Semin Neurol 2023; 43(06): 810-824
DOI: 10.1055/s-0043-1776766
Review Article

Surgical Management and Advances in the Treatment of Glioma

Andrew A. Hardigan
1   Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
,
Joshua D. Jackson
1   Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
,
Anoop P. Patel
1   Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
› Author Affiliations

Abstract

The care of patients with both high-grade glioma and low-grade glioma necessitates an interdisciplinary collaboration between neurosurgeons, neuro-oncologists, neurologists and other practitioners. In this review, we aim to detail the considerations, approaches and advances in the neurosurgical care of gliomas. We describe the impact of extent-of-resection in high-grade and low-grade glioma, with particular focus on primary and recurrent glioblastoma. We address advances in surgical methods and adjunct technologies such as intraoperative imaging and fluorescence guided surgery that maximize extent-of-resection while minimizing the potential for iatrogenic neurological deficits. Finally, we review surgically-mediated therapies other than resection and discuss the role of neurosurgery in emerging paradigm-shifts in inter-disciplinary glioma management such as serial tissue sampling and “window of opportunity trials”.



Publication History

Article published online:
14 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Dandy WE. Removal of right cerebral hemisphere for certain tumors with hemiplegia. J Am Med Assoc 1928; 90 (11) 823
  • 2 Gardner WJ. Removal of the right cerebral hemisphere for infiltrating glioma. J Am Med Assoc 1933; 101 (11) 823
  • 3 Almenawer SA, Badhiwala JH, Alhazzani W. et al. Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis. Neuro-oncol 2015; 17 (06) 868-881
  • 4 Stummer W, Reulen HJ, Meinel T. et al; ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 2008; 62 (03) 564-576 , discussion 564–576
  • 5 Brown TJ, Brennan MC, Li M. et al. Association of the extent of resection with survival in glioblastoma a systematic review and meta-analysis. JAMA Oncol 2016; 2 (11) 1460-1469
  • 6 Lacroix M, Abi-Said D, Fourney DR. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95 (02) 190-198
  • 7 Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 2011; 115 (01) 3-8
  • 8 Revilla-Pacheco F, Rodríguez-Salgado P, Barrera-Ramírez M. et al. Extent of resection and survival in patients with glioblastoma multiforme: systematic review and meta-analysis. Medicine (Baltimore) 2021; 100 (25) e26432
  • 9 Karschnia P, Young JS, Dono A. et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: a report of the RANO resect group. Neuro-oncol 2023; 25 (05) 940-954
  • 10 Hirono S, Ozaki K, Kobayashi M. et al. Oncological and functional outcomes of supratotal resection of IDH1 wild-type glioblastoma based on 11C-methionine PET: a retrospective, single-center study. Sci Rep 2021; 11 (01) 14554
  • 11 Molinaro AM, Hervey-Jumper S, Morshed RA. et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 2020; 6 (04) 495-503
  • 12 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 13 Jusue-Torres I, Lee J, Germanwala AV, Burns TC, Parney IF. Effect of extent of resection on survival of patients with glioblastoma, IDH-wild-type, WHO Grade 4 (WHO 2021): systematic review and meta-analysis. World Neurosurg 2023; 171: e524-e532
  • 14 Gerritsen JKW, Broekman MLD, De Vleeschouwer S. et al. Safe surgery for glioblastoma: recent advances and modern challenges. Neurooncol Pract 2022; 9 (05) 364-379
  • 15 Gulati S, Jakola AS, Nerland US, Weber C, Solheim O. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg 2011; 76 (06) 572-579
  • 16 Gerritsen JKW, Dirven CMF, De Vleeschouwer S. et al. The PROGRAM study: awake mapping versus asleep mapping versus no mapping for high-grade glioma resections: study protocol for an international multicenter prospective three-arm cohort study. BMJ Open 2021; 11 (07) e047306
  • 17 Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 2001; 95 (05) 735-745
  • 18 Smith JS, Chang EF, Lamborn KR. et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008; 26 (08) 1338-1345
  • 19 Jakola AS, Myrmel KS, Kloster R. et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 2012; 308 (18) 1881-1888
  • 20 Capelle L, Fontaine D, Mandonnet E. et al; French Réseau d'Étude des Gliomes. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg 2013; 118 (06) 1157-1168
  • 21 Elsheikh M, Bridgman E, Lavrador JP, Lammy S, Poon MTC. Association of extent of resection and functional outcomes in diffuse low-grade glioma: systematic review & meta-analysis. J Neurooncol 2022; 160 (03) 717-724
  • 22 Xia L, Fang C, Chen G, Sun C. Relationship between the extent of resection and the survival of patients with low-grade gliomas: a systematic review and meta-analysis. BMC Cancer 2018;18(48)
  • 23 Patel SH, Bansal AG, Young EB. et al. Extent of surgical resection in lower-grade gliomas: differential impact based on molecular subtype. AJNR Am J Neuroradiol 2019; 40 (07) 1149-1155
  • 24 Jakola AS, Skjulsvik AJ, Myrmel KS. et al. Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol 2017; 28 (08) 1942-1948
  • 25 Delgado-Fernandez J, Garcia-Pallero MÁ, Blasco G. et al. Usefulness of reintervention in recurrent glioblastoma: an indispensable weapon for increasing survival. World Neurosurg 2017; 108: 610-617
  • 26 Kalita O, Kazda T, Reguli S. et al. Effects of reoperation timing on survival among recurrent glioblastoma patients: a retrospective multicentric descriptive study. Cancers (Basel) 2023; 15 (09) 2530
  • 27 Suchorska B, Weller M, Tabatabai G. et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro-oncol 2016; 18 (04) 549-556
  • 28 Ringel F, Pape H, Sabel M. et al; SN1 Study Group. Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro-oncol 2016; 18 (01) 96-104
  • 29 Karschnia P, Dono A, Young JS. et al. Prognostic evaluation of re-resection for recurrent glioblastoma using the novel RANO classification for extent of resection: a report of the RANO resect group. Neuro-oncol 2023; 25 (09) 1672-1685
  • 30 Orringer D, Lau D, Khatri S. et al. Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 2012; 117 (05) 851-859
  • 31 Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998; 43 (04) 749-758 , discussion 758–760
  • 32 Willems PWA, Taphoorn MJB, Burger H, Berkelbach van der Sprenkel JW, Tulleken CAF. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 2006; 104 (03) 360-368
  • 33 Duffau H. Cortical and subcortical brain mapping. In: Schmidek and Sweet: Operative Neurosurgical Techniques. Vol 2. 7th ed. 2022
  • 34 Sanai N, Mirzadeh Z, Berger MS. Functional Outcome after Language Mapping for Glioma Resection. Vol 358; 2008 www.nejm.org
  • 35 Duffau H, Peggy Gatignol ST, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 2008; 109 (03) 461-471
  • 36 Gerritsen JKW, Viëtor CL, Rizopoulos D. et al. Awake craniotomy versus craniotomy under general anesthesia without surgery adjuncts for supratentorial glioblastoma in eloquent areas: a retrospective matched case-control study. Acta Neurochir (Wien) 2019; 161 (02) 307-315
  • 37 Gerritsen JKW, Arends L, Klimek M, Dirven CMF, Vincent AJE. Impact of intraoperative stimulation mapping on high-grade glioma surgery outcome: a meta-analysis. Acta Neurochir (Wien) 2019; 161 (01) 99-107
  • 38 Gupta DK, Chandra PS, Ojha BK, Sharma BS, Mahapatra AK, Mehta VS. Awake craniotomy versus surgery under general anesthesia for resection of intrinsic lesions of eloquent cortex–a prospective randomised study. Clin Neurol Neurosurg 2007; 109 (04) 335-343
  • 39 Gerritsen JKW, Klimek M, Dirven CMF. et al. The SAFE-trial: safe surgery for glioblastoma multiforme: awake craniotomy versus surgery under general anesthesia. Study protocol for a multicenter prospective randomized controlled trial. Contemp Clin Trials 2020; 88: 105876
  • 40 Wu JS, Zhou LF, Tang WJ. et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007; 61 (05) 935-948 , discussion 948–949
  • 41 Li Y, Guo J, Zhang K. et al. Diffusion tensor imaging versus intraoperative subcortical mapping for glioma resection: a systematic review and meta-analysis. Neurosurg Rev 2023; 46 (01) 154
  • 42 Leclercq D, Duffau H, Delmaire C. et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 2010; 112 (03) 503-511
  • 43 Kang KM, Kim KM, Kim IS. et al. Functional magnetic resonance imaging and diffusion tensor imaging for language mapping in brain tumor surgery: validation with direct cortical stimulation and cortico-cortical evoked potential. Korean J Radiol 2023; 24 (06) 553-563
  • 44 Tronnier VM, Wirtz CR, Knauth M. et al. Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 1997; 40 (05) 891-900 , discussion 900–902
  • 45 Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011; 12 (11) 997-1003
  • 46 Wu JS, Gong X, Song YY. et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery 2014; 61 (suppl 1): 145-154
  • 47 Kubben PL, Scholtes F, Schijns OEMG. et al. Intraoperative magnetic resonance imaging versus standard neuronavigation for the neurosurgical treatment of glioblastoma: a randomized controlled trial. Surg Neurol Int 2014; 5 (suppl): 70
  • 48 Shah AS, Sylvester PT, Yahanda AT. et al. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery. J Neurosurg 2020; 135 (02) 1-10
  • 49 Lo YT, Lee H, Shui C. et al. Intraoperative magnetic resonance imaging for low-grade and high-grade gliomas: What is the evidence? A meta-analysis. World Neurosurg 2021; 149: 232-243.e3
  • 50 Mosteiro A, Di Somma A, Ramos PR. et al. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front Oncol 2022; 12: 1016264
  • 51 Prada F, Perin A, Martegani A. et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 2014; 74 (05) 542-552 , discussion 552
  • 52 Incekara F, Smits M, Dirven L. et al. Intraoperative B-mode ultrasound guided surgery and the extent of glioblastoma resection: a randomized controlled trial. Front Oncol 2021; 11: 649797
  • 53 Mahboob S, McPhillips R, Qiu Z. et al. Intraoperative ultrasound-guided resection of gliomas: a meta-analysis and review of the literature. World Neurosurg 2016; 92: 255-263
  • 54 Hou Y, Li Y, Li Q, Yu Y, Tang J. Full-course resection control strategy in glioma surgery using both intraoperative ultrasound and intraoperative MRI. Front Oncol 2022; 12: 955807
  • 55 Schupper AJ, Rao M, Mohammadi N. et al. Fluorescence-guided surgery: a review on timing and use in brain tumor surgery. Front Neurol 2021; 12: 682151
  • 56 Stummer W, Stocker S, Wagner S. et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 1998; 42 (03) 518-525 , discussion 525–526
  • 57 Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 2000; 93 (06) 1003-1013
  • 58 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7 (05) 392-401
  • 59 Aldave G, Tejada S, Pay E. et al. Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 2013; 72 (06) 915-920 , discussion 920–921
  • 60 Stummer W, Tonn JC, Goetz C. et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 2014; 74 (03) 310-319 , discussion 319–320
  • 61 Sanai N, Snyder LA, Honea NJ. et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 2011; 115 (04) 740-748
  • 62 Ferraro N, Barbarite E, Albert TR. et al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg Rev 2016; 39 (04) 545-555
  • 63 Acerbi F, Broggi M, Schebesch KM. et al. Fluorescein-guided surgery for resection of high-grade gliomas: a multicentric prospective phase II study (FLUOGLIO). Clin Cancer Res 2018; 24 (01) 52-61
  • 64 Roder C, Stummer W, Coburger J. et al. Intraoperative MRI-guided resection is not superior to 5-aminolevulinic acid guidance in newly diagnosed glioblastoma: a prospective controlled multicenter clinical trial. J Clin Oncol 2023; JCO2201862
  • 65 Roder C, Bisdas S, Ebner FH. et al. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol 2014; 40 (03) 297-304
  • 66 Golub D, Hyde J, Dogra S. et al. Intraoperative MRI versus 5-ALA in high-grade glioma resection: a network meta-analysis. J Neurosurg 2020; 134 (02) 484-498
  • 67 Eyüpoglu IY, Hore N, Merkel A, Buslei R, Buchfelder M, Savaskan N. Supra-Complete Surgery via Dual Intraoperative Visualization Approach (DiVA) Prolongs Patient Survival in Glioblastoma. Vol 7. Accessed October 22, 2023 at: www.impactjournals.com/oncotarget/
  • 68 Nickel K, Renovanz M, König J. et al. The patients' view: impact of the extent of resection, intraoperative imaging, and awake surgery on health-related quality of life in high-grade glioma patients-results of a multicenter cross-sectional study. Neurosurg Rev 2018; 41 (01) 207-219
  • 69 Monroy-Sosa A, Navarro-Fernández JO, Chakravarthi SS. et al. Minimally invasive trans-sulcal parafascicular surgical resection of cerebral tumors: translating anatomy to early clinical experience. Neurosurg Rev 2021; 44 (03) 1611-1624
  • 70 Kalkanis SN, Kast RE, Rosenblum ML. et al. Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 2014; 116 (03) 477-485
  • 71 Ji M, Orringer DA, Freudiger CW. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 2013; 5 (201) 201ra119
  • 72 Karabeber H, Huang R, Iacono P. et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014; 8 (10) 9755-9766
  • 73 Desroches J, Jermyn M, Pinto M. et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 2018; 8 (01) 1792
  • 74 Walker MD, Green SB, Byar DP. et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980; 303 (23) 1323-1329
  • 75 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
  • 76 Mellinghoff IK, Lu M, Wen PY. et al. Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nat Med 2023; 29 (03) 615-622
  • 77 Omuro A, Vlahovic G, Lim M. et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-oncol 2018; 20 (05) 674-686
  • 78 Barbagallo GMV, Jenkinson MD, Brodbelt AR. ‘Recurrent’ glioblastoma multiforme, when should we reoperate?. Br J Neurosurg 2008; 22 (03) 452-455
  • 79 Westphal M, Hilt DC, Bortey E. et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol 2003; 5 (02) 79-88
  • 80 Ricciardi L, Manini I, Cesselli D. et al. Carmustine wafers implantation in patients with newly diagnosed high grade glioma: Is it still an option?. Front Neurol 2022; 13: 884158
  • 81 Selker RG, Shapiro WR, Burger P. et al; Brain Tumor Cooperative Group. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 2002; 51 (02) 343-355 , discussion 355–357
  • 82 Laperriere NJ, Leung PMK, McKenzie S. et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 1998; 41 (05) 1005-1011
  • 83 Gessler DJ, Neil EC, Shah R. et al. GammaTile® brachytherapy in the treatment of recurrent glioblastomas. Neurooncol Adv 2021; 4 (01) vdab185
  • 84 Smith K, Nakaji P, Thomas T. et al. Safety and patterns of survivorship in recurrent GBM following resection and surgically targeted radiation therapy: results from a prospective trial. Neuro-oncol 2022; 24 (Suppl. 06) S4-S15
  • 85 Wernicke AG, Taube S, Smith AW, Herskovic A, Parashar B, Schwartz TH. Cs-131 brachytherapy for patients with recurrent glioblastoma combined with bevacizumab avoids radiation necrosis while maintaining local control. Brachytherapy 2020; 19 (05) 705-712
  • 86 Traylor JI, Patel R, Muir M. et al. Laser interstitial thermal therapy for glioblastoma: a single-center experience. World Neurosurg 2021; 149: e244-e252
  • 87 Khan AB, Matsuoka CK, Lee S, Rahman M, Rao G. Prolonged survival after laser interstitial thermal therapy in glioblastoma. Surg Neurol Int 2021; 12: 228
  • 88 Fadel HA, Haider S, Pawloski JA. et al. Laser interstitial thermal therapy for first-line treatment of surgically accessible recurrent glioblastoma: outcomes compared with a surgical cohort. Neurosurgery 2022; 91 (05) 701-709
  • 89 Butt OH, Zhou AY, Huang J. et al. A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma. Neurooncol Adv 2021; 3 (01) vdab164
  • 90 D'Amico RS, Aghi MK, Vogelbaum MA, Bruce JN. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol 2021; 151 (03) 415-427
  • 91 Desjardins A, Gromeier M, Herndon II JE. et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018; 379 (02) 150-161
  • 92 Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 2017; 126 (01) 191-200
  • 93 Kunwar S, Chang S, Westphal M. et al; PRECISE Study Group. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-oncol 2010; 12 (08) 871-881
  • 94 Mandel JJ, Yust-Katz S, Patel AJ. et al. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro-oncol 2018; 20 (01) 113-122
  • 95 Nduom EK, Gephart MH, Chheda MG. et al. Re-evaluating biopsy for recurrent glioblastoma: a position statement by the Christopher Davidson Forum Investigators. Neurosurgery 2021; 89 (01) 129-132
  • 96 Singh K, Hotchkiss KM, Parney IF. et al. Correcting the drug development paradigm for glioblastoma requires serial tissue sampling. Nat Med 2023; 29 (10) 2402-2405
  • 97 Cartron G, Bachy E, Tilly H. et al. Randomized Phase III Trial evaluating subcutaneous rituximab for the first-line treatment of low-tumor burden follicular lymphoma: results of a LYSA study. J Clin Oncol 2023; 41 (19) 3523-3533
  • 98 National Cancer Institute. Study of Vorasidenib and Pembrolizumab Combination in Recurrent or Progressive Enhancing IDH-1 Mutant Astrocytomas. Published 2023. Accessed August 21, 2023 at: https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCT05484622&r=1
  • 99 Woo PYM, Law THP, Lee KKY. et al. Repeat resection for recurrent glioblastoma in the temozolomide era: a real-world multi-centre study. Br J Neurosurg 2023; DOI: 10.1080/02688697.2023.2167931.
  • 100 González V, Brell M, Fuster J. et al. Analyzing the role of reoperation in recurrent glioblastoma: a 15-year retrospective study in a single institution. World J Surg Oncol 2022; 20 (01) 384
  • 101 Delgado-Fernández J, Frade-Porto N, Blasco G. et al. Does reintervention improve survival in recurrent glioblastoma? Facing a temporal bias in the literature. Acta Neurochir (Wien) 2020; 162 (08) 1967-1975
  • 102 Lu VM, Goyal A, Graffeo CS. et al. Survival benefit of maximal resection for glioblastoma reoperation in the temozolomide era: a meta-analysis. World Neurosurg 2019; 127: 31-37
  • 103 Lu VM, Jue TR, McDonald KL, Rovin RA. The survival effect of repeat surgery at glioblastoma recurrence and its trend: a systematic review and meta-analysis. World Neurosurg 2018; 115: 453-459.e3
  • 104 Goldman DA, Hovinga K, Reiner AS, Esquenazi Y, Tabar V, Panageas KS. The relationship between repeat resection and overall survival in patients with glioblastoma: a time-dependent analysis. J Neurosurg 2018; 129 (05) 1231-1239
  • 105 Brandes AA, Bartolotti M, Tosoni A. et al. Patient outcomes following second surgery for recurrent glioblastoma. Future Oncol 2016; 12 (08) 1039-1044
  • 106 Perrini P, Gambacciani C, Weiss A. et al. Survival outcomes following repeat surgery for recurrent glioblastoma: a single-center retrospective analysis. J Neurooncol 2017; 131 (03) 585-591
  • 107 Sastry RA, Shankar GM, Gerstner ER, Curry WT. The impact of surgery on survival after progression of glioblastoma: a retrospective cohort analysis of a contemporary patient population. J Clin Neurosci 2018; 53: 41-47
  • 108 Pessina F, Navarria P, Cozzi L. et al. Role of surgical resection in recurrent glioblastoma: prognostic factors and outcome evaluation in an observational study. J Neurooncol 2017; 131 (02) 377-384
  • 109 Tully PA, Gogos AJ, Love C, Liew D, Drummond KJ, Morokoff AP. Reoperation for recurrent glioblastoma and its association with survival benefit. Neurosurgery 2016; 79 (05) 678-689
  • 110 Ening G, Huynh MT, Schmieder K, Brenke C. Repeat-surgery at glioblastoma recurrence, when and why to operate?. Clin Neurol Neurosurg 2015; 136: 89-94
  • 111 Oppenlander ME, Wolf AB, Snyder LA. et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 2014; 120 (04) 846-853
  • 112 Yong RL, Wu T, Mihatov N. et al. Residual tumor volume and patient survival following reoperation for recurrent glioblastoma. J Neurosurg 2014; 121 (04) 802-809
  • 113 Quick J, Gessler F, Dützmann S. et al. Benefit of tumor resection for recurrent glioblastoma. J Neurooncol 2014; 117 (02) 365-372
  • 114 Bloch O, Han SJ, Cha S. et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 2012; 117 (06) 1032-1038