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Abstract Background Deep Brain Stimulation (DBS) is an established treatment option for
refractory dystonia, but the improvement among the patients is variable.
Objective To describe the outcomes of DBS of the subthalamic region (STN) in
dystonic patients and to determine whether the volume of tissue activated (VTA) inside
the STN or the structural connectivity between the area stimulated and different
regions of the brain are associated with dystonia improvement.
Methods The response to DBS was measured by the Burke-Fahn-Marsden Dystonia
Rating Scale (BFM) before and 7 months after surgery in patients with generalized
isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN
volumes fromboth hemispheres was correlated with the change in BFM scores to assess
whether the area stimulated inside the STN affects the clinical outcome. Structural
connectivity estimates between the VTA (of each patient) and different brain regions
were computed using a normative connectome taken from healthy subjects.
Results Five patients were included. The baseline BFMmotor and disability subscores
were 78.30�13.55 (62.00–98.00) and 20.60� 7.80 (13.00–32.00), respectively.
Patients improved dystonic symptoms, though differently. No relationships were
found between the VTA inside the STN and the BFM improvement after surgery
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INTRODUCTION

Deep Brain Stimulation (DBS) is an already established
treatment option for refractory dystonia.1,2 Its main targets
are currently the globus pallidus internus (GPi) and the
subthalamic nucleus (STN) with similar motor and disability
outcomes, � 50 to 70% in isolated generalized/segmental
inherited/idiopathic dystonia.1,2 However, some patients
still have poor outcome results (< 20% improvement in
specific motor and disability scales like the Burke-Fahn-
Marsden Dystonia Rating Scale [BFM]).3

Globus pallidus internus DBS usually needs high stimulation
energy, which results in shorter battery life. In addition, GPi
stimulation canelicit stimulation-induced symptoms like freez-
ing of gait and other fine motor and parkinsonian features.4 In
this scenario, the STNhas emerged as an interesting target since
lower stimulation energy is needed and the nucleus has several
connections to different circuits in the brain. Nevertheless, the
results also reveal wide variations in treatment outcome,5–8

which highlights the need to determine why some patients
improve after surgery and others do not, that is, which factors
predict individual patient responsiveness.

Recent studies have revealed that the benefit of DBS may
be based on the modulation of distant brain areas that are
connected to the stimulation site.9,10 This distant influence
of DBS can be measured by studying the fiber tracts that
structurally connect both the volume of the stimulated
tissue and the corresponding distant area. It is hypothesized
that the connectivity of the stimulation site to a specific
brain network may be responsible for some of the DBS
response. Here, we describe clinical outcomes of DBS that
was applied to a few dystonic patients with idiopathic/
inherited isolated generalized dystonia patients in an at-
tempt to determine whether the electrode location and the
connectivity profile between each patient correlates with
dystonia improvement.

METHODS

The present study was approved by our Institutional Ethics
Review Board CAPPESQ (protocol number #48607515.5.00
00.0068), and all patients gave written informed consent
before being included in the study.

(p¼0.463). However, the connectivity between the VTA and the cerebellum structur-
ally correlated with dystonia improvement (p¼0.003).
Conclusions These data suggest that the volume of the stimulated STN does not
explain the variance in outcomes in dystonia. Still, the connectivity pattern between
the region stimulated and the cerebellum is linked to outcomes of patients.

Resumo Antecedentes A estimulação cerebral profunda (ECP) é um tratamento estabelecido
para distonias refratárias. Porém, a melhora dos pacientes é variável.
Objetivo O objetivo do estudo foi descrever os desfechos da ECP da região do núcleo
subtalâmico (NST) e determinar se o volume de tecido ativado (VTA) dentro do NSTou
se a conectividade estrutural entre a área estimulada e diferentes regiões cerebrais
estão associadas a melhora da distonia.
Métodos A resposta da ECP em pacientes com distonia generalizada isolada de
etiologia hereditária/idiopática foi mensurada pela escala de Burke-Fahr-Marsden
Dystonia Rating Scale (BFM) antes e 7 meses após a cirurgia. A soma dos volumes
do NST nos dois hemisférios foi correlacionada com amelhora nos escores do BFM para
avaliar se a área estimulada dentro do NST afeta o desfecho clínico. A conectividade
estrutural estimada entre o VTA de cada paciente e as diferentes regiões cerebrais
foram computadas usando um conectoma normativo retirado de indivíduos saudáveis.
Resultados Cinco pacientes com idade de 40,00� 7,30 anos foram incluídos. O BFM
motor e de incapacidade basal eram de 78,30�13,55 (62,00–98,00) e 20,60� 7,80
(13,00–32,00), respectivamente. Os pacientes melhoraram com a cirurgia, mas com
variabilidade. Não houve relação entre o VTA dentro do NST e a melhora do BFM após a
cirurgia (p¼0.463). Entretanto, a conectividade estrutural entre o VTA e o cerebelo
correlacionaram com a melhora da distonia (p¼ 0.003).
Conclusão Os dados sugerem que o VTA dentro do NST não explica a variabilidade do
desfecho clínico na distonia. Porém, o padrão de conectividade entre a região
estimulada e o cerebelo foi relacionada com o desfecho dos pacientes.
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Patients
Patients had generalized isolated dystonia of inherited/idio-
pathic etiology,11 and all underwent DBS surgery due to
refractory motor symptoms. Patients were excluded if they
were<18 years old, had other types of dystonia, or did not
consent to participate.

Study design
The present prospective study evaluated patients before and
7 months after surgery. First, patients were assessed before
surgery. Then, patients were evaluated with the BFM scale,
registering the motor (0–120) and disability subscale.

Surgical technique
Before surgery, contrast-enhanced volumetric T1, T2, and
susceptibility-weighted imaging (SWI) MRI scans were
obtained in axial sections with a 1.5 T Siemens Espree
scanner (Siemens, Munich, Germany). A stereotactic frame
(Aimsystem, Micromar, Brazil) was placed on the head of the
patient under local anesthesia, and a stereotactic contrast-
enhanced computed tomography (CT) scan was performed.

Registration of image sets and target planning was subse-
quently performed using MNPS Planning Software (MEVIS
neurosurgery planning system, MEVIS, Brazil). Based on
diffusion-weighted imaging (DWI), tractography is a tech-
nique with great potential to characterize the in vivo ana-
tomical position and integrity of white matter tracts.12 It has
proven its worth in neuroscience, neurology, and neurosur-
gery.13–15 Furthermore, it is an invaluable tool in investigat-
ing structure-function relationships. Therefore, this
technique was used to visualize the structural connectivity
in the brain.16

The STN target was chosen based on the atlas-based
indirect targeting method and direct MRI-based target-
ing.17,18 Coordinates related to the anterior commissure-
posterior commissure line were used, and bilateral target
points were located to the subthalamic nucleus: 2-3mm
posterior, 5-6mm inferior, and 9-14mm lateral to the mid-
commissural point.19 The indirect target also includes the
Schaltenbrand-Wahren atlas as a reference. An adjustment
was performed tomaintain the target in the posterior, dorsal,
and lateral STN region related to motor function, with direct
visualization of the nucleus on 3T MRI T2 and SWI
sequences.20

Quadripolar leads (model 6145 or 6149 [Abbot, Memphis,
TN, USA] or model 3387 [Medtronic, Minneapolis, MN, USA])
were implanted in a way that the most ventral contact
remained in the substantia nigra (SN). The determination
of optimal stimulation parameters for each electrode was
based on a detailed test-stimulation protocol implemented
during the postoperative follow-up.

The accurate lead placement was confirmed with a post-
operative CT scan registered to preoperative images using
Lead-DBS software (www.lead-dbs.org).

Lead location and volume of tissue activated (VTA)
Deep brain stimulation electrodes were localized in Lead-
DBS (lead-dbs.org, Horn & Kühn. 2017). Postoperative to-

mography was coregistered to preoperative T1- and T2-
weighted MRI using advanced normalization tools (stnava.
github.io/ANTs/)21 and then normalized to ICBM 2009b NLIN
asymmetric (MNI) space22 using the ANTs SyN method.23

Deep brain stimulation electrodeswere automatically recon-
structed using the PaCER method24 or the TRAC/CORE ap-
proach and manually refined. Once the electrode was
localized, the VTA of the active contacts was estimated using
a stimulation algorithm previously described by Baniasadi
et al.25

The VTA was based on patient-specific stimulation
parameters recorded in the last hospital visit after surgery.
The overlap between the VTA and the STN was calculated in
mm3. The three parts of the STN were evaluated. The sum of
the overlapping VTA/STN volumes from both hemispheres
was correlated with the percent change in BFM (axial,
appendicular, and total scores) to analyze whether the STN
stimulated areas to influence clinical outcomes. Also, the
overlap between the VTA and the SN was evaluated in the
same manner.

Connectivity assessment
Using VTAs as seed regions, structural connectivity esti-
mates were analyzed using a normative structural connec-
tome consisting of high-density normative fiber tracts based
on 20 subjects.26 Structural connectivity was calculated by
extracting tracts passing through VTA and calculating the
fiber count in a voxel-wise fashion in specific brain areas.26

Brain parcellations were generally defined according to the
automated anatomical labeling atlas 3, a probabilistic atlas
covering several cortical and subcortical structural areas.27

For the evaluation of connectivity to the insular cortex, the
Hammers&Mith atlas28 was used.

For motor correlation, we included regions of interest
related to the pathophysiology of dystonia: precentral29,30

andpostcentralgyri,29 cerebellum,31andsubstantia nigra.32,33

Statistical analysis
TheWilcoxon nonparametric test was used for the following
BFM outcome score comparisons: baseline versus STN
stimulation.

For the connectivity analysis, a linear regression was
performed between the number of fibers connecting the
VTA and the studied cortical or subcortical region and the
improvement of clinical variables.

The independent variable was the BFM (axial, appendic-
ular, and total scores) change (expressed in %). The depen-
dent variable was the number of fibers connecting VTA and
the studied region.

RESULTS

Five patients completed the evaluation (4 males) aged
40.00�7.30 years old with a baseline of BFM total motor and
disabilityscoreof78.30�13.55(62.00–98.00)and20.60�7.80
(13.00–32.00), respectively. Patients improved after surgery
with a motor subscore of 68.10�13.68 (53.50–87.00),
p¼0.043, and a disability score of 15.00�4.74 (9.00–21.00),

Arquivos de Neuro-Psiquiatria Vol. 81 No. 3/2023 © 2023. Academia Brasileira de Neurologia. All rights reserved.

Subthalamic region DBS outcomes in dystonia Listik et al. 265

http://www.lead-dbs.org


p¼0.043. (►Table 1). There was variability in the clinical
outcome after DBS (►Table 2).

Contact position and imaging analysis
There was no relation between the VTA intersection of the
motor STN with an improvement of BFM after surgery
(p¼0.463) (►Figures 1 A and B). Interestingly, the more
anterior portions of the nucleus, as the associative STN
(p¼0.002) and limbic STN (p¼0.0012), showed an associa-
tion with improvement of BFM.

Evaluating the structural connectivity between the VTAs
and cortical areas described above (►Table 3), we identified
that the left precentral gyrus (r¼- 0.64; p¼0.032) and the
left postcentral gyrus (r¼- 0.64; p¼0.028) correlated nega-
tively with BFM improvement, although not statistically
significant with the Bonferroni correction (p<0.008). Addi-
tionally, the left SN pars compacta (r¼0.68; p¼0.024)
correlated positively with BFM improvement. Finally, there
was a strong positive correlation between the DBS motor
response with the cerebellum (►Figures 2 A and B) that was
statistically significant, the right lobule III (r¼0.75;
p¼0.007) and vermis IX (r¼0.81; p¼0.003).

DISCUSSION

Our primary conclusions are: i) the motor outcome after STN
DBS in dystonia may differ between patients and the VTA
inside the target (STN region) does not explain this variabili-
ty in clinical outcomes; ii) the pattern of the connectivity

between the region stimulated and specific cerebellar region
may be responsible for the variance in outcome. These two
points reinforce recent evidence that, although the targets for
DBS in neurological disorders are normally determined by
specific anatomical regions (nucleus or tracts), the ideal
target may not necessarily be an anatomical structure in
itself, but rather, a structurally connected area.

The classical DBS target in dystonia has been the GPi.
Many recent studies with different types of dystonia have
compared GPi and STN clinical outcomes showing similar
results whenmotor and quality of life is concerned, with STN
having a potential battery consumption advantage.8,34–37 A
study described a mean 6-month improvement in BFM
movement score of 13.8 points,35 which is in line with our
results.

It is known that DBS outcomes in dystonia may vary
because of several clinical and etiological factors. Our
patients indeed had different motor outcomes after surgery.
There are many reasons to explain this; for example, DYT-
TOR1A responds better than DYT-THAP1,7 younger patients
and a shorter disease course are positive predictors,5 phasic
dystonia tends to respond better than a tonic one.6

One may ask why it is important to study connectivity
after DBS. It has been shown in Parkinson Disease (PD) that
connectivity between the stimulation site and other areas
(like the supplementary motor area and functional anticor-
relation to the primary motor cortex) can predict clinical
outcomes after surgery.10 In Tourette syndrome, the connec-
tivity between the thalamic centromedian-parafascicular

Table 1 Burke-Fahn-Marsden dystonia scale results

Baseline STN p-value

BFM Eyes (0–8) 2.30� 0.97 (1.50–4.00) 1.90� 0.22 (1.50–2.00) 0.32

Mouth (0–8) 5.40� 2.80 (2.00–8.00) 5.40� 2.80 (2.00–8.00) 1.00

Speech and swallowing (0–16) 10.20� 3.90 (6.00–16.00) 7.80� 2.68 (6.00–12.00) 0.11

Neck (0–8) 6.40� 1.70 (4.00–8.00) 4.40� 2.20 (2.00–6.00) 0.06

Right arm (0–16) 12.00� 0.00 (12.00–12.00) 12.00�0.00 (12.00–12.00) 1.00

Left arm (0–16) 13.60� 2.20 (12.00–16.00) 13.40�1.95 (12.00–16.00) 0.65

Trunk (0–16) 11.20� 3.35 (8.00–16.00) 8.40� 3.58 (4.00–12.00) 0.06

Right leg (0–16) 8.40� 3.58 (4.00–12.00) 7.40� 4.88 (1.00–12.00) 0.32

Left leg (0–16) 8.80� 3.35 (4.00–12.00) 7.40� 4.88 (1.00–12.00) 0.32

Total motor score (0–120) 78.30� 13.55 (62.00–98.00) 68.10�13.68 (53.50–87.00) 0.043�

Speech (0–4) 3.00� 0.70 (2.00–4.00) 2.60� 0.55 (2.00–3.00) 0.16

Handwriting (0–4) 3.60� 0.55 (3.00–4.00) 2.60� 0.55 (2.00–3.00) 0.06

Feeding (0–4) 2.80� 1.30 (1.00–4.00) 2.00� 1.22 (1.00–4.00) 0.10

Eating/Swallowing (0–4) 2.80� 1.30 (1.00–4.00) 2.00� 1.87 (0.00–4.00) 0.10

Hygiene (0–4) 2.20� 1.65 (1.00–4.00) 1.80� 1.30 (1.00–4.00) 0.32

Dressing (0–4) 2.20� 1.65 (1.00–4.00) 1.60� 0.90 (1.00–3.00) 0.18

Walking (0–5) 4.00� 2.35 (2.00–8.00) 2.60� 1.51 (1.00–4.00) 0.10

Total disability score (0–29) 20.60� 7.80 (13.00–32.00) 15.00�4.74 (9.00–21.00) 0.043�

Abbreviations: BFM, Burke-Fahn-Marsden dystonia scale; STN, subthalamic nucleus.
Data are presented as mean� standard deviation (min–max), in which sample size is n¼ 5.
Notes: �p< 0.05 according to the Wilcoxon nonparametric test.
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region with the right frontal middle gyrus, the left frontal
superior sulci region and the left cingulate sulci region
structurally correlated with tic improvement.9

In PD38 and Meige Syndrome,39 the VTA influences motor
responses (presence of a sweet spot in STN). However, in
Tourette syndrome, the VTA inside the target (centromedian
nucleus-parafascicular region) did not correlate to motor
improvement differences.9

Interestingly, in our study, themotor STN did not correlate
with an improvement in BFM after surgery. In contrast, the
more anterior portions of the nucleus (the associative and
limbic STN) did. While it is known that the dorsolateral part
of STN is the sweet spot in PD,38 our findings suggest that this
may not be the case in dystonia.

A study with eight patients with focal and segmental
dystonia and pallidal stimulation40 found that the ventral
GPi showed more robust measures of connectivity to the
primary sensory cortex and posterior motor cortical regions.
In contrast, dorsal GPi was more connected to motor and
premotor regions. However, nothing is mentioned about the
cerebellum. Another study with 15 patients with cervical
dystonia and GPi-DBS found that the modulation of the
primary motor putamen-posterior internal pallidum limb
of the corticobasal ganglia loop predicted a successful DBS
outcome.41

There are also connectivity studies with dystonic
patients without DBS. A resting-state functional MRI evalu-
ated 13 patients with blepharospasm/Meige syndrome be-
fore and 4 weeks after botulinum toxin treatment. Patients
had altered functional connectivity in the basal ganglia,
cerebellar, primary/secondary sensorimotor, and visual
areas. The toxin treatment modulated brain connectivity,
including the cerebellum, and altered sensory input.42

Untreated patients with cervical dystonia showed an im-
balance of connectivity (both hyper- and hypo-) in the
sensorimotor network and a disrupted somatosensory or
sensorimotor integration.43

The present study is the first to evaluate connectivity in
dystonic patients submitted to STN DBS. Our results show
that the motor outcomes of the patients strongly correlated
with the cerebellum in the connectivity analysis. It has
already been demonstrated in fMRI and transcranial mag-
netic stimulation (TMS) that there is an abnormal cerebellar
activation and connectivity in dystonia compared to healthy
volunteers.44,45 Dystonia is a network disorder, and it is
known that the cerebellum can modulate basal ganglia
activity.31 Therefore, perhaps the cerebellum could be an
interesting target in dystonia for invasive and noninvasive
stimulation.

Only one case report tried DBS targeting the bilateral
superior cerebellar peduncle and dentate nucleus. The pa-
tient had a severe generalized fixed dystonia refractory to
bilateral pallidotomy and intrathecal baclofen therapy, was
bedridden, and was wheelchair-bound and able to move her
arms and legs after the surgery.46

The present study has some limitations, including the
small sample size, which implied that further studies with
larger samples would be interesting to replicate our findings.Ta
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We tried to evaluate patients with a specific subtype of
dystonia to diminish the heterogeneity of our sample. As
seen above, most studies with dystonia and connectivity
have a small sample size, even when they evaluate more
common types of dystonia (that is, focal dystonia) with the
more widely DBS target option for dystonia (that is, GPi).
Also, our study does not have a control group, something that
would be interesting to compare findings of different dis-
eases. Other connectivity methods can be used to compare
connectivity between healthy volunteers and dystonic
patients, like TMS and fMRI.47

Our findings show that the connectivity pattern could be
another predictor factor in DBS outcome in dystonia. The
volume of STN stimulated does not explain the different
motor outcomes. The connectivity pattern in STN DBS for

Figure 1 3D illustration of all electrodes and active electrode contacts. (A) All electrodes implanted in 5 dystonic patients, posterosuperior
view. (B) Active contacts in STN, posterior view. C and D) Lateral view, right electrode. E and F) Lateral view, left electrode. Abbreviations: STN,
subthalamic region; SN, Substantia nigra. Notes: Dark blue: electrodes; red: contacts; red point: active contacts; yellow: STN limbic subregion;
light blue: STN associative subregion; orange: STN motor subregion; light brown: SN pars compacta; dark brown: SN pars reticulata.

Table 3 Structural connectivity between the VTAs and other
areas

RHO� p-value

Substantia nigra Left pars compacta 0.68 0.024

Sensory and
motor cortex

Left precentral gyrus - 0.63 0.032

Left poscentral gyrus - 0.64 0.018

Cerebellum

Central lobule-AL Right III lobule 0.75 0.007

Lingula-AL I/II Vermis 0.80 0.006

Uvula-AL IX Vermis 0.81 0.003

Sample size is n¼ 5.
Note: �p< 0.008 with Bonferroni correction.

Figure 2 Illustration of structural connectivity. Topographies with higher connectivity (in red) to VTA in a responder (right) and a
nonresponder (left). (A) Connectivity map of a nonresponder patient, posteroinferior view; (B) Connectivity map of a responder patient,
posteroinferior view. Abbreviations: VTA, volume of tissue activated.
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dystonic patients, particularly highlighting the cerebellum,
influences treatment results and could be another predictor
factor to consider.
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