Published online: 2019-04-30

Macrophages

as Key Players during Adipose Tissue-

Liver Crosstalk in Nonalcoholic Fatty Liver Disease

Hannelie Korf, PhD!

TLaboratory of Hepatology, CHROMETA Department, KU Leuven,

Leuven, Belgium

2Department of Gastroenterology and Hepatology, UZ Leuven,

Leuven, Belgium

Semin Liver Dis 2019;39:291-300.

Abstract

Keywords

= nonalcoholic fatty
liver disease

= macrophages

= adipose tissue
inflammation

Markus Boesch, MS!

Lore Meelberghs, MS!  Schalk van der Merwe, MD, PhD'-2

Address for correspondence Hannelie Korf, PhD, Laboratory of
Hepatology, CHROMETA Department, KU Leuven, Leuven 3000,
Belgium (e-mail: hannelie.korf@kuleuven.be).

Schalk van der Merwe, MD, PhD, Laboratory of Hepatology,
CHROMETA Department, KU Leuven, Leuven 3000, Belgium
(e-mail: schalk.vandermerwe@uzleuven.be).

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease
in Western countries that could lead to serious health problems including liver failure,
cancer, or death. The term NAFLD includes a spectrum of disease states with histological
features ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). A key aspect
within this research field is the identification of pathogenic factors that trigger inflamma-
tion, thus fueling the transition from nonalcoholic fatty liver to NASH. These inflammatory
triggers may originate from within the liver as a result of innate immune cell activation and/
or hepatocyte injury. Additionally, they may originate from other sites such as adipose
tissue or the intestinal tract. In the current review, the authors will primarily focus on events
within adipose tissue which may be of importance in triggering the disease progression.
They specifically focus on the role of adipose tissue macrophages during NAFLD pathogen-
esis and how microenvironmental factors may shape their metabolic profile. They further
dissect how redirecting the macrophage’s metabolic profile alters their immunological
functions. Finally, they discuss the opportunities and challenges of targeting macrophages

= metabolism

Nonalcoholic fatty liver disease (NAFLD) is now one of the
most common causes of chronic liver disease in both children
and adults and the disease is predicted to become the most
important indication for liver transplantation during the
next decade.! NAFLD is strongly associated with obesity
and metabolic syndrome, and similar to these conditions,
the incidence and prevalence of NAFLD are increasing to
epidemic proportions.>> The early stages of NAFLD are
hallmarked by accumulation of lipids in hepatocytes (hepatic
steatosis). The majority of patients with simple steatosis will
not progress to more severe liver disease. However, for
reasons incompletely understood, a subset of patients will
develop superimposed hepatic inflammation which is
referred to as nonalcoholic steatohepatitis (NASH).* Impor-
tantly, once NASH is established patients may further pro-
gress to cirrhosis and hepatocellular carcinoma.’ Currently,
there are no approved pharmacological therapies that have
been shown to be effective in NASH. The development of
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to interfere in disease progression.

novel strategies for NASH treatment will rely on the identi-
fication and targeting of key pathogenic pathways.

Although the pathogenesis of NASH is complex and
partially unknown, it likely encompasses multiple exogen-
ous as well as endogenous hits resulting in the propagation of
liver disease.” In the liver, the excess amounts of circulating
fatty acids and carbohydrates result in the accumulation of
toxic lipids, oxidative- and ER-stress responses, and even-
tually hepatocyte death.® A high-fat diet or nutrient overload
may also trigger qualitative and quantitative changes in gut
microbiota that may increase intestinal permeability and
translocation of bacterial products to reach the liver through
the portal vein.® The continuous exposure to danger-asso-
ciated molecular patterns (DAMPs) released from necrotic
liver cells and pathogen-associated molecular patterns
(PAMPs) originating from the gut may sustain and amplify
inflammatory events ultimately leading to fibrosis and cir-
rhosis development.'%"

Copyright © 2019 by Thieme Medical
Publishers, Inc., 333 Seventh Avenue,
New York, NY 10001, USA.

Tel: +1(212) 584-4662.

DOI https://doi.org/
10.1055/s-0039-1687851.
ISSN 0272-8087.

291

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.


mailto:hannelie.korf@kuleuven.be
mailto:schalk.vandermerwe@uzleuven.be
https://doi.org/10.1055/s-0039-1687851
https://doi.org/10.1055/s-0039-1687851

292

Macrophages as Key Players during Adipose Tissue-Liver Crosstalk Korf et al.

The onset of dyslipidemia and inflammation in the liver is
closely linked to early events occurring in the adipose
tissue.'? In both mice and human subjects, the recruitment
of macrophages within the adipose tissue compartment has
been associated with the development of insulin resistance
and steatohepatitis.'>'* Conversely, ablation of adipose tis-
sue macrophages, surgical removal of adipose tissue, or
inhibiting peroxisome proliferator-activated receptor
gamma (PPARY) pathways in mice normalized insulin sensi-
tivity and partially reversed liver inflammation.’~'” We and
others have shown that CD11¢*CD206" and CCR2* macro-
phages infiltrate visceral adipose tissue, and are associated
with increased production of inflammatory cytokines in
NASH.'8-20 Interestingly, adipose tissue inflammation also
preceded the appearance of inflammation in the liver, sug-
gesting that disease-initiating triggers originate from adi-
pose tissue rather than the liver.'®2° Notably, while also
other immune cells play a role in adipose tissue inflamma-
tion,2"%? for the purpose of this review we specifically focus
on the role of adipose tissue macrophages during NAFLD
progression. We further dissect their immunological and
metabolic profiles, their interaction with adipocytes as
well as their plethora of secreted factors that may fuel
inflammation in the liver. Finally, we discuss the transla-
tional potential of rewiring the functional or metabolic
status of adipose-tissue macrophages.

Molecular Events Triggering Macrophages
within the Adipose Tissue Compartment

During pathological conditions such as NAFLD where chronic
overnutrition prevails, the size and number of adipocytes
increase to compensate for the excess lipid availability. How-
ever, this containment mechanism may ultimately fail leading
to adipose tissue dysfunction, dyslipidemia, and insulin resis-
tance. The considerable lipid burden within adipocytes triggers
intracellular endoplasmic reticulum (ER) stress mechanisms,
which culminate in cell death and the release of lipid contents
and cellular debris.® Consequently, tissue resident macrophages
are exposed to a variety of triggers such as toxic lipids, oxidative
radicals, adipokines, nucleic acids, exosomes, and DAMPs
derived from dying cells, and combined these biomolecules
create a complex microenvironment that initiates macrophage
activation.'®?3 For example, macrophages surrounding necrotic
adipocytes within crown-like structures can become activated
following engulfment of necrotic debris.?4~2° Additionally, dan-
ger signals such as high mobility group box protein 1 (HMGB1)
can be recognized by toll-like receptors (TLRs) or P2X purino-
ceptor 7 (P2RX7) on the surface of macrophages, leading to the
activation of inflammasomes.”’~2° Alternatively, toxic lipid
compounds can signal macrophage activation and production
of proinflammatory mediators by activating intracellular path-
ways involving key transcription factors such as c-Jun N-term-
inal kinase (JNK), activator protein 1 (AP-1), and nuclear factor-
KB (NF-kB).2 Furthermore, extracellular alarmins (e.g., SI00A8
and S100A9) can promote human macrophage-mediated
inflammation through the receptor advanced glycation end-
products (RAGE) and TLR4-dependent pathways.>®3' Finally,
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microRNA-155 in adipose-derived microvesicles has been
demonstrated to induce macrophage activation, chronic
inflammation, and local insulin resistance in a murine model.*?
An overview of mechanisms that potentiate macrophage-
mediated inflammation is depicted in =Fig. 1 and has also
been reviewed elsewhere.810.13:14.21.33

Stressed or dying adipocytes also contribute to the recruit-
ment of monocytes/macrophages through the release of che-
mokines. Although several chemokines have been implicated
in this process,34'35 C-C motif chemokine ligand 2 (CCL2) and
its receptor CCR2 seem to play a prominent role (~Fig. 1).3°
Hereto, the absence of CCR2-blunted macrophage infiltration
in an experimental model improved insulin sensitivity and
hepatic steatosis.3’ Conversely, transgenic expression of CCL2
in murine adipose tissue promoted macrophage recruitment
and obesity-induced insulin resistance.3® These studies estab-
lish a prominent role for chemokine-driven recruitment of
monocytes/macrophages to adipose tissue. However, whether
adipocytes also actively participate in the retention of macro-
phages to the site of inflammation is less well characterized.
Interestingly, a recent report demonstrated that adipose tissue
inflammation was dependent on the physical interaction of
integrin a4 on macrophages and vascular cell adhesion mole-
cule 1(VCAM-1),its counter-receptor on adipocytes ina mouse
model.>® This adhesive interaction resulted in the upregula-
tion of extracellular-signal-regulated kinase (ERK) signaling
and the promotion of insulin resistance in adipocytes.38 This
study shed new light on the extent by which adipocytes sustain
adipose tissue inflammation. Additionally, netrin-1 has
recently been identified as a macrophage retention molecule
(=Fig. 1 )32 Finally, also the production of macrophage migra-
tion inhibitor factor (MIF) could be potentially important in
both recruiting and retention of macrophages to the adipose
tissue site.*%4! Combination, recruitment, retention, and acti-
vation of macrophages perpetuate a vicious loop of events
leading to exacerbated inflammation.*?

Elucidating the Spectrum of Adipose Tissue
Macrophage Phenotypes

Macrophages are highly versatile cells, with key functions in the
initiation as well as resolution of inflammation.*> Such func-
tions include phagocytosis of apoptotic/necrotic cells and
pathogens, elaboration of immune-effector molecules and
growth factors, and remodeling of the extracellular matrix.**
Furthermore, they are equipped with a wide range of surface
and nuclear receptors to appropriately scale the molecular
threat in their microenvironment and can respond accord-
ingly.* If one considers the diversity of signals that these cells
encounter in vivo, it is plausible that they exist as a continuum
of different activation statuses.*> Nevertheless, based on in vitro
studies, the extremes of this continuum have been classified in
two main groups, namely classically activated/proinflamma-
tory (M1-like) and alternatively activated/anti-inflammatory
(M2-like) macrophages.*®*” The M1-like macrophage pheno-
type is driven by proinflammatory mediators such as lipopo-
lysaccharide (LPS) and interferon gamma (IFNY) and is
characterized by increased production of proinflammatory
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Fig. 1 Molecular mechanism leading to macrophage activation, recruitment, and retention leading to exacerbated adipose tissue inflammation.
Macrophages are exposed to several biomolecules initiating their activation (A-D). (A) Necrotic adipocyte debris is engulfed by the surrounding
macrophages causing increased expression of proinflammatory genes. (B) Binding of toxic lipid compounds and several alarmins such as ST00A8 and
ST00A9 to TLRs and RAGE elevates the expression of proinflammatory genes via AP-1-, NF-kB-, and JNK-mediated signaling and thereby worsening insulin
resistance. (C) Binding of the danger signal HMGB1 to TLRs and P2RX7 can activate the inflammasome complex which will cleave pro-IL-1B into IL-1B. (D)
Lastly, adipose tissue-derived exosomes contain elevated levels of miRNA-155 which will bind the SOCS1 promoter and inhibit its transcription. This leads to
increased STAT1 and decreased STAT6 signaling causing defective insulin signaling. Mechanism triggering macrophage recruitment (E). Necrotic
adipocytes produce CCL2 leading to recruitment of CCR2™ monocytes from the circulation into the adipose tissue. These monocytes differentiate to
proinflammatory macrophages surrounding the dying adipocytes forming CLS. Mechanisms promoting macrophage retention at the site of inflammation
(F). The physical interaction of integrin o4 on macrophages with VCAM-1 on adipocytes causes increased ERK signaling and decreased p38 signaling leading
to inhibition of the UCP1 gene and worsening of insulin signaling. Moreover, TNFa transcription in the macrophage is stimulated because of this cell-cell
adhesion. AP-1, activator protein 1; CCL/R2, GC motif chemokine ligand/receptor 2; CLS, crown-like structures; ERK, extracellular-signal-regulated kinase;
HMGB1, high mobility group box protein 1; IL-1B, interleukin-1B; INK, ¢Jun N-terminal kinases; miRNA, microRNA; NF-kB, nuclear factor-kB; P2RX7, P2X
purinoceptor 7; RAGE, receptor for advanced glycation end-products; SOCS1, suppressor of cytokine signaling 1; STAT, signal transducer and activator of
transcription; TLR, toll-like receptor; TNFa, tumor necrosis factor o; VCAM-1, vascular cell adhesion molecule 1; UCP1, uncoupling protein 1.
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cytokines, while the M2-like macrophage phenotype is driven
by anti-inflammatory cytokines such as interleukin-4 (IL-4).48

Applying this basic classification in the context of NAFLD
resulted in the identification of macrophages with an M2-
like phenotype in lean adipose tissue and their function to
maintain insulin sensitivity through the anti-inflammatory
actions of IL-10 and signal transducer and activator of
transcription 3 (STAT3).>> Furthermore, they activate
expression of immunosuppressive factors and PPARy which
promote tissue remodeling and resolve inflammation.*®
They further produce factors such as insulin-like growth
factor 1 (IGF1) and macrophages expressing the receptor of
IGF1 have been implicated as negative regulators of inflam-
mation.*° Along the same line of investigation, the loss of
GPR120, a G protein-coupled receptor with immunoregula-
tory actions, led to the loss of the inhibitory effect on adipose
tissue inflammation which promoted insulin resistance in an
experimental mouse model.>°

M1-like macrophages on the other hand have been
described in adipose tissue from NAFLD subjects and they
are characterized by the expression of the surface marker
CD11c, the secretion of proinflammatory cytokines such as
tumor necrosis factor o (TNFa) and IL-6, as well as the
generation of reactive oxygen and nitrogen intermedi-
ates.'®>1 In a murine model, macrophages that secrete
proinflammatory cytokines induced adipokine dysregula-
tion that impaired insulin action to confer systemic insulin
resistance.”® The importance of these events in disease
pathogenesis has been demonstrated by the fact that abla-
tion of the proinflammatory signaling molecule IKKB in
murine myeloid cells reduces myeloid cell-mediated inflam-
mation in adipose tissue, resulting in preservation of insulin
sensitivity.”> Similarly, macrophage-specific deletion of
stress-activated protein kinases, JNK, protects against high-
fat diet-induced obesity and insulin resistance, and reverts
M1-like polarization in mice.>?

Notably, phenotypes of adipose tissue macrophages dis-
tinct from classical activation (M1-like) or alternative acti-
vation (M2-like) have recently been described. For example,
obese adipose tissue macrophages featured increased lipo-
somal biogenesis and lipid catabolism most probably due to
chronic lipid overloading in vivo.”* Another report described
that treating macrophages with a cocktail of glucose, insulin,
and fatty acids (palmitate) triggers a metabolically activated
state (MMe).>” Interestingly, the phenotype of MMe macro-
phages was driven by the NADPH oxidase 2 complex and they
participated in both detrimental and beneficial functions
during obesity by promoting inflammatory cytokine produc-
tion as well as lysosomal exocytosis to adipocytes.”® More-
over, another macrophage phenotype termed Mox has also
recently been reported in a murine model to be present in
lean adipose tissue as a consequence of exposure to trun-
cated oxidized lipids.>’ Interestingly, these “redox-regula-
tory” Mox macrophages feature antioxidant gene expression
and a quiescent metabolism.”’ It would be intriguing to
further characterize and understand the relevance of these
macrophage phenotypes during human disease. Neverthe-
less, these interesting new findings imply that harnessing
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macrophage metabolism could represent a promising
approach to interfere in NAFLD and associated comorbidities.

Macrophage Metabolic Programs That
Govern Immune Function

Intracellular energy metabolism of macrophages has
recently been highlighted as a regulator of their immunolo-
gical functions.”®>° For example, M2-like macrophages,
presumed to be present in lean adipose tissue, exhibit a
metabolic program that relies on fatty acid oxidation to fuel
tricarboxylic acid (TCA) cycle-coupled oxidative phosphor-
ylation. Importantly, the events leading to increased oxida-
tive phosphorylation are orchestrated by the transcription
factor STAT6, which in turn induces expression of PPARS,
PPARY, and the coactivator protein PGC-1B.43%0 As demon-
strated in a mouse model, M2-like macrophages also main-
tain insulin sensitivity by the anti-inflammatory actions of
IL-10 and STAT3." Additionally, a role for the mammalian
target of rapamycin complex 2 (mTORC2) and interferon
regulatory factor 4 (IRF4) signaling axis in M2-like polariza-
tion has been demonstrated.®? Hereto, the upregulation of
both mTORC2 and IRF4 increases glucose-dependent oxida-
tive phosphorylation, which subsequently stimulates the
expression of M2-like target genes such as arginase 1 or
resistin-like molecule o2

Inflammatory-type macrophages, presumed to be present
in inflamed adipose tissue, on the other hand are character-
ized by increased glucose uptake and glycolytic flux, along
with impaired oxidative phosphorylation via the TCA cycle.63
M1-like macrophages feature an interrupted TCA cycle
whereby intermediates such as citrate and succinate accu-
mulate within the cell.% Importantly, these metabolites have
been shown to directly affect immune responses. For exam-
ple, the build-up of citrate in the cytoplasm can promote
fatty acid synthesis and production of the antimicrobial
metabolite itaconic acid.®* Additionally, succinate accumu-
lation leads to stabilization of hypoxia-inducible factor-1a
(HIF-1a), a master transcriptional regulator of proinflam-
matory and glycolytic genes.®®

However, as mentioned above, we are only starting to
grasp the extent of these macrophage phenotypes and their
accompanying metabolic signatures especially during
NAFLD pathogenesis in an in vivo situation. For instance,
it is possible that lipids are excessively engulfed by resident
adipose tissue macrophages giving rise to the unique
macrophage phenotypes as described above as well as
potential novel phenotypes. Key transcription factors that
control lipid metabolism in macrophages include PPARs,
liver X receptors (LXRs), CCAAT enhancer-binding proteins
(C/EBPs), and sterol regulatory element-binding proteins
(SREBPs).® However, how exactly these pathways are dys-
regulated during NAFLD pathogenesis whereby adipose
tissue macrophages fail to cope with the lipid overload
remains to be further investigated. Additionally, key mole-
cules that could reverse defective lipid metabolism within
these pathways may be highly relevant as disease interven-
tional strategies.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



Macrophages as Key Players during Adipose Tissue-Liver Crosstalk Korf et al.

Promising New Therapeutic Approaches
during NAFLD Progression

Macrophage Recruitment and Activation Status

There is a major unmet need for effective therapies in fatty
liver disease and this is of high clinical relevance considering
escalating disease prevalence. Macrophages have key regu-
latory roles in both inflammation and metabolism, which
underscores targeting them for disease intervention (see also
overview of new strategies in =Table 1).67 In fact, interfer-
ence with chemokine pathways to restrict proinflammatory
monocyte/macrophage recruitment using the CCR2/CCR5
antagonist cenicriviroc is one of the most advanced treat-
ments of NASH-related fibrosis (phase IIb) and a phase III

trial is currently ongoing to confirm the efficacy and safety of
this drug (the Aurora study).GS‘70 Another key strategy is to
promote anti-inflammatory macrophage polarization and
consequently also the amelioration of NASH progression
by promoting signaling through PPAR pathways. Indeed,
recent work in animal models has demonstrated blunted
inflammation and reversal of fibrosis is triggered by the
PPARa/PPARY agonist saroglitazar.”! Also in clinical studies,
elafibranor, an agonist of PPARax and §, has been shown to
attenuate inflammation in the liver without adversely affect-
ing fibrosis in patients with NASH.”? Alternative approaches
include targeting activating signals of myeloid-derived cells
in liver disease. In this regard, exciting new research impli-
cated a role for inositol-requiring enzyme la (IREla), the

Table 1 Overview of novel therapeutic strategies targeting macrophages during NAFLD

Target Agent Mechanism of action Experimental phase
Chemokines | Cenicriviroc CCR2/CCR5 antagonist reducing M1 and improving fibrosis Phase IlI
Maraviroc CCR5 antagonist reducing inflammation and improving insulin | Preclinical
sensitivity
NIBR2130 CXCR3 antagonist reducing inflammation Preclinical
IRE1a 4p8C IRETa inhibition promoting M2 polarization Preclinical
FXR Obeticholic acid FXR agonist resulting in shift to M2 macrophages and reduction | Phase IlI
of inflammation
Isoxazoles FXR agonist improving insulin sensitivity and inflammation Phase Il
EGCG FXR agonist reducing oxidative stress, inflammation, and fibrosis | Preclinical
TGR5/FXR INT-767 TGR5/FXR agonist promoting M2 polarization Preclinical
PPAR Saroglitazar PPARa and PPARy agonist, leading to increase of M2 Phase IlI
macrophages
Pemafibrate PPARa and PPARS agonist modulating lipid turnover and Phase Il
reducing inflammation
Elafibranor PPARa and PPARS agonist improving insulin sensitivity and Phase Il
inflammation
1-165041 PPARa and PPARS agonist improving insulin sensitivity and Preclinical
inflammation
ASK1 Selonsertib ASK1 inhibitor improving fibrosis and reducing inflammation by | Phase IlI
increasing M2 polarization
SKY R406-PLGA R406-PLGA nanoparticle, inhibiting SKY pathway in Preclinical
macrophages, improving fibrosis and inflammation
microRNA AntimiR-221/222 Inhibition of microRNA-221 and microRNA-222, improving Preclinical
fibrosis, and reducing inflammation
MRG-201 (miRagen) [ microRNA-29 mimic, improving fibrosis Phase |
Lac-PDMAEMA/ Targeted delivery of micro-RNA146b mimic via nanoparticles to | Preclinical
miR-146b mimic hepatocytes, reducing inflammation
mTORC1 Rapamycin mTORC1 inhibition improves inflammation and insulin Preclinical
sensitivity
NOTCH1 Curcumin NOTCH1 inhibition improves inflammation and insulin Preclinical
sensitivity
AMPK Tamoxifen AMPK activation inhibits M1 polarization and improves Preclinical
inflammation
SIRT1/2 SRT1720 SIRT1/2 activation improves inflammation by inhibiting NF-«B Preclinical
signaling

Abbreviations: AMPK, 5’ AMP-activated protein kinase; ASK1, apoptosis signal-regulating kinase 1; FXR, farnesoid X receptor; IRE1a inositol-requiring
enzyme Ta; mTORC, mammalian target of rapamycin complex; NF-kB, nuclear factor-kB; PPAR, peroxisome proliferator-activated receptor.
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upstream regulator of a part of the unfolded protein
response, in aggravating inflammation and the obesity-
associated symptoms by reprogramming macrophage func-
tion.”> Mechanistically, IRE1a plays a role in suppressing
IRF4 and KLF4, both key transcription factors promoting M2-
like polarization. Consequently, ablation of IREla in mice
attenuated the shift towards the proinflammatory M1-like
phenotype, and simultaneously promoted the anti-inflam-
matory M2-like phenotype.’? Similarly, a dual agonist for G-
protein coupled BA receptor 5 and farnesoid X receptor
(TGR5/FXR) triggered elevated frequencies of anti-inflam-
matory monocytes/macrophages and protected against stea-
tohepatitis in a murine model.”* Moreover, the
semisynthetic bile acid analogue obeticholic acid is a strong
FXR agonist with promising results from an early phase
clinical trial in patients with NASH.”

Shifting the Macrophage Metabolic Program
Additionally, approaches aiming at metabolic rewiring of
macrophages to regulate their immune function may be of
equal importance and this concept is already well estab-
lished in other disease fields. With relevance to NAFLD, a
promising study demonstrated that inhibition of the key
metabolic regulator, mTORC1, improved high-fat diet-
induced steatohepatitis through modulation of lipid meta-
bolism, macrophage polarization, inflammatory response,
and autophagy.’® Mice with a selective deficiency of mTORC1
in macrophages portrayed a predominantly M2-like pheno-
type, reduced ER stress, reduced inflammation in the liver,
and improved insulin sensitivity.”® Another interesting study
also implicates a role for the NOTCH1 pathway in promoting
mitochondrial oxidative phosphorylation and reactive oxy-
gen species as well as the expression of M1-related genes.
Importantly, conditional deficiency of NOTCH1 in myeloid
cells attenuated M1-like activation of hepatic macrophages
and inflammation in a murine model of alcoholic steatohe-
patitis.”” Mechanistically, ligand binding to the Notch recep-
tor triggers proteolytic cleavage of its receptor, resulting in
the release of Notch intracellular domain (NICD). In turn,
NICD translocates to the nucleus and binds to recombining
binding protein suppressor of hairless (RBP-]), resulting in
the release of IRF8 and NF-kB. Moreover, the sedoheptulose
kinase of the pentose phosphate pathway, carbohydrate
kinase-like (CARKL) protein, plays a role in regulating a
metabolic switch toward glycolysis in M1-like macro-
phages.”® Consequently, knock down of CARKL removed
the negative regulation on glycolysis and produced a clear
macrophage phenotype. In turn, overexpression of CARKL
blunted the expression of IL-6 and TNFa while augmenting
IL-10.78 Finally, 5’ AMP-activated protein kinase (AMPK) was
shown to induce an anti-inflammatory phenotype in macro-
phages through inhibiting proinflammatory polarization
and crucially contributes to immune function in
macrophages.”®

Epigenetic Regulation and Innate Immune Memory
Another concept that opens a window of opportunity for new

interventions stems from studies demonstrating that epige-
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netic mechanisms can regulate macrophage function by
imprinting them with a memory response towards future
stimuli.80-8 Notably the concept of innate immune memory
has been established in infection studies whereby macro-
phages modify their histone acetylation and methylation
traits, to become either ‘trained’ or ‘tolerant’ upon exposure
to subsequent stimulation.®? For example, during trained
memory a metabolic switch from oxidative phosphorylation
to aerobic glycolysis occurs through activation of the mTOR-
HIF1a pathway. Mechanistically, this was achieved through
increased trimethylated histone H3K4 and acetylated his-
tone H3K27 in the promoter region of the main mTOR-target
gene and thereby permitting its transcription.®® In contrast,
macrophages that exhibit endotoxin tolerance upon TLR4
activation undergo a metabolic switch from glycolysis to
oxidative phosphorylation through activation of the histone
deacetylases sirtuin-1 and sirtuin-6 (SIRT1/6) and conse-
quent inhibition of inflammatory gene tr;:lnscription.84 Nota-
bly, these pathways are potentially targetable since
inhibitors of the histone deacetylases SIRT1/2 have been
shown to have the capacity to reverse immune paralysis in
experimental sepsis models.®>8® Importantly, a recent study
also demonstrated that macrophages can exhibit a molecular
memory after digesting apoptotic cells.?” The mechanism
thereof was dependent on JNK-induced upregulation of the
damage signal Draper leading to imprinting of an anti-
inflammatory response following corpse engulfment.87
Further support of the concept that innate memory can
also be induced by danger signals within a sterile inflamma-
tion environment stems from studies within the athero-
sclerosis field. For example, monocytes exposed to
oxidized low-density lipoproteins exhibit increased expres-
sion of inflammatory cytokines following secondary chal-
lenge with triggers of activation, and this effect was reversed
by treatment with a methylation inhibitor.®® Whether such a
molecular memory imprinting of tolerant or anti-inflamma-
tory macrophages can be achieved during NAFLD might be
highly relevant to investigate in the future.

Adipose Tissue-Liver Crosstalk

The key question in the disease pathogenesis of NASH is to
understand the interorgan relationship of adipose tissue
inflammation, which drives the development of steatohepa-
titis in the liver. Notably, it is well established that adipose
tissue engages in crosstalk with the liver influencing whole
body metabolism and insulin resistance. For example, it is
known that signaling molecules (e.g., microRNAs, adipo-
kines, lipotoxic molecules, cytokines/chemokines, DAMPs,
and metabolites) released from the adipose tissue into the
portal vein can potentially trigger inflammation in the liver.
Of note, also molecules derived from the intestinal compart-
ment can have similar repercussions on pathological events
in the liver; however, this will not be addressed here as this
aspect has been extensively reviewed elsewhere.>>#° The
key issue is to define what types of molecule direct disease-
relevant events at a distant site such as the liver, as well as the
mechanistic insight into the targeted molecular pathways.
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Toxic Lipids

During obesity, adipocytes lose the capacity to efficiently
store triglyceride, leading to free fatty acid release into the
circulation and drainage to the liver.2 Hepatic fatty acid
availability induces accumulation of lipid intermediates,
especially diacylglycerol, which activates specific isoforms
of protein kinase C and hampers insulin receptor activation
and insulin-stimulated glycogen synthesis.’® Establishment
of insulin resistance further increases the flux of substrates
that promote lipogenesis and gluconeogenesis (~Fig. 2).8
Furthermore, free fatty acids activate transcription of
SREBP-1c further promoting lipogenesis and hepatic stea-
tosis.”! Additionally, some lipid moieties such as palmitic
acid, ceramides and lysophosphatidylcholine can also ham-
per the function of intracellular organelles such as the ER and
the mitochondria, triggering cellular stress or even hepato-
cyte death.® Besides their effects on hepatocytes, lipotoxic
agents can influence the activation status of hepatic macro-
phages and Kupffer cells (KCs; =Fig. 2). For example, palmitic
acid can activate TLR2 and TLR4 in macrophages, resulting in
upregulated expression of proinflammatory cytokines, via
NF-KB, AP-1, and activation of the JNK pathway.’?

miroRNAs

A typical example of powerful adipose-tissue-derived messen-
ger molecules that regulate gene expression in other organs
such as the liver is microRNAs (miRNAs). miRNAs are snips of
noncoding RNA produced intracellularly and are secreted into
the circulation either as free entities or packaged into small
vesicles called exosomes.”> They mediate their effects either by
mRNA cleavage, translational repression, or mRNA destabiliza-
tion following binding to target transcript sequences (~Fig. 2)%
As proof of concept, the ability of adipose-tissue derived miRNA

to directly regulate expression of FGF21 in the liver has recently
been demonstrated in a mouse model.**> More recent studies
also implicate a role for miRNAs in disease progression from
simple steatosis to NASH, further highlighting their relevance as
potential therapeutic targets. For example, adipose tissue
macrophages from obese animals secrete miRNA-containing
exosomes that can influence local and systemic insulin resis-
tance. In contrast, treatment of obese recipients with adipose
tissue macrophage-derived exosomes from lean mice leads to a
significant improvement in insulin sensitivity. Finally, a role for
miRNA-155 in inhibiting insulin signaling has been implicated
through a mechanism related to suppression of its target gene,
PPARY.%® Furthermore, also miRNA-221 and miRNA-222 have
been shown to be elevated in NAFLD and importantly, anti-
miRNAs of miRNA-221/222 inhibited fibrosis and improved
insulin signaling in a preclinical NAFLD model.”’

Adipokines

Leptin released by the adipose tissue compartment typically
augments hepatic transforming growth factor-f (TGF-B) and
promotes the fibrotic response, a process orchestrated by the
interplay between KCs and stellate cells (~Fig. 2).°® Leptin can
also promote acute inflammation by triggering the release of
KC-derived TNFa and trigger KC activation through oxidative
stress mechanisms (e.g., iNOS and NADPH oxidase).?8-100
Leptin also prompted elevated expression of the LPS receptor
CD14 through triggering STAT3 signaling in KCs and thereby
increased their responsiveness towards danger signals.'®! On
the other hand, adiponectin could play a more protective role
through decreasing KC sensitivity to danger signals or exhibit-
ing an antiproliferative effect on hepatic stellate cells.'> An
extensive overview of all adipokines and their downstream
functions has been recently documented.?3
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Fig. 2 Mechanisms involved in adipose tissue-liver crosstalk during NAFLD. Inflamed adipose tissue secretes a diverse array of molecules, which transfer
totheliver via the portal circulation, causing a cascade of inflammatory, metabolic, and profibrotic events. For example, the secretion of adipokines exhibits a
profibrotic effect and activates KCs. Immune compounds can trigger recruitment of innate immune effector cells and their activation. Toxicfree fatty acid
moieties can initiate ER stress and cell death pathways and can contribute to KC activation. The flux of lipid species to the liver further increases intrahepatic
lipogenesis and gluconeogenesis causing hepatic insulin resistance. Combined, these effects can lead to a metabolic dysregulation at a systemic level,

thereby promoting the development of comorbidities such as diabetes type 2, dyslipidemia, systemic hypertension, and atherosclerosis. MicroRNAs are able
to regulate gene expression in all the different hepatic cell types. ER, endoplasmic reticulum; KCs, Kupffer cells; NAFLD, nonalcoholic fatty liver disease.
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Immune-Related Compounds

The adipose tissue compartment also secretes danger sig-
nals or inflammatory parameters into the portal circulation
that can promote pathogenic events in the liver (~Fig. 2).
For example, adipose tissue-derived S100A8 and S100A9
can potentially trigger local and ectopic macrophage acti-
vation through TLR4 and NLRP3 signaling and IL-1B produc-
tion.'®> Similarly, TNFa secreted from adipose tissue
macrophages induces cell death via JNK pathways and
promotes KC activation, further perpetuating inflammation
in the liver.'® Interestingly, recent animal studies also
highlight that macrophages recruited to obese visceral
adipose tissue contribute to neutrophil recruitment in the
liver, and consequently, the development and progression
of NASH.'%> The data suggest that the elevated hepatic
neutrophilic inflammation was potentially mediated by an
increase in the neutrophil chemotactic factors CXCL14 and
CXCL16 by adipose tissue macrophages.'®® Finally, the
release of plasminogen activator inhibitor-1, a serine pro-
tease inhibitor that suppresses the breakdown of blood
clots, can promote shunting of free fatty acids to ectopic
sites such as the liver and contributes to systemic insulin
resistance and the thrombosis risk.'%® Combined, these
factors may not only promote disease progression of NAFLD
but also the pathogenesis of cardiovascular diseases and
type 2 diabetes typically associated with the disease
(=~Fig. 2).

Conclusion

Increasing evidence highlights the close association between
macrophage function and metabolism and its importance
during NAFLD. As outlined above, approaches such as func-
tional or metabolic rewiring and targeting key epigenetic
regulators within macrophages could potentially hold pro-
mise in designing novel therapeutic strategies. Of note, the
availability of small molecules capable of manipulating
metabolic and epigenetic traits may proof useful in these
studies. Furthermore, key techniques such as single-cell RNA
sequencing, single-nucleus sequencing, and/or single-mole-
cule mRNA fluorescent in situ hybridization will be crucial in
unraveling these complex mechanisms. In fact, highly excit-
ing new research using single-cell RNA sequencing has
revealed distinct populations of liver-resident monocytes/
macrophages in mouse and human tissue.'%”-1%8 It is plau-
sible that these intrahepatic macrophages are receptive to
signals and metabolites released from the adipose tissue and
therefore play an equally important role in the crosstalk
between the adipose tissue and the liver.3? It will therefore
be crucial for future studies to map these interorgan tran-
scriptome signatures at a single-cell level, not only in a naive
condition, but also during the different stages of NAFLD. The
latter may reveal molecular mechanisms that could poten-
tially be exploited to combat this disease with its epidemic
proportions.
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