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Introduction

It is well known today that a large portion of the human
genome (�70%) is transcribed and that the majority of the
produced transcripts are noncoding (ENCODE or FANTOM
consortia).1–4Among the 200,000 known transcripts, around
28,000 stem from long noncoding ribonucleic acid (lncRNA)
loci (GENCODE).5 Genome-wide association studies (GWAS)
recurrently find disease-linked genetic variation in the non-
protein-coding sequence space,6 often overlapping gene
regulatory elements like enhancers, which are actively tran-
scribed and give rise to noncoding RNAs.7,8 Concurrently,
transcriptomic analyses in patient cohorts reveal numerous
lncRNAs which are differentially expressed in diseased tis-
sues. Recent work has shown that many lncRNAs are func-
tional, leading to the notion that lncRNAs may represent a
large class of potential therapeutic agents and targets. In this
minireview,we describe lncRNAs linked to atherosclerosis in
humanswhich are expressed in cells of the arterial wall (wall
endothelial cells [ECs], vascular smooth muscle cells

[VSMCs], and circulating and resident immune cells). We
do not cover the roles of lncRNAs regulating atherosclerosis
risk factors, such as lipid metabolism, diabetes, or hyperten-
sion, or adaptation to ischemic stress.We describemolecular
roles of relevant disease-linked lncRNAs, and techniques to
therapeuticallymanipulate themat the RNA level, referred to
as RNA therapeutics, an approach that focuses on controlling
RNA form and sequence without affecting the deoxyribonu-
cleic acid (DNA) in our genomes.

LncRNA Classes and their Suggested
Therapeutic Potential

lncRNAs come in twomajor flavors, with tens of thousands of
cases in each class: (1) linear lncRNAs fromdedicated lncRNA
genes with their own promoter and terminator and (2)
covalently closed circular lncRNAs. The latter are produced
through splicing from existing primary transcripts of any
type of gene (►Fig. 1A, ►Table 1) (see Refs. 9 and 10 for
review). Linear and circular lncRNA production and
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Abstract Long noncoding ribonucleic acids (lncRNAs) have been defined as transcripts which
are > 200 ribonucleotides in size and are not translated into protein. Recent work has
shown that many lncRNAs do have specific molecular functions and biological effects,
and are involved in a growing number of diseases, including atherosclerosis. As a
consequence, lncRNAs are also becoming interesting targets for therapeutic interven-
tion. Here, we focus on lncRNAs which are expressed in the arterial wall, and describe
potential RNA therapeutic approaches of atherosclerosis by manipulating lncRNAs
without affecting genome deoxyribonucleic acid content: Starting out with an over-
view of all lncRNAs that have so far been implicated in atherosclerosis by in vivo studies,
we describe methodologies for their activation, inactivation, and RNA sequence
manipulation. We continue by addressing how artificial (nonnative) therapeutic
lncRNAs may be designed, and which molecular functions these designer lncRNAs
may exploit. We conclude with an outlook on approaches for chemical lncRNA
modification, RNA mass production, and site-specific therapeutic delivery.
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Fig. 1 Classes and functions of long noncoding ribonucleic acids (lncRNAs). (A) The positioning of lncRNA genes relative to protein-coding
genes is a classification criterion. (1) Large intergenic noncoding RNAs (lincRNAs). (2) Natural antisense transcripts (as-lncRNAs). (3) Promoter
upstream antisense transcripts (PROMPTs). (4) Enhancer RNAs (eRNAs). lncRNAs transcripts can be linear or circular. Circular lncRNAs are
produced by backsplicing of a downstream exon to an upstream exon and do not carry 5′Cap or 3′polyA tail. (B) Functions of lncRNA with
atherosclerotic relevance. Functions can be classified in cis- and trans-acting roles in transcriptional regulation in the nucleus, and in standalone
effects (others) in the cytoplasm (bottom). During transcription control, either the lncRNA transcript is functional, or the progression of the RNA
polymerase over the lncRNA gene body is the functional determinant (coinciding with chromatin-decompaction of deoxyribonucleic acid [DNA]
elements at the lncRNA locus, or with splicing of nascent lncRNA still attached to its DNA template). Abbreviations: IRES, internal ribosome entry
site; ORF, open reading frame; RIG-I, retinoic acid inducible gene I; TF, transcription factor.
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abundance are regulated and are cell-type specific. Both
linear and circular lncRNAs have been shown to be overall
functional in one pathway or another. lncRNAs effector
mechanisms are diverse and complex (►Fig. 1B), making it
nontrivial to decide which one to interfere with for therapy:

(1) lncRNAs guide, scaffold, and control transcription-
regulating protein complexes:

Many lncRNAs are known to affect transcription of RNAP I
and II target genes, often by impacting chromatin readers
and writers in gene promoter control.11 Examples with
relevance for atherosclerosis are ANRIL, H19, lincRNA-p21,
MALAT1, MEG3, NEAT1, or TUG1 (►Table 2). lncRNAs affect
transcription in cis, or also in trans, especially if their steady-
state abundance is large and allows diffusion of the lncRNA
throughout the nucleoplasm. Mechanistically, lncRNAs can
recruit chromatin remodelers to target genes via hybridiza-
tion to DNA, or control their enzymatic activity, or function
as negative decoys. lncRNAs can also regulate the transcrip-
tion of microRNA and other noncoding RNAs (a process
distinct from RNA sponging, see 5).

(2) Enhancer RNAs/eRNAs:

Active enhancers for gene promoters have recently been
found to be transcribed and to give rise to enhancer lncRNAs
(eRNAs). These can confer enhancer activity by capturing the
promoter-contacting Mediator protein complex.12 Examples
of eRNAs important for atherosclerosis are HOTTIP, LEENE,
and SMILR (►Table 2). Depending on enhancer, both, the
eRNA and the chromatin-opening during transcription of the
eRNA locus can be therapeutically relevant.11

(3) Antisense lncRNAs/asRNAs:

Some lncRNA genes reside within protein-coding gene
units, even overlapping coding exons in antisense. Effects on
host genes can be positive and negative. Examples with
relevance for atherosclerosis are ANRIL, HOXC-AS1, MALAT1,

and SENCR (►Table 2). Globally, antisense transcription
dampens transcriptional noise and is not part of signal-
dependent expression control.13 Therapeutic programming
through asRNAs is complex, because it may require engi-
neering the genomic locus.

(4) LncRNAs in subnuclear bodies:

Some lncRNAs can affect other genes through their archi-
tectural role in assembling eu- and heterochromatin sub-
nuclear territories. Examples are MALAT1 in Polycomb
bodies,14 or NEAT1 in paraspeckles.15 These indirectly affect
gene expression and pre-messenger RNA (mRNA) processing,
respectively, depending on the vicinity of genes to these sub-
nuclear bodies. The broadness of the effect and the complexity
of the processmake itdifficult to achieve specificity in therapy.

(5) lncRNAs as microRNA sponge:

Although many publications implicate endogenous
lncRNAs asmicroRNA sponges (and as inhibitors ofmicroRNA
availability and function, therein), many of these reports are
met with criticism because evidence often bases on uncon-
trolled lncRNAoverexpression. Few lncRNAspass the stoichio-
metric requirements for sponging, though, as most are
endogenously not sufficiently highly expressed compared
with the number of corresponding microRNA targets and
copy numbers ofmicroRNAs per cell (see Ref. 16 for overview).

(6) lncRNAs which bind and regulate proteins:

Mass spectrometric analyses showed that a single lncRNA
can bind dozens of different proteins in the nucleus and in
the cytoplasm, and thereby affect multiple molecular
mechanisms at once17: This concept is best seen for well-
studied lncRNAs like XIST, which was found to bind > 80
proteins, indicating that it participated in DNA and histone
modification and RNA remodeling machineries.17 With rele-
vance to atherosclerosis, circular ANRIL (circANRIL) binds to
the rRNA processing PeBoW complex for protein translation

Table 1 Dichotomy of linear and circular long noncoding RNAs

Linear lncRNAs circRNAs (3′-5′-linked exon-containing circular RNAs)

> 200 nucleotides (nts) in length

Non-protein-coding (lacking open reading frames > 100 codons)

Tens of thousands of cases

Many isoforms per case

Produced with cell type- and context-specificity

Mostly lower abundance per cell than average mRNAs

Considered to be mostly functional

Average length �1,000 nts Average length �550 nts

Nuclear enrichment (not all) Cytoplasmic enrichment (not all)

Mostly carrying 5′Cap and 3′ polyA tails
(depending on lncRNA class)

Generically lacking 5′Cap and 3′ polyA tails due to covalent 3′-5′
backbone linkage after backsplicing

Produced by transcription from unique
transcriptional units with their own promoter

Produced by spliceosome from primary transcripts (mRNAs or lncRNAs)

Abbreviation: lncRNA, long noncoding ribonucleic acid.
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control,18 whereas linear ANRIL interacts with members of
the PRC119 as well as with the PRC2 Polycomb-repressive
complexes19–21 during presumptive transcription control of
target genes (►Table 2). In another case, TUG1 can serve as
competing endogenous RNA, and also promote gene activity
by chromatin fiber positioning,14 and was even suggested to
regulate cytoskeletal contractility by enhancing the cyto-
plasmic activity of Ezh2 toward methylating α-actin22,23

(►Table 2). Conceptually, a lncRNA may also hierarchically
regulate a single transcriptional regulator, thereby influen-
cing, in one step, a range of downstream genes and cellular
processes. For example, NRON participates in scaffolding and
restraining the nuclear factor of activated T cell (NFAT)
transcription factor in a latently active form in the cytoplasm
in unstimulated resting T cells.24,25 Transcription factor
control is recurrently ascribed to many lncRNAs
(►Table 2). Together, there is potential for lncRNAs in tuning
protein complex activity as “RNA-drugs,” akin to small-
molecule drugs, but lncRNA-dependent activity changes in
lncRNA:protein complexes are difficult to study, and so far
not understood in any case in mechanistic and structural
detail.

(7) Protein translation from noncoding RNA:

Despite being nonprotein-coding by definition, some
lncRNAs do contain small open reading frames (sORFs), some
of which can be translated. Atherosclerosis-specific functions
of sORFs are so far unknown. Still, protein expression is, in
principle, possible from, both, linear andcircular lncRNAs, if the
required translation-initiating signals are artificially incorpo-
rated into synthetic constructs26 (see chapter on “Disease
Therapy by Artificial (Nonnative) Designer lncRNAs” below).

(8) Bifunctional noncoding mRNAs:

The clear separation between coding and noncoding RNA
is blurring and somemRNAs carry functions also as untrans-
lated RNAs. For example, the steroid receptor RNA, which is in
principle protein-coding, also functions as lncRNA-in chro-
matin regulation at specific target genes in the nucleus.27,28

And p53, as noncoding RNA, binds and affects the activity of
the MDM2 enzyme through structural RNA motifs.29 In
another more indirect case, under stress cohorts of several
hundred mRNAs become transcribed from alternative
upstream transcription start sites, a process that blocks their
transcription from the actual promoters. This shift leads to a
novel longer RNA isoforms that include a short upstream
ORFs with a new stop codon, whose translation blocks the
translation of the actual functional protein encoded in a
given locus.30 Thereby, functionality lies less in an active role
as cis/trans-acting noncoding RNA, but more in indirect
effects of translation control on the proteome.31,32 These
findings expand the operational space for noncoding RNA
therapeutics (►Table 1).

Known Roles of lncRNAs in Atherosclerosis

Limiting our review to those lncRNAs expressed in the
vascular wall and functioning in atherosclerosis, 31 lncRNAs

have so far been implicated in vascular cell types (►Table 2).
Most were initially found because of being differentially
expressed in patient cohorts. Only a few (ANRIL, circANRIL,
MIAT, H19, LINC00305), were identified by unbiased GWAS.
Fifteen of the listed lncRNAs were studied in immune cell
types (such as peripheral blood monocytes, circulating and
vascular wall macrophages, or foam cells), 17 in ECs, and 13
in VSMCs.

In the following, we highlight lncRNAs from ►Table 2

where in vivo evidence for therapeutic potential exists. Four
groups may be distinguished: (1) lncRNAs with a documen-
ted therapeutic benefit for atherosclerosis, (2) lncRNAs with
a benefit for other vascular diseases, (3) lncRNAs essential for
normal vascular biology, and (4) lncRNAs generally involved
in inflammatory signaling (with expected relevance for
atherosclerosis).

1. In vivo evidence for therapeutic a potential in atherosclero-
sis has been determined only for one lncRNA:Neat1, awell-
known lncRNA,76 is upregulated in plaques, and knocking-
out Neat1 in mice decreased neointimal lesions in an
atherosclerosis model.64 Since a full-body mouse knockout
was analyzed, it remained unclear inwhich cell type Neat1
functioned.64 A function in VSMCs was tested in vitro:
During carotid artery injury, VSMCs usually dedifferentiate
from a quiescent to a proliferative/synthetic phenotype,
and Neat1 promoted this atherogenic switch by repressing
the function of the chromatin activator WDR5/MLL on
serum response factor (SRF) target genes.64 Consequently,
therapeutically reducing NEAT1 in VSMCs in lesions might
be useful for antagonizing the proatherogenic myocardin-
SRF-dependent phenotypic switching of VSMCs,64,77 or the
proatherogenic oxidized low-density lipoprotein (ox-LDL)-
dependent inflammatory signaling in macrophages.78

However, given that VSMC proliferation and matrix synth-
esis are in other contexts also considered beneficial (for
example, for plaque repair or for fibrous cap stability) (see
Ref. 79 for review),morework isneededbeforeNEAT1 canbe
considered for cell-type-specific therapy.

2. Three lncRNAs showed therapeutic potential at least
regarding other vascular diseases: Downregulation of H19
ameliorates aneurysms,38 and downregulation of Miat,62

circHipk3,33 or cZNF60934 ameliorates diabetic retinopathy.
3. Two lncRNAs,MeXis61andMalat1,57,80,81havebeenstudied

by knockouts in mice. Nevertheless, the therapeutic poten-
tial of these lncRNAs remains untested: In the first case,
MeXis levels were found to increase by ox-LDL stimulation
ofmacrophages,uponwhich this lncRNA induced theAbca1
transporter and cholesterol efflux.61 Since knockout of
MeXis led to increased plaque growth in bone marrow
reconstitution experiments of ldlr�/� mice, therapeutically
increasing MeXis (human TCONS00016111) expression,
especially in patients with single-nucleotide polymorph-
isms (SNPs) in this gene,61 might potentially be therapeu-
tically relevant. Care is advised,however,when interpreting
data for Malat1, which has opposing roles in different
cardiovascular conditions: On the one hand, MALAT1 was
found to be downregulated in the plaque,55 and knocking-
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out Malat1 in mice was recently found to trigger immune
dysregulation and atherosclerosis in an apoe�/� mutant
background, remarkably even without the challenge by a
coronary artery disease-triggering fat-rich diet.81 With a
similar direction of effect, Malat1 knockouts developed
larger infarcts in brain ischemic mouse models.82,83 These
two studies suggested that it might be worthwhile to
normalizeMALAT1 through overexpression during therapy.
Yet, in other contexts, such as aortic thoracic aneurysms or
vasculardiseases of theMarfan syndrome, beneficial effects
seemed to lie rather in MALAT1 inhibition, and not in its
induction.57 Also, bluntly overexpressingMalat1may have
limitations because it is known from other studies that
increases in MALAT1 would promote cancer by effects on
cell migration, metastasis, and angiogenesis in hypoxic
conditions.84,85 Summarizing, different studies showed
context- and cell type-dependent therapeutic require-
ments forMALAT1. Consequently, further studies and tools
for achieving tissue tropism in delivering therapeutic
lncRNA only to specific cells, or for conditional activation/
inactivation of lncRNAs in specific conditions and cells, will
be required.

4. Twelve lncRNAs have been indirectly implicated in athero-
genesis through in vitro studies in cultured vascular
cell types, or through in vivo insight in their effectors. A
major group in this class comprises 6 lncRNAs involved
in modulating inflammatory signaling in vivo (lincRNA-
Cox2, PACER, Lethe, THRIL, NRON, STEEL) (►Table 2). These
have considerable therapeutic potential because of the
intimate contribution of inflammation to atherogenesis
(see following chapter on “Disease Therapy by Manipulat-
ing Endogenous lncRNAs”.). The rest of lncRNAs in this
group control ECs (Miat), VSMCs (Myoslid), or both
(Gas5, lincRNA-p21, Meg3), through functioning in diverse
processes.

Translating Molecular Function to
Therapeutic Value

In the following, we summarize key therapeutic principles
centered on lncRNAs (►Fig. 2A). Thereby, we distinguish (1)
therapeutic approaches exploiting endogenous lncRNA func-
tionality, and (2) approaches based on artificial (nonnative)
designer lncRNAs.

Disease Therapy by Manipulating Endogenous
lncRNAs
During the onset of disease, lncRNAs expression levels
change in cell- and context-dependent modes. For therapy,
lncRNAs that are overactive in disease can be normalized by
knockdown approaches. Gain-of-function approaches or
RNA sequence correction can be used to antagonize dis-
ease-linked changes at the RNA level in other lncRNAs.

(1) Transcriptional control is, so far, the major known
function of noncoding RNAs. Twenty-one of 31 athero-
sclerosis-linked lncRNAs function as guides, scaffolds, and
regulators of chromatin factors (►Table 2). In contrast toTa
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small-molecule drugs which inhibit broadly-acting chro-
matin factors (such as DNA/histone methyltransferases,
demethylases, acetylases, and chromatin readers),86 epi-
genetic therapy through manipulating lncRNA levels and
sequence may have the advantage that it allows, in
principle, to sequence-specifically control specific subsets
of target genes. Separately, it becomes a therapeutic
option to guide generic repressor proteins (KRAB- and
Chromo-domains) or activators (VP16) to promoters of
disease-linked genes via noncoding RNAs.87,88

(2) Controlling splicing is equally important for therapy as
transcription control. Splice-regulating antisense oligo-
nucleotides (ASOs) can be used to tune splicing in mRNAs
and lncRNAs. Additionally, a new therapeutic front was
opened when it was found that cotranscriptional circRNA
biogenesis interfered with linear RNA biogenesis.89–91 A
well-studied case is ANRIL, transcribed from Chr9p21 in
humans, the most prominent atherosclerosis risk loci
known so far.18,92 Linear ANRIL levels positively correlate

with atherosclerosis severity, while circANRIL levels anti-
correlate with atherosclerosis.18,21 While linear ANRIL
expression causes transitions reminiscent of atherogen-
esis (inflammation, overproliferation, adhesion in macro-
phages and VSMCs),19–21,93–95 circANRIL mediates
opposite effects by blocking proliferation and enhancing
cell death rates.18 Thus, oneway to decrease atherosclero-
sis risk would be to coincidently decrease linearANRIL and
increase circANRIL, because linear splice forms are known
to be increased and circular isoforms decreased in ather-
osclerosis. How to therapeutically re-engineer the wild-
type splicing pattern in a locus is highly complex, as
learned fromdiseases likemuscular dystrophies that arise
from splicing defects (see Ref. 96 for a recent review), and
it has not yet been practically achieved to simultaneously
correct levels of linear and circular ANRIL. Theoretically,
and confined to RNA-centric approaches, it would be
possible to deliver in vitro produced synthetic circANRIL
together with ASOs that target exonic ANRIL sequences

Fig. 2 Concepts and tools for using long noncoding ribonucleic acids (lncRNAs) of the arterial wall in antiatherogenic therapy. (A) Concepts for
lncRNA therapy. lncRNA genotype and the ratio of linear and circular lncRNA transcripts must be considered during therapy (left panel). lncRNAs
can be therapeutically used to correct the primary molecular causes of disease or to block the pathologically induced cellular effector pathways
that confer plaque growth (right panel). Another option would be to, more generally, kill-off disease-causing cells in plaques (right panel). The
healthy cell state is denoted in yellow, the diseased state in red. (B) Tools for manipulating lncRNA levels in cells, classified under LOF (loss-of-
function) and GOF (gain-of-function) approaches. Target RNAs are labeled in green. Targeting RNAs or ribozymes are marked in red, targeting
deoxyribonucleic acid (DNA)-like antisense oligonucleotides (ASOs) in blue. Scissors denote target RNA cleavage by nucleases. Abbreviations:
CRISPRa, CRISPR activation for promoter activation; dCas9VP16, inactive Cas9 fused to the generic herpes simplex viral protein 16 (VP16)
activation domain; dCas9Tet1, inactive Cas9 fusion with catalytic domain of Tet1 (DNA 5-methylcytosine demethylase); dCas13ADAR2,
catalytically inactive Cas13 RNA-guided RNase fused to the ADAR2 (adenosine deaminases acting on RNA 2); gRNA, CRISPR guide RNA; pA – poly
(A) tail; REPAIR, RNA Editing for Programmable A to I Replacement; RNAi, RNA interference.
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that are not contained in the circular isoforms. Other
optionswould be to use splice-changing ASOs, that inhibit
forward splicing, and promote intron-backfolding for
assisting backsplicing and circularization. Finally, deeper
insight into how specific atherosclerosis-linked SNPs in
ANRIL affect splice site choice92 (e.g., through RNA-bind-
ing proteins), may allow to get a grip on deliberately
affecting circularization.
(3) Proinflammatory signaling drives atherogenesis and
various lncRNAs regulate inflammation-dependent gene
expression in different cell types. For example, during
nuclear factor kappa B signaling in macrophages,
LincRNA-Cox2 represses numerous genes by scaffolding
RelA-p50 into SWI/SNF complexes.51 In contrast, PACER
upregulates COX-2, a proatherogenic cyclooxygenase, by
interferingwith theformationof repressivep50:p50homo-
dimers,66 and Lethe inhibits RelA binding to DNA.47 Other
lncRNAs are active in T cells or ECs: NRON scaffolds the
cytoplasmic IQGAP1/NFAT1 protein complex, thereby
restraining calcineurin from activating the proinflamma-
tory NFAT1 transcription factor in T cells.24,97 In ECs, STEEL
recruits the activating poly-adenosine diphosphate ribosy-
lasePARP1toKLF2andeNOS.71DepletingPARP1 isknownto
limit atherosclerotic plaque growth,98 suggesting that inhi-
biting STEEL could be interesting. Together, upregulating
Lethe and downregulating lincRNA-Cox2, PACER, and THRIL
maybetherapeuticallyuseful (seeRefs. 99and 100 for review
on atherogenic inflammation).

Disease Therapy by Artificial (Nonnative) Designer
lncRNAs
To achieve lncRNAs with novel functionality, endogenous
RNA sequence can be altered, or synthetic constructs are
overexpressed. These can contain sequence combinations
not existing in endogenous RNA, or stem from in vitro
evolution routines:

(1) Although microRNA sponging is not considered a
common endogenous function for lncRNAs, therapeuti-
cally overexpressed lncRNAs are more abundant than
endogenous RNAs and may very well become sponges.
Such artificial sponges can be optimized by increasing
microRNA-binding sites, and by optimally spacing
them.101 Furthermore, if target-matched sites are shor-
tened from 8 to 6 nt, microRNA degradation happens
instead of sponging, opening therapeutic possibilities
even further.16 circRNAs may become the superior type
of sponges because circRNAs are more stable against
cellular exoribonucleases than linear RNAs.9,10

(2) Artificial RNA aptamers, as high-affinity binders of
biomolecules, constitute a large therapeutic class. Endo-
genous lncRNAs fold into secondary structures, and more
so than mRNAs.102 Notable are conserved stem-loop
structures in protein-interaction interfaces. With a novel
in vitro sequence evolutionmethods in development (e.g.,
SELEX with Pol θ CS13 ribonucleotidyl transferases that
deliver random RNA libraries and tolerate 2′-functiona-
lized ribonucleotides103), it becomes tangible to engineer

protein- or metabolite-binding RNAs, much like small
molecules are classically used as protein-targeting
“drugs.” An alternative application of RNA aptamers is
to bind surface receptors in diseased cells and confer cell
entry of drugs and effectors fused to RNA.104

(3) Therapeutically relevant peptides can be expressed from
designer lncRNA: Although the vast majority of linear and
circular lncRNAs are endogenously not translated to poly-
peptides by ribosomes, there are exceptions: small ORFs
encoding micropeptides are known in lncRNAs, and some
have cardiovascular relevance (LINC0094 8!myoregulin;
SMIM6!endoregulin;LOC100507537!DWORF).105Also, a
tiny fraction of native circRNAs can be translated if non-
coding RNA segments in the circle fold into internal ribo-
some entry sites (IRES) to drive translation initiation
(circZNF609).26 Therefore, one future therapeutic option
would be to circularizemRNAtoobtain stable expression of
therapeutic proteins froma designer circRNAcontaining an
artificial IRES sequence.
(4) Immunotherapy of atherosclerosis by boosting innate
immune signaling: One future option for atherosclerosis
therapy is to boost specific branches in innate-adaptive
immune system cross-talk, a concept stemming from
research on antitumor strategies (see Ref. 106 for overview).
This may potentially supplement the more classical anti-
inflammatory strategies to fight atherosclerosis.107 Recent
insight shows that also noncoding RNAmay have a place in
immunotherapy: First, externally provided synthetic non-
coding RNAorRNAanalogs are already used as adjuvants to
increase the immunogenicity of peptide-based vaccination,
by virtue of their ability to stimulate cytoplasmic innate
immunity receptors RIG-I and MDA5 as “nonself.”108–110

Vaccinations, such as with the tolerizing apoB100 epi-
tope,111 might in the future benefit. Controlling RIG-I
signaling, as far as known from the cancer field, may well
also be therapeutically useful for atherosclerosis therapy.
The aim here may be to induce programmed cell death by
natural killer cells, to enhance phagocytosis by dendritic
cell subtypes, to leverage the contribution of specific T cell
subtypes in resolving lesions, and to promote neoantigen
presentation to lymphocytes.112 A broad MDA-5 and RIG-I
activation by RNA is, however, certainly not the goal,
because this is known to promote proinflammatory signal-
ing inECsandmacrophages113orosteogenic calcification in
aortic VSMCs.114 As of yet, too little is known about the
cross-talk between innate115 and adaptive immunity116 in
atherosclerosis. Therefore, it is open whether it would be
beneficial to transfect synthetic noncoding (uncapped or
circular) RNAs as therapeutic triggers of RIG-I 117,118 into
specific protective immune cell types, or whether, oppo-
sitely, it is the reduction of endogenous RIG-I signaling that
may bear protective effects.

Molecular Techniques for lncRNA-Based
Therapy

In the following, we briefly describe different modern tech-
nologies to knockdown, overexpress, and study aberrantly
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expressed or spliced lncRNAs or to change their sequence
content for the purpose of therapy (►Fig. 2). On a general
note, drug development in atherosclerosis often starts out
with disease modeling in animals because not all relevant
disease-initiating cell–cell interactions can be recapitulated
in cell culture models.

Therapeutic Modulation of lncRNA Levels In Vivo
In the first place, identifying lncRNAs with potential thera-
peutic relevance necessitates finding animal orthologs of
human disease-linked lncRNAs. In atherosclerosis, this can
be straightforward (Malat1, Miat, Rncr3, H19), or more com-
plicated (ANRIL119), because evolutionary selective constraint
for the majority of lncRNA sequences is modest at most, and
exon–intron structure changes accordingly faster than for
protein-coding genes.120 If the genomic structure of an ather-
osclerosis-relevant locus is overall conserved but yields non-
coding RNA with only limited conservation, humanizing
synthetic disease-linked regions in micewith relevant human
lncRNAs through knock-ins may be a viable approach.

If mouse lncRNA orthologs exist, knockdown techniques
can be directly executed, involving lncRNA depletion via the
RNAi machinery (mostly in the cytoplasm), RNase-H1-type
enzymes (also in the cell nucleus), or RNA-cutting ribozymes
(►Fig. 2B). Conversely, lncRNA overexpression occurs from
plasmids or viral vectors. For circRNA biogenesis from DNA
vectors, in many studies, reverse complementary intronic
repeats are routinely placed adjacent to circularizing exons,
which support backsplicing through backfolding (see Refs. 9

and 10 for review). An interesting new concept are self-
amplifying RNA “replicons,” derived from disarmed, cyto-
plasmic, self-replicating RNA-alphaviruses, which can make
RNA therapy permanent without the need for genome
integration of RNA-generating vectors.121 Another novel
approach employs guide RNAs to target heterologous acti-
vator or repressor domains to lncRNA promoters, which
causes up-/downregulation of transcription efficiency.122

Apart from expression via vectors, lncRNAs can also be
locally provided to the target tissue, which is the arterial
lesion-containing vessel wall, by transfection of in vitro-
produced RNA molecules: One problem of this approach is
that routine solid-phase chemical RNA synthesis is still size-
limited (currently 100 nts). Thus, lncRNAs, due to their size,
are often transcribed by T7 RNA polymerase in vitro. Also,
RNA circularization is possible in vitro. Thereby, linear T7
transcripts are circularized, either chemically through arti-
ficial linkers (e.g., via phosphotriester or click chemistry) or
enzymatically through 2′-5′ or 3′-5 backbone linkage (via T4
DNA/RNA ligases, tRNA ligases, or ribozymes such as group II
intron derivatives) (see Ref. 123 for review). Recombinant
expression in heterologous hosts (Escherichia coli, yeast)
would allow higher linear or circular lncRNAs yield than
achieved by in vitro transcription, but so far suffered from
stability issues and heterogeneity of RNA ends. Novel uncon-
ventional bacterial hosts, such as the marine Rhodovulum
sulfidophilum, circumvent some problems, as they secrete
nucleic acids but do not contain RNases in their extracellular
space.124 Together, novel expression hosts, RNA affinity tags,

and methods like exponential in vitro synthesis of RNA
through polymerase chain transcription125 allow producing
sufficient amounts of high-quality RNA for therapy (see Ref.
126 for an overview).

Designing lncRNA Function by Modulating RNA
Sequence
In addition to modifying lncRNA levels, a second therapeutic
approach is to create designer lncRNAs, whose RNA
sequence, structural motifs, or posttranscriptional modifica-
tions are purposely engineered. Enabling sequence modifi-
cations in vivo, the technical evolution of Cas enzymes has
recently made a significant step forward. Instead of modify-
ing DNA via the classical Cas9 enzymes, Cas13 nucleases
were found to target RNA. In one application, Cas13 deriva-
tives allow to purposefully destruct RNAs.127,128 But Cas13
derivatives also serve to modify RNA sequence when fusing
Cas13 to the ADAR2 enzyme: The latter confers adenosine
deamination to inosine in a target RNA, with inosine being
functionally equivalent to guanosine in translation and spli-
cing (termed REPAIR tool in►Fig. 2B).128 Linking other RNA-
modifying enzymes to Cas13 has potential to modify target
RNAs in different ways.

A range of artificial chemical RNA modifications (both at
bases and in the phosphodiester backbone) have been che-
mically introduced in synthetic therapeutic nucleic acids,
and benefits for therapy have been determined, mostly from
experience with ASOs. Some modifications improve resis-
tance against nucleases, increase potency, or improve phar-
macokinetic properties and cellular uptake (see Ref. 129 for
review). Covalent modifications, as used in ASOs, can theo-
retically be applied equally to in vitro synthesized lncRNAs,
such as links to the ribose 2′ position (2′-fluoro, 2′-O-
methoxyethyl, or cEt-constrained 2′-O-Ethyl). But to date,
chemically modified lncRNAs have not yet been used for
therapeutic purposes, in part because anymodificationsmay
negatively affect interactions with proteins or client RNAs.
On the other hand, insight into the roles of some endogen-
ously occurring posttranscriptional chemical modifications
of RNAs (both coding and noncoding) are emerging, paving
the field of “epitranscriptomics,” as allusion to the so impor-
tant concept of epigenomic control. For example, methyla-
tion (m5C, m6A), pseudouridylation (Ψ), and editing
(deamination of A-to-I), known since more than 50 years,
have more recently been functionally related to stability
(also) of noncoding RNA,130 to the formation of higher-order
structure necessary for contact with proteins,131,132 to spli-
cing,133,134 to RNA backbone rigidity135 and base-pairing
features,136 and functional recognition of microRNA binding
sites.137,138 But this knowledgehas not yet been exploited for
engineering lncRNA therapy.

Structure–Function Studies in Designer
lncRNAs

In comparison to modulating RNA sequence and covalent
modifications on RNA, designing RNA function through
engineering secondary and tertiary RNA folds is even more
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complex. Although several native RNAs have evolved to reg-
ulate proteins, engineering a protein-activity-regulating
lncRNA by bioinformatically designing RNA structure de
novo is not yet possible. However, exploring native RNA:
protein complexeswithnewstructuralmethods (e.g. cryoEM),
and through chemical probing, nowevenpossibly inside living
cells (PARIS, SHAPE-MaP),139will help to control how lncRNAs
bind, scaffold, and regulate their molecular targets.

Hand-in-hand goes the development of novel technolo-
gies for profiling the molecular detail of lncRNA interactions
with chromatin factors in DNA complexes, a major role of
lncRNAs. Techniques for this structure–function analysis at a
higher level include ChIRP, CHART, RAP, and ChOP (see Ref.
140 for an overview). Insight from these technologies is
central because knowing the chromosomal lncRNA targets
in disease-relevant cell types is necessary to achieve speci-
ficity in lncRNA therapy.127,128

Potential Side Effects during Systemic
lncRNA Therapy and Therapeutic
Implications

If thoroughly studied, virtually every lncRNA becomes
known to engage multiple effector mechanisms in cell
type-specific manners. Consequently, side effects are likely
in systemic and long-lasting therapy, as applying to athero-
sclerosis. For example,MALAT1 levels drop in plaques,55 and
Malat1 knockouts developed atherosclerosis,81 suggesting
that therapeutic upregulation of MALAT1 might ameliorate
disease. On the other hand, MALAT1 is upregulated in cancer
cells and is cancer-promoting.84 Such dichotomy necessi-
tates tools for conditional lncRNAdelivery. Similar disastrous
side effects and dangers regarding cancer development and
metabolic syndrome apply to circHIPK3 and Gas5.

To avoid these side effects, and also to counteract off-
targeting, conditional delivery schemes are necessary: For
guiding their expression in atherosclerotic lesionswithin the
vascular wall, synthetic lncRNAs can be conjugated to pla-
que-homing peptides (e.g., Ac2–26/LyP-1),141 antibodies or
lipid/lipoprotein carriers (high-density lipoprotein),142 or be
packaged in lipid vesicleswith targeting cues on their surface
(e.g., CCR receptors). Themost modern relevant approach for
conditional expression in biomedicine is localized delivery
through photo- and optoacoustic approaches.143 An alter-
native is to elute RNA from coated stents or fromperivascular
hydrogels. Not last, lncRNA activity can, in principle, be
controlled by laser light, when lncRNA are synthesized
with optogenetically regulatable backbones or caging
groups,144 but optogenetic control of lncRNAs has not yet
been performed in therapy in vivo, so far.

Conclusion

To date, around 70 clinical trials are known to center on RNA
therapeutics, and these exclusively involve small interfering
ASOs/siRNAs and therapeutic mRNAs, but not yet
lncRNAs.145 Despite the relatively slow translation of RNA-
centered therapy into the clinics,145 RNA therapeutics is

gaining renewed interest, not last through novel insights
into lncRNA biology. Further, the ease by which candidate
lncRNA can be screened and optimized in their interaction
with disease targets surpasses the work with classical small
molecule drugs whose targeting to proteins is complex to
predict, control, and modify. Any future therapy with
lncRNAs will benefit from insight into RNAmass production,
chemical modifications, and cellular delivery schemes devel-
oped for ASOs/siRNAs over the last decades. As many of the
previously unknown cell subtypes that contribute to plaque
growth currently becomemolecularly characterized bynovel
methods like mass spectrometric cytometry,146–148 and as
methods for RNA chromatin profiling at single-cell resolu-
tion from limited tissue sources emerge,149 the vision of a
highly specific lncRNA-centered therapy in atherosclerosis is
materializing, possibly sooner than expected.
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