 16 (Suppl. 08) viii20-5
  • 43 Sampson JH, Archer GE, Mitchell DA. , et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2009; 8 (10) 2773-2779
  • 44 Sampson JH, Heimberger AB, Archer GE. , et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28 (31) 4722-4729
  • 45 van den Bent MJ, Gao Y, Kerkhof M. , et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 2015; 17 (07) 935-941
  • 46 Hartmann C, Meyer J, Balss J. , et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118 (04) 469-474
  • 47 Yan H, Parsons DW, Jin G. , et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (08) 765-773
  • 48 Schumacher T, Bunse L, Pusch S. , et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014; 512 (7514): 324-327
  • 49 Rajasagi M, Shukla SA, Fritsch EF. , et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 2014; 124 (03) 453-462
  • 50 Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29 (11) 550-557
  • 51 Rosenberg SA, Packard BS, Aebersold PM. , et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319 (25) 1676-1680
  • 52 Dudley ME, Yang JC, Sherry R. , et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26 (32) 5233-5239
  • 53 Thomas S, Stauss HJ, Morris EC. Molecular immunology lessons from therapeutic T-cell receptor gene transfer. Immunology 2010; 129 (02) 170-177
  • 54 Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989; 86 (24) 10024-10028
  • 55 Savoldo B, Ramos CA, Liu E. , et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121 (05) 1822-1826
  • 56 Carpenito C, Milone MC, Hassan R. , et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 2009; 106 (09) 3360-3365
  • 57 Brentjens RJ, Rivière I, Park JH. , et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118 (18) 4817-4828
  • 58 Garrido F, Ruiz-Cabello F, Cabrera T. , et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 1997; 18 (02) 89-95
  • 59 Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest 2015; 125 (09) 3392-3400
  • 60 Maude SL, Frey N, Shaw PA. , et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371 (16) 1507-1517
  • 61 Grupp SA, Kalos M, Barrett D. , et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368 (16) 1509-1518
  • 62 Turtle CJ, Hanafi LA, Berger C. , et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126 (06) 2123-2138
  • 63 Kong S, Sengupta S, Tyler B. , et al. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res 2012; 18 (21) 5949-5960
  • 64 Johnson LA, Scholler J, Ohkuri T. , et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015; 7 (275) 275ra22
  • 65 Sampson JH, Choi BD, Sanchez-Perez L. , et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 2014; 20 (04) 972-984
  • 66 Choi BD, Suryadevara CM, Gedeon PC. , et al. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J Clin Neurosci 2014; 21 (01) 189-190
  • 67 Morgan RA, Johnson LA, Davis JL. , et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther 2012; 23 (10) 1043-1053
  • 68 Ahmed N, Salsman VS, Kew Y. , et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 2010; 16 (02) 474-485
  • 69 O'Rourke DM, Nasrallah MP, Desai A. , et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9 (399) eaaa0984
  • 70 Brown CE, Alizadeh D, Starr R. , et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016; 375 (26) 2561-2569
  • 71 Sotillo E, Barrett DM, Black KL. , et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015; 5 (12) 1282-1295
  • 72 Hegde M, Mukherjee M, Grada Z. , et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 2016; 126 (08) 3036-3052
  • 73 Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995; 182 (02) 459-465
  • 74 Freeman GJ, Long AJ, Iwai Y. , et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192 (07) 1027-1034
  • 75 Dong H, Strome SE, Salomao DR. , et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8 (08) 793-800
  • 76 Berghoff AS, Kiesel B, Widhalm G. , et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 2015; 17 (08) 1064-1075
  • 77 Nduom EK, Wei J, Yaghi NK. , et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 2016; 18 (02) 195-205
  • 78 Ahmadzadeh M, Johnson LA, Heemskerk B. , et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114 (08) 1537-1544
  • 79 Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol 2015; 33 (17) 1974-1982
  • 80 Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27 (04) 450-461
  • 81 Schadendorf D, Hodi FS, Robert C. , et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015; 33 (17) 1889-1894
  • 82 Ansell SM, Lesokhin AM, Borrello I. , et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372 (04) 311-319
  • 83 Brahmer JR, Tykodi SS, Chow LQ. , et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366 (26) 2455-2465
  • 84 Topalian SL, Hodi FS, Brahmer JR. , et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366 (26) 2443-2454
  • 85 Herbst RS, Soria JC, Kowanetz M. , et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515 (7528): 563-567
  • 86 Garon EB, Rizvi NA, Hui R. , et al; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372 (21) 2018-2028
  • 87 Van Allen EM, Miao D, Schilling B. , et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015; 350 (6257): 207-211
  • 88 Rizvi NA, Hellmann MD, Snyder A. , et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348 (6230): 124-128
  • 89 Reardon DA, Gokhale PC, Klein SR. , et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 2016; 4 (02) 124-135
  • 90 Zeng J, See AP, Phallen J. , et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 2013; 86 (02) 343-349
  • 91 Wainwright DA, Chang AL, Dey M. , et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20 (20) 5290-5301
  • 92 Antonios JP, Soto H, Everson RG. , et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 2017; 19 (06) 796-807
  • 93 Fecci PE, Ochiai H, Mitchell DA. , et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007; 13 (07) 2158-2167
  • 94 Reardon DA, De Groot JF, Colman H. , et al. Safety of Pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). Paper presented at: 2016 American Society of Clinical Oncology Annual Meeting2016; Chicago
  • 95 Reardon DA, Kaley T, Dietrich J. , et al. Phase 2 study to evaluate the clinical efficacy and safety of MEDI4736 (durvalumab [DU]) in patients with glioblastoma (GBM): results for cohort B (DUR monotherapy), bevacizumab naive patients with recurrent GBM. Paper presented at: 21st Annual Meeting of the Society for Neuro-Oncology2016; Scottsdale, Arizona
  • 96 Reardon DA, Sampson JH, Sahebjam S. , et al. Safety and activity of nivolumab (nivo) monotherapy in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): Updated results from Checkmate 143. Paper presented at: 2016 American Society for Clinical Oncology Annual Meeting2016; Chicago, IL
  • 97 Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol 2016; 17 (12) e529-e541
  • 98 Okada H, Weller M, Huang R. , et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 2015; 16 (15) e534-e542
  • 99 Reardon DA, Omuro A, Brandes AA. , et al. Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: Checkmate 143. Paper presented at: 5th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies (WFNOS)2017; Zurich, Switzerland
  • 100 Bouffet E, Larouche V, Campbell BB. , et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016; 34 (19) 2206-2211
  • 101 Johanns TM, Miller CA, Dorward IG. , et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 2016; 6 (11) 1230-1236
  • 102 Rutledge WC, Kong J, Gao J. , et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 2013; 19 (18) 4951-4960
  • 103 Gabrusiewicz K, Rodriguez B, Wei J. , et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 2016; 1 (02) e85841
  • 104 Wei J, Barr J, Kong LY. , et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 2010; 9 (01) 67-78
  • 105 Roth P, Mittelbronn M, Wick W, Meyermann R, Tatagiba M, Weller M. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 2007; 67 (08) 3540-3544
  • 106 Hishii M, Nitta T, Ishida H. , et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995; 37 (06) 1160-1166 , discussion 1166–1167
  • 107 Fontana A, Hengartner H, de Tribolet N, Weber E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol 1984; 132 (04) 1837-1844
  • 108 Wrann M, Bodmer S, de Martin R. , et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 1987; 6 (06) 1633-1636
  • 109 Alterman RL, Stanley ER. Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol 1994; 21 (2-3): 177-188
  • 110 Gabrilovich DI, Chen HL, Girgis KR. , et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996; 2 (10) 1096-1103
  • 111 Wei J, Wu A, Kong LY. , et al. Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 2011; 6 (01) e16195
  • 112 Sukumar M, Roychoudhuri R, Restifo NP. Nutrient competition: a new axis of tumor immunosuppression. Cell 2015; 162 (06) 1206-1208
  • 113 Pilon-Thomas S, Kodumudi KN, El-Kenawi AE. , et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 2016; 76 (06) 1381-1390
  • 114 Gustafson MP, Lin Y, New KC. , et al. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol 2010; 12 (07) 631-644
  • 115 Lee EQ, Wen PY. Corticosteroids for peritumoral edema: time to overcome our addiction?. Neuro-oncol 2016; 18 (09) 1191-1192
  • 116 Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013; 105 (04) 256-265
  • 117 Zamarin D, Holmgaard RB, Subudhi SK. , et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6 (226) 226ra32
  • 118 Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31: 51-72
  • 119 Karyampudi L, Lamichhane P, Scheid AD. , et al. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res 2014; 74 (11) 2974-2985
  • 120 Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res 2014; 74 (15) 4042-4052
  • 121 Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 2006; 116 (07) 1935-1945
  • 122 Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 2013; 73 (10) 2943-2948
  • 123 Tartour E, Pere H, Maillere B. , et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011; 30 (01) 83-95