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PCSK9, LipidMetabolism and Cardiovascular
Risk

Cholesterol is transported in the bloodstream by lipoprotein
particles. The two major cholesterol-carrying lipoproteins
are low-density lipoproteins (LDLs) and high-density lipo-
proteins (HDLs). LDLs, whose main protein fraction is apo-
lipoprotein B100, transport cholesterol from the liver to

peripheral tissues, including the arterial walls.1 LDLs are a
major determinant of atherosclerosis, and both American
and European guidelines recommend specific LDL threshold
reductions to prevent cardiovascular events.2 On the other
hand, HDLs,whosemain protein fraction is apolipoprotein A-
I, transport cholesterol from peripheral tissues to the liver,
facilitating its clearance.3 Circulating cholesterol levels are
regulated by the balance between their biosynthesis and
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Abstract Since increased cholesterol levels are crucial in determining the development of
atheroma, their reduction represents a mainstay in primary and secondary cardiovas-
cular prevention. The most recent spectacular advancement in cholesterol-lowering
therapy is represented by proprotein convertase subtilisin/kexin type-9 (PCSK9)
inhibitors. Although their benefit over currently available treatments has been ascribed
primarily to their strong low-density lipoprotein (LDL)-cholesterol reducing action,
several clues suggest that PCSK9 inhibitors may also influence platelet function and
blood coagulation. PCSK9 knockout mice develop less venous and arterial thrombosis
and show reduced in vivo platelet activation upon arterial injury. In patients with acute
coronary syndromes (ACSs) treated with P2Y12 inhibitors, a direct association between
PCSK9 serum levels and residual platelet reactivity was found. A direct correlation
between urinary excretion of 11-dehydro-thromboxane-B2, a marker of in vivo platelet
activation, and circulating PCSK9 levels was reported in patients with atrial fibrillation.
Moreover, recombinant human PCSK9 added in vitro to human platelets potentiated
activation induced by weak agonists. Finally, blood clotting factor VIII (FVIII), which is
associated with stroke and ACS risk, is cleared from the circulation by members of the
LDL receptor (LDLR) family. Given that PCSK9 degrades LDLR, it is conceivable that
PCSK9 inhibitors by enhancing the expression of LDLR may slightly decrease circulating
FVIII, in this way contributing to the prevention of cardiovascular events. This review
aims to discuss the possible and hypothetical interactions between PCSK9 and the
haemostatic system and to examine the possible pleiotropic effects of PCSK9 inhibitors
in cardiovascular prevention.
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clearance. The rate-limiting step in cholesterol biosynthesis
is the conversion of 3-hydroxy-3-methyl glutaryl coenzyme
A (HMG-CoA) intomevalonate catalyzed byHMG-CoA reduc-
tase, which represents the pharmacologic target of statins,
the most widely used cholesterol-lowering agents.4 LDL
clearance takes place via specific LDL receptors (LDLRs) in
the liver which bind apolipoprotein B100 forming a complex
which is internalized.5 The LDL component of the complex is
then degraded by lysosomal enzymes, while LDLR are
recycled to the cell membrane to bind other LDL particles.6

The expression of LDLR on the hepatocyte surface is regu-
lated by intracellular cholesterol levels, with lower intracel-
lular cholesterol leading to increased surface LDLR, and vice
versa.7 LDLRs are also regulated by proprotein convertase
subtilisin/kexin type-9 (PCSK9), originally called Narc-1, an
enzyme which fosters their degradation. PCSK9 is mainly
synthesized by the liver, but also by the brain, kidney,
intestine, pancreas and steroidogenic tissue, and is found
both in the intra- and extracellular space. Extracellularly,
PCSK9 binds the first epidermal growth factor-like repeat of
LDLR forming a tri-molecular complex (LDLR-LDL-PCSK9)
which is then internalized. Once inside the hepatocyte,
PCSK9 prevents LDLR from escaping lysosomal degradation,
and therefore to recycle to the cell surface, thus reducing
their expression. Intracellularly, PCSK9 binds nascent LDLR
and targets them to lysosomes where they are degraded.8

The interest in PCSK9 has sharply risen after the observation
that gain of function variants of its gene are associated with
enhanced levels of circulating LDL cholesterol (LDL-c), and
thuswith increased cardiovascular risk.9 Conversely, carriers
of loss-of-function variants have low LDL-c and a reduced
risk of ischaemic cardiovascular disease.10 Moreover, in a
seminal study, the adenoviral-mediated over-expression of
PCSK9 in mice caused a striking increase in plasma choles-
terol.11 Since the discovery of the important role of PCSK9 in
lipid metabolism, numerous approaches to its inhibition
have been attempted, leading to the development of mono-
clonal antibodies (MoAbs) blocking its extracellular action,
probably the most relevant for the regulation of circulating
cholesterol levels.12 Several phase III trials with anti-PCSK9
MoAb have been performed in patients with hypercholester-
olemia and high cardiovascular risk and, based on their
positive results in terms of safety and efficacy, two fully
humanized anti-PCSK9MoAbs, alirocumab and evolocumab,
have received Food and Drug Administration (FDA) and
European Medicines Agency approval in 2015 as a second
line treatment, in addition to diet and maximally tolerated
statin therapy, to lower LDL-c in adults with heterozygous
familial hypercholesterolaemia or clinical atherosclerotic
cardiovascular disease who require additional LDL-c low-
ering. Recently, based on the results of the landmark FOUR-
IER trial,13 the FDA has approved evolocumab also to prevent
heart attacks, strokes and coronary revascularization in
adults with established cardiovascular disease. In this trial,
including more than 27,000 high-risk patients with athero-
sclerotic cardiovascular disease with a LDL-c of � 70 mg/dL
who were receiving statin therapy, subjects randomized to
evolocumab showed a significantly lower incidence of major

adverse cardiovascular events compared with those rando-
mized to placebo.13 Moreover, a meta-analysis of 24 phase II
and phase III trials involving 10,159 adults with hypercho-
lesterolaemia, on statin treatment or not, has shown that
anti-PCSK9 MoAbs significantly reduce all-cause mortality
compared with no anti-PCSK9 treatment (odds ratio [OR],
0.45 [95% confidence interval CI, 0.23–0.86], p ¼ 0.015).14

Thus, PCSK9 inhibitors appear to be a very effective strategy
to prevent cardiovascular events.

Pleiotropic Effects of Lipid-Lowering
Interventions

Since the detrimental effect of LDL-c on the cardiovascular
system is concentration-dependent, the reduction of ischae-
mic cardiovascular events produced by PCSK9 inhibitors
when added to statins has been ascribed primarily to their
further, strong LDL-c-lowering action.15

However, statins may exert cardiovascular protective
actions independent from LDL-c lowering which have been
called pleiotropic effects.16 The reduction of cardiovascular
events attained with statins in some clinical trials, like the
JUPITER trial,17 has been indeed greater than that expected
solely from LDL-c reduction.18,19 In fact, cholesterol-indepen-
dent beneficial effects of statins on the cardiovascular system,
such as the stabilization of atherosclerotic plaques, reversal of
endothelial dysfunction, blunting of inflammation, enhance-
ment of fibrinolysis and inhibition of platelet activation and
blood coagulation, have been well documented.20–23

On the other hand, in a recent meta-analysis of trials with
lipid-lowering interventions including more than 300,000
patients, the relative risk reduction of major vascular events
associated with PCSK9 inhibitors use was higher, even if not
significantly, than that observed with statins for the same
LDL-c reduction (OR, 0.49 [95% CI, 0.34–0.71] vs. 0.61 [95% CI,
0.58–0.65]).24 Reasons advocated for this observation are the
raising activity on anti-atherogenic HDL and the ability to
reduce lipoprotein (a) [Lp(a)] of PCSK9 inhibitors.25,26 How-
ever, pleiotropic effects of PCSK9 inhibitors independent
from lipid metabolism can also be considered.27

Indeed, many pre-clinical and clinical data support the
hypothesis that the cardiovascular protective effect of PCSK9
inhibitors may be more complex, involving mechanisms
which go beyond their lipid-lowering action, several of
which may affect the haemostatic system.

Hints for Pleiotropic Effects of PCSK9 on
Haemostasis and Thrombosis

Haemostasis begins at a vascular injury site with platelet
adhesion and aggregation (primary haemostasis), followed
by the activation cascade of clotting factors (secondary hae-
mostasis). Thrombosis, which can be considered an excessive
extension of a haemostatic reaction, occurs in the arterial and
venous vascular beds by mechanisms which differ in relation
to the anatomical and rheological characteristics of these two
systems. In arteries, thrombosis originates from the rupture of
atherosclerotic lesions and is mainly generated by platelet
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activation,28 while in veins, thrombi are mainly the conse-
quence of clotting activation favoured by stasis, hypercoagul-
ability and endothelial damage.29 However, several recent
observations suggest that these two pathways contribute to
both arterial and venous thrombosis. In fact, risk factors for
ischaemic cardiovascular disease, among which hyperlipidae-
mia, induce endothelial dysfunction in both the arterial and
venous vascular beds, leading to the development of either
arterial or venous thrombosis depending on the concomitant
inciting conditions.30,31

Studies in Animals
The discovery of the central role played by PCSK9 in lipid
metabolism has also been grounded on studies performed in
gene-modifiedmice. The adenovirus-inducedover-expression
of PCSK9 in mice resulted in decreased hepatic LDLR expres-
sion with associated hypercholesterolaemia, whereas the
deletion of the PCSK9 gene increased hepatic LDLR expression
and reduced LDL-c circulation,11 recapitulating the pheno-
types of gain- or loss-of-function PCSK9 variants in humans.

Interestingly, PCSK9�/� mice showed a reduction of FeCl3
injury-induced carotid artery thrombosis, with the forma-
tion of unstable non-occlusive thrombi,32 suggesting an
impaired platelet function. Indeed, in these mice the activa-
tion of circulating platelets provoked by arterial injury,
shown by increased glycoprotein (GP) IIb/IIIa activation, P-
selectin expression and circulating platelet–leukocyte aggre-
gates, was strikingly reduced as compared with control
mice.32 It cannot be disregarded, however, that the assess-
ment of in vivo platelet activation in mice by the measure-
ment of these biomarkers may be prone to errors.33

Moreover, the hypercoagulable state induced by sepsis
was exacerbated in PCSK9 over-expressingmice, as shown by
enhanced thrombin–antithrombin complexes and reduced
protein C plasma levels,34 suggesting that changes in PCSK9
may also have an impact on blood coagulation.

Indeed, PCSK9�/� mice developed significantly smaller
venous thrombi as compared with wild-type mice after
inferior vena cava ligation.35 Plasma factor VIII (FVIII) levels
are known to modulate venous thrombosis in mice,36,37 and
there are theoretical reasons to suppose that PCSK9 may
modulate circulating FVIII levels (see later); thus, although
no blood clotting factor measurements were made in this
study,35 it is conceivable that an effect on FVIII may have
contributed to reduce venous thrombosis. On the other hand,
plasma levels of soluble P-selectin (sP-selectin), a platelet
and endothelial activation biomarker,38 were significantly
lower in PCSK9-deficient than in control mice after the
induction of vena cava thrombosis,35 further suggesting
that PCSK9�/� mice have impaired platelet function, but
also that PCSK9 deletion may reduce endothelial activation.
In this regard, it is interesting that increased circulating sP-
selectinwas observed in humanswith unprovoked deep vein
thrombosis who have endothelial dysfunction.30,31

Studies in Humans
The possible role of PCSK9 inmodulating platelet function has
been assessed also in humans. In a prospective, observational

study inpatientswith a recent acute coronary syndrome (ACS)
undergoingpercutaneous coronary interventionand receiving
P2Y12 inhibitors, the PCSK9-REACT study, a direct correlation
between PCSK9 plasma levels and high-on-treatment platelet
reactivity was observed, suggesting that PCSK9 enhances
platelet activation.39 Indeed, recent observations have shown
that human recombinant PCSK9 pre-incubated in vitro with
platelets potentiates aggregation, P-selectin expression and
GPIIb/IIIa activation inducedbyaweakagonist,32 acting there-
fore as a primer of platelet activation.40

In this regard, it is interesting that twice asmuchPCSK9was
found tobecontained inplatelets fromtype2diabetesmellitus
(T2DM) patients with coronary artery disease (CAD) than in
platelets from healthy controls,41 suggesting that PCSK9 may
be released during platelet activation and contribute to the
well-established T2DM-associated platelet hyper-reactivity
and impaired responsiveness to anti-platelet agents.42,43

Human megakaryocytes express messenger ribonucleic
acid (mRNA) for PCSK9, although at low levels (A.S. Weyrich
and R.A. Campbell, University of Utah, personal communica-
tion), but this is not found in platelets.44 It can therefore be
hypothesized that mRNA for PCSK9 is handled by megakar-
yocytes similarly to mRNA for matrix metalloproteinase-2,
withmRNAnot sorted into platelets but the protein present,45

even if only in a platelet sub-population,41 as already reported
for tissue factor (TF)46 and endothelial nitric oxide synthase.47

It was found that PCSK9 plasma levels positively correlate
with the platelet count and plateletcrit in patients with
stable CAD, further suggesting a link between PCSK9 and
platelets in patients with coronary disease.48 Furthermore,
PCSK9 plasma levels have been recently reported to increase
during an acute coronary event,49 a condition associated
with a striking bout of in vivo platelet activation,50,51 and to
positively correlate with the severity of coronary artery
lesions evaluated by the SYNTAX score.49 On the other
hand, platelet reactivity in ACS correlates positively with
the SYNTAX score,52 further suggesting a role of enhanced
circulating PCSK9 in platelet hyper-reactivity. Moreover,
activated platelets of patients with CAD release soluble
sortilin53 which is known to facilitate PCSK9 secretion,54

making even more plausible the hypothesis of a positive
feedback activation of platelets through PCSK9 during ACS.

A direct relationship between in vivo platelet activation
and PCSK9 plasma levels has been reported also in atrial
fibrillation. In this study, circulating PCSK9 correlated with
urinary 11-dehydro- thromboxane B2 excretion,55 an
unbiased marker of in vivo platelet activation.56

Several clues suggest that PCSK9 may also influence
secondary haemostasis in humans. In fact, plasma levels of
TF, a pro-coagulant glycoprotein triggering thrombin forma-
tion and playing a central role in atherothrombosis,57 posi-
tively correlated with plasma PCSK9 in patients with CAD
and T2DM.58 Moreover, single nucleotide polymorphisms of
the PCSK9 gene were shown to be associated with the
development of thrombosis in carriers of anti-phospholipid
antibodies,59 subjects characterized by a hypercoagulabe
state and in vivo platelet activation,60,61 confirming a link
between PCSK9, platelets and blood coagulation.
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Altogether, these data represent a strong hint that the
association of PCSK9 with cardiovascular risk involves
mechanisms that go beyond themere regulation of circulating
LDL-c and which include effects on the haemostatic system.

Modulation of Platelet Activation by
Lipoproteins and the Possible Influence of
PCSK9 Inhibitors

Dyslipidaemia may influence platelet reactivity and haemos-
tasis by several mechanisms. Enhanced oxidative stress asso-
ciated with high circulating LDL-c leads to the formation of
oxidized-LDL (ox-LDL), which strongly contribute to inflam-
mation-driven thrombosis62 by activating CD36 and LOX-1
receptors on platelets63,64 (►Fig. 1). CD36 is a member of the
SRB-1 family which binds native- and ox-LDL and plays a role
in thrombus formation,65 while LOX-1 (also called oLR-1) is a
multi-ligand scavenger receptorwhoseexpression is triggered
by pro-inflammatory stimuli.66,67 In addition, activated plate-
lets themselves oxidize LDL generating ox-LDL, in this way
propagating platelet activation.68 Another mechanism by
which dyslipidaemia may affect platelet reactivity is through
the generation of lipid peroxide-modified phospholipids,
which activate platelets by acting on Toll-like receptor 2.69

Oxidized phospholipids are transported by Lp(a),70 and the
latter may also directly activate platelets by not yet unravelled
mechanisms.71

Finally, HDL attenuate platelet function by interacting with
the ApoER2 and SRBI receptors, and also promoting choles-
terol efflux from platelet membranes.72 Indeed, cholesterol
incorporation in plasma membranes induces platelet hyper-
sensitivity to stimuli, whereas its depletion strikingly reduces
platelet reactivity.73Moreover, HDL inhibit platelet fibrinogen
binding and aggregation in response to thrombin via
decreased formation of the second messengers diacylglycerol
and inositol trisphosphate,74 and enhance platelet NO genera-
tion, thus increasing cyclic guanosine monophosphate, by
acting on the apoER2 receptor.75 Finally, HDL also down-
regulate the coagulation cascade and stimulate fibrinolysis.76

Considering the above summarized mechanisms, PCSK9
inhibitionmaymodulate theeffects of lipoproteinsonplatelets
at various levels, thus reducing platelet activation. Bystrikingly
decreasing plasma LDL-c, PCSK9 inhibitors may deplete plate-
let membranes of cholesterol, thus reducing platelet reactivity
and pro-coagulant activity. In this regard, it is interesting that
treatment of hypercholesterolaemic subjects with rosuvasta-
tin, a powerful cholesterol-lowering statin, reduced platelet
membrane cholesterol, TF expression and generation of FXa.77

Fig. 1 Hypothetical effects of proprotein convertase subtilisin/kexin type-9 (PCSK9) and its inhibition on platelets. (1) PCSK9 inhibition
strikingly reduces low-density lipoprotein cholesterol (LDL-c) levels, thus potentially depleting platelet membranes of cholesterol, a mechanism
reducing platelet reactivity.73 Moreover, the inhibition of platelet activation by PCSK9 inhibitors (2), a result of the various effects shown in the
figure, may also reduce the ability of platelets to oxidize LDL thus decreasing the platelet stimulating activity of the latter through CD36 and LOX-
1 receptors (3). Furthermore, PCSK9 inhibition reduces lipoprotein (a) [Lp(a)] levels, the main carriers of ox-phospholipids, thus potentially
blunting their ability to activate platelets either through the Toll-like receptor 2 (TRL2) receptor (4) or directly (5). Finally, PCSK9 inhibition
increases high-density lipoprotein (HDL) which reduces platelet activation acting on apoER2 and SRB1 receptors (6), and scavenging cholesterol
from platelet membranes (7). þ, stimulation; –, inhibition.
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In addition, given that PCSK9 and LOX-1 positively influence
the expression of each other,78 it can be envisaged that PCSK9
inhibitors may reduce platelet LOX-1.

Moreover, the blunting of platelet activation by PCSK9
inhibitors may decrease ox-LDL generation,68 interrupting
the vicious circle that propagates platelet activation. Indeed,
treatment of hypercholesterolaemic patients with alirocu-
mab or evolocumab was shown to reduce platelet activa-
tion.79 PCSK9 inhibitors, differently from statins, lower Lp(a)
levels,26,80 and thus they may reduce its direct and oxidized
phospholipid-mediated stimulatory effect on platelets. In
addition, PCSK9 inhibitors also enhance HDL levels,25 in
this way potentially inhibiting platelet aggregation directly
or bydepleting plateletmembrane cholesterol72–75 (►Fig. 1).

Finally, cell apoptosis is known to favour thrombosis, in
part through the release of pro-coagulant microparticles,81

and PCSK9 was found to enhance apoptosis in vascular
smooth muscle and endothelial cells.82,83 In this context,
PCSK9 inhibitors, by mitigating apoptosis, might indirectly
prevent thrombosis.

Regulation of FVIII Levels by LDLR and the
Hypothetical Effect of PCSK9 Inhibitors

Blood clotting FVIII is a key plasma protein, encoded by a
gene located on chromosome X, which plays a central role in
coagulation. FVIII acts as a co-factor for FIX, thus favouring
thrombin generation. FVIII is transported in the circulation
by von Willebrand factor (VWF) which stabilizes it and
reduces its clearance.84

Epidemiologic studies have shown an association between
increased FVIII plasma levels and arterial thrombosis, and
elevated FVIII levels were found to correlate with a higher
recurrence rate in patients with a prior myocardial infarction
or ischaemic stroke.85–90 In contrast, haemophilia patients
appear to be protected from ischaemic heart disease.91

Experimental studies in animal models, although often
involving the use of supra-physiologic concentrations, pro-
vide further evidence in support of the role of FVIII in arterial
thrombosis.36,92,93 The increased risk of arterial thrombosis
associated with enhanced FVIII levels is thought to be due to
the combination of increased thrombin generation and
enhanced platelet adhesion/aggregation, the latter being
induced by the concomitant increase of VWF.94,95

Circulating levels of FVIII are regulated by its biosynthesis
and by its clearance through hepatic LDLR and lipoprotein
receptor-related protein 1 (LRP1), both members of the LDLR
family (►Fig. 2). FVIII is composed of a heavy and a light chain,
the latter containing the binding site for LRP1, which is
normally covered by VWF.96 Therefore, circulating FVIII not
bound to VWF (�5% of total) is quickly recognized by hepato-
cyte LRP1, endocytosed and degraded.97 The important role of
LRP1 inFVIII clearance invivohasbeenconfirmedby thestrong
elevationofcirculatingFVIII levels in LRP-deficientmice aswell
as inmicewithadenovirus-mediatedover-expressionof recep-
tor-associated protein, a chaperone for LRP1 which blocks the
bindingof all ligands to the receptor.98On the otherhand, LDLR
plays a role in FVIII clearance too because the simultaneous
deletion of the LDLR and LRP1 genes in mice (double LRP1/
LDLR�/�) further enhanced FVIII levels by 4.2-fold, while the

Fig. 2 Hypothetical effects of proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibitors on factor VIII (FVIII), von Willebrand factor (VWF)
and tissue factor levels. Hepatic low-density lipoprotein receptor (LDLR) and lipoprotein receptor-related protein 1 (LRP1) are both involved in
the clearance of FVIII and VWF by the liver. PCSK9 inhibitors enhance the expression of hepatic LDLR, and possibly also of LRP-1(1), by both intra-
and extracellular mechanisms (2), thus potentially enhancing FVIII internalization and degradation leading to a decrease in FVIII plasma levels.
Moreover, the possible enhancement of LRP1 by PCSK9 inhibitors in monocytes (3), might reduce circulating tissue factor (TF) through its
accelerated clearance. þ, stimulation; –, inhibition.
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adenovirus-induced over-expression of hepatic LDLR acceler-
ated the clearance of FVIII.99 These data show that LDLR
cooperates with LRP1 in reducing FVIII levels, and indeed
polymorphisms of the LDLR gene were found to affect CAD
risk inhumans bymodulating FVIII:C levels and independently
from the lipid profile.100 Monocyte LRP1 favours also the
clearance of TF by mediating the internalization and degrada-
tion of the TF–TF pathway inhibitor complex.101

Currently, there are no data showing that FVIII levels may
be influenced by PCSK9 inhibitors. However, it is conceivable
that PCSK9 inhibitors, by strikingly increasing LDLR expres-
sion, may enhance the clearance of FVIII, thus reducing its
plasma levels, a mechanism potentially contributing to the
lowering of major adverse cardiovascular events (►Table 1).
In this regard, it is relevant that data from the Multi-Ethnic
Study of Atherosclerosis, a cohort study of healthy subjects
free of clinical cardiovascular disease, showed that statin
users had significantly lower FVIII levels.102 Moreover, a
recent multi-centre, randomized, controlled, open-label
study in patients with prior deep vein thrombosis, showed
that a short-term course of high-dose rosuvastatin signifi-
cantly reduced FVIII.103 Statins besides inhibiting of HMG-
CoA reductase, also increase LDLR104 and, at least atorvas-
tatin, also LRP1.105 Therefore, FVIII reduction by statins is
likely explained by the increased expression of LDLR and
LRP1 and the resulting accelerated hepatic clearance of FVIII.

Although the hypothesis that PCSK9 inhibition may
reduce FVIII levels by increasing its clearance seems plau-
sible, experimental studies confirming it are required.

Conclusion

Several clues suggest that PCSK9 represents a major actor in
cardiovascular disease, in part independently from its effects
on lipid metabolism. Data from observational studies in
humans and from experimental research in animals imply
that PCSK9 may modulate both primary and secondary
haemostasis either indirectly, through its effect on LDL-c,
or directly by influencing platelet activation and plasma
levels of FVIII. Previous observations, showing that the
benefits of statins on cardiovascular events occur before
any significant changes in lipid profile have taken place,19

have opened the way to a series of studies which unravelled
several cholesterol-independent actions of this class of
drugs, including the stabilization of atherosclerotic plaques,
the improvement of endothelial function, the modulation of
immune responses, the inhibition of oxidative stress and
inflammation and the prevention of thrombosis. These stu-
dies not only have led to an advancement in our under-
standing of the role of inflammation in atherothrombosis,
but also to the development of innovative therapeutic
approaches targeting inflammation, like the anti-interleu-
kin-1βMoAb canakinumab.106 A complete unravelling of the
possible pleiotropic activities of PCSK9 inhibitors, and in
particular of their possible anti-thrombotic effects, may
potentially widen the indications for this new therapeutic
class and clarify their potential role in the treatment of the
acute phase of ischaemic cardiovascular disease. The recent
publication of the ODISSEY Trial shows that alirocumab
reduced cardiovascular events and mortality in patients
with a recent acute coronary syndrome and not on target
for LDL-c on statin therapy, confirming that PCSK9 inhibitor
therapy has an important role in secondary cardiovascular
prevention in patients at high risk.107
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type-9.
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