Semin Liver Dis 2001; 21(1): 043-056
DOI: 10.1055/s-2001-12928
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Peroxisomal β-Oxidation and Steatohepatitis

M. Sambasiva Rao, Janardan K. Reddy
  • Department of Pathology, Northwestern University Medical School, Chicago, Illinois
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Fatty acid β-oxidation occurs in both mitochondria and peroxisomes. Mitochondria catalyze the β-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved, preferentially, in the β-oxidation chain shortening of very long chain fatty acids (VLCFAs) and in the process produce H2O2. Long-chain fatty acids and VLCFAs are also metabolized by the cytochrome P450 CYP4A ω-oxidation system to toxic dicarboxylic acids (DCAs) that serve as substrates for peroxisomal β-oxidation, and this process also leads to the production of superoxide and H2O2. The genes encoding peroxisomal, microsomal, and certain mitochondrial fatty acid metabolizing enzymes in liver are transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα). Deficiencies of the enzymes of peroxisomal β-oxidation have been recognized as important causes of disease. Evidence from mice deficient in PPARα (PPARα-/-), deficient in peroxisomal fatty acyl-CoA oxidase (AOX-/-), the first enzyme of the classical β-oxidation system, and deficient in both PPARα and AOX (PPARα-/-AOX-/-) points to the critical importance of PPARα-inducible peroxisomal and microsomal oxidation systems that metabolize LCFAs and VLCFAs in the pathogenesis of nonalcoholic microvesicular hepatic steatosis and steatohepatitis. These and other mouse models should provide greater understanding of the molecular mechanism responsible for hepatic steatosis and steatohepatitis. Deficiency of AOX disrupts the oxidation of VLCFAs, DCAs, and other substrates leading to extensive microvesicular steatosis and steatohepatitis. Loss of this enzyme also causes sustained hyperactivation of PPARα, leading to transcriptional up-regulation of PPARα-regulated genes, indicating that unmetabolized substrates of AOX function as ligands of PPARα. β-Oxidation is the major process by which fatty acids are oxidized to generate energy, especially when glucose availability is low during periods of starvation. Mice deficient in PPARα and those nullizygous for both PPARα and AOX show a minimal steatotic phenotype under fed conditions but manifest an exaggerated steatotic response to fasting, indicating that defects in PPARα-inducible fatty acid oxidation determine the severity of fatty liver phenotype to conditions reflecting energy-related stress.

REFERENCES

  • 1 Seitz H J, Muller M J, Krone W. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP.  Arch Biochem Biophys . 1977;  183 647-663
  • 2 Felber J-P, Golay A. Regulation of nutrient metabolism and energy expenditure.  Metabolism . 1995;  44 S4-S9
  • 3 Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial β-oxidation.  Biochem J . 1996;  320 345-357
  • 4 van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism.  J Inherit Metab Dis . 1991;  14 407-420
  • 5 Kelly D P, Hale D E, Rutledge S L. Molecular basis of inherited medium-chain acyl-CoA dehydrogenase deficiency causing sudden child death.  J Inherit Metab Dis . 1992;  15 171-180
  • 6 Kersten S, Seydoux J, Peters J M. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting.  J Clin Invest . 1999;  103 1489-1498
  • 7 Leone T C, Weinheimer C J, Kelly D P. A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders.  Proc Natl Acad Sci U S A . 1999;  96 7473-7478
  • 8 Kroetz D L, Yook P, Costet P. Peroxisome proliferator- activated receptor α controls the hepatic CYP4A induction adaptive response to starvation and diabetes.  J Biol Chem . 1998;  273 31581-31589
  • 9 Hashimoto T, Cook W S, Qi C. Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting.  J Biol Chem . 2000;  275 28918-28928
  • 10 Nagao M, Parimoo B, Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and α-subunit of electron transfer flavoprotein in rat.  J Biol Chem . 1993;  268 24114-24124
  • 11 Reddy J K, Mannaerts G P. Peroxisomal lipid metabolism.  Annu Rev Nutr . 1994;  114 343-370
  • 12 Hashimoto T. Peroxisomal β-oxidation enzymes.  Neurochem Res . 1999;  24 551-563
  • 13 Hardwick J P, Song B J, Huberman E. Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid ω-hydroxylase (cytochrome P450LAw): identification of new cytochrome P-450 gene family.  J Biol Chem . 1987;  262 801-810
  • 14 Ockner R K, Kaikaus R M, Bass N M. Fatty-acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis.  Hepatology . 1993;  18 669-676
  • 15 Oritz de Montellano P. Cytochrome P450. Structure, Mechanism and Biochemistry 2nd ed. New York: Plenum Press 1995
  • 16 Behne M, Uchida Y, Seki T. Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function.  J Invest Dermatol . 2000;  114 185-192
  • 17 James O, Day C. Non-alcoholic steatohepatitis: another disease of affluence.  Lancet . 1999;  353 1634-1636
  • 18 Berk P D, Stump D. Acute hepatic failure and defective fatty acid transport: clinical proof of a physiologic hypothesis.  Hepatology . 1999;  29 1607-1609
  • 19 Day C P, James O FW. Steatohepatitis: a tale of two ``hits''?.  Gastroenterology . 1998;  114 842-845
  • 20 Fong D G, Nehra V, Lindor K D. Metabolic and nutritional considerations in nonalcoholic fatty liver.  Hepatology . 2000;  32 3-10
  • 21 Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.  Nature . 1990;  347 645-650
  • 22 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism.  Endocr Rev . 1999;  20 649-688
  • 23 Qi C, Zhu Y, Reddy J K. Peroxisome proliferator-activated receptors, coactivators, and downstream targets.  Cell Biochem Biophys . 2000;  32 187-204
  • 24 Aoyama T, Peters J M, Iritani N. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα).  J Biol Chem . 1998;  273 5678-5684
  • 25 Lee S S, Pineau T, Drago J. Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.  Mol Cell Biol . 1995;  15 3012-3022
  • 26 Fan C-Y, Pan J, Chu R. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene.  J Biol Chem . 1996;  271 24698-24710
  • 27 Fan C-Y, Pan J, Usuda N. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase.  J Biol Chem . 1998;  273 15639-15645
  • 28 Hashimoto T, Fujita T, Usuda N. Peroxisomal and mitochondrial fatty acid β-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor α and peroxisomal fatty acyl-CoA oxidase.  J Biol Chem . 1999;  274 19228-19236
  • 29 Van Steenbergen W, Lanckmans S. Liver disturbances in obesity and diabetes mellitus.  Int J Obes Relat Metab Disord . 1995;  19 S27-S36
  • 30 Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease.  Nature . 2000;  405 421-424
  • 31 Lazarow P B, de Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug.  Proc Natl Acad Sci U S A . 1976;  73 2043-2046
  • 32 Baumgart E, Vanhooren J CT, Fransen M. Molecular characterization of the human peroxisomal branched-chain acyl-CoA oxidase: cDNA cloning, chromosomal assignment, tissue distribution, and evidence for the absence of the protein in Zellweger syndrome.  Proc Natl Acad Sci U S A . 1996;  93 13748-13753
  • 33 Baes M, Huyghe S, Carmeliet P. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids.  J Biol Chem . 2000;  275 16329-16336
  • 34 Reddy J K, Goel S K, Nemali M R. Transcriptional regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators.  Proc Natl Acad Sci U S A . 1986;  83 1747-1751
  • 35 Aoyama T, Hardwick J P, Imaoka S. Clofibrate-inducible rat hepatic P450s IVA1 and IVA3 catalyze the omega-and (omega-1)-hydroxylation of fatty acids and the omega-hydroxylation of prostaglandins E1 and F2 alpha.  J Lipid Res . 1990;  31 1477-1482
  • 36 Muerhoff A S, Griffin K J, Johnson E F. The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid ω-hydroxylase, by clofibric acid.  J Biol Chem . 1992;  267 19051-19053
  • 37 Yeldandi A V, Rao M S, Reddy J K. Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis.  Mutat Res . 2000;  448 159-177
  • 38 Zhu Y, Qi C, Korenberg J R. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR) gamma gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms.  Proc Natl Acad Sci U S A . 1995;  92 7921-7950
  • 39 Kliewer S A, Umesono K, Noonan D. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors.  Nature . 1992;  358 771-774
  • 40 Reddy J K, Azarnoff D L, Hignite C. Hypolipidemic hepatic peroxisome proliferators form a novel class of chemical carcinogens.  Nature . 1980;  283 397-398
  • 41 Rao M S, Reddy J K. Hepatocarcinogenesis of peroxisome proliferators.  Ann N Y Acad Sci . 1996;  804 573-587
  • 42 Gonzalez F J, Peters J M, Cattley R C. Mechanism of action of the nongenotoxic peroxisome proliferators: role of peroxisome proliferator-activated receptor α.  J Natl Cancer Inst . 1998;  90 1702-1709
  • 43 Corton J C, Lapinskas P J, Gonzalez F J. Central role of PPARα in the mechanism of action of hepatocarcinogenic peroxisome proliferators.  Mutat Res . 2000;  448 139-151
  • 44 Palmer C NA, Hsu M-H, Griffin K J. Peroxisome proliferator activated receptor-α expression in human liver.  Mol Pharmacol . 1998;  53 14-22
  • 45 Auwerx J. PPARγ, the ultimate thrifty gene.  Diabetologia . 1999;  42 1033-1049
  • 46 Spiegelman B M, Flier J S. Adipogenesis and obesity: rounding out the big picture.  Cell . 1996;  87 377-389
  • 47 Barak Y, Nelson M C, Ong E S. PPARγ is required for placental, cardiac, and adipose tissue development.  Mol Cell . 1999;  4 585-595
  • 48 Kubota N, Terauchi Y, Miki H. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.  Mol Cell . 1999;  4 597-609
  • 49 He T C, Chan T A, Vogelstein B. PPARδ is an APC- regulated target of nonsteroidal anti-inflammatory drugs.  Cell . 1999;  99 335-345
  • 50 Peters J M, Lee S ST, Li W. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ).  Mol Cell Biol . 2000;  20 5119-5128
  • 51 Varanasi U, Chu R, Chu S. Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis, and chromosomal localization.  Proc Natl Acad Sci U S A . 1994;  91 3107-3111
  • 52 Osumi T. Structure and expression of the genes encoding peroxisomal β-oxidation enzymes.  Biochimie . 1993;  75 243-250
  • 53 Varansi U, Chu R, Huang Q. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene.  J Biol Chem 1996;271:2147-2155 (see addendum in J Biol Chem . 1998;  273 30842)
  • 54 Fournier B, Saudubray J-M, Benichou B. Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy.  J Clin Invest . 1994;  94 526-531
  • 55 Suzuki Y, Shimozawa N, Yajima S. Novel subtype of peroxisomal acyl-CoA oxidase deficiency and bifunctional enzyme deficiency with detectable enzyme protein: identification by means of complementation analysis.  Am J Hum Genet . 1994;  54 36-43
  • 56 Wanders R JA, Schutgens R BH, Barth P G. Peroxisomal disorders: a review.  J Neuropathol Exp Neurol . 1995;  54 726-739
  • 57 Bass N M. Three for the price of one knockout: a mouse model of a congenital peroxisomal disorder, steatohepatitis, and hepatocarcinogenesis.  Hepatology . 1999;  29 606-608
  • 58 Dierks E A, Davis S C, Ortiz de Montellano R P. Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole.  Biochemistry . 1998;  37 1839-1847
  • 59 Bell-Parikh L C, Guengerich F P. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde.  J Biol Chem . 1999;  274 23833-23840
  • 60 Burt A D, Mutton A, Day C P. Diagnosis and interpretation of steatosis and steatohepatitis.  Semin Diagn Pathol . 1998;  15 246-258
  • 61 Qi C, Zhu Y, Pan J. Absence of spontaneous peroxisome proliferation in enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver.  J Biol Chem . 1999;  274 15775-15780
  • 62 Seedorf U, Raabe M, Ellinghaus, et al. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function.  Genes Dev . 1998;  12 1189-1201
  • 63 Tonsgard J H, Getz G S. Effect of Reye's syndrome serum on isolated chinchilla liver mitochondria.  J Clin Invest . 1985;  76 816-825
  • 64 Treem W R, Sokol R J. Disorders of the mitochondria.  Semin Liver Dis . 1998;  18 237-253
  • 65 Lands W EM. Cellular signals in alcohol-induced liver injury: a review.  Alcohol Clin Exp Res . 1995;  19 928-938
  • 66 Saibara T, Onishi S, Ogawa Y. Bezafibrate for tamoxifen-induced non-alcoholic steatohepatitis.  Lancet . 1999;  353 1802
  • 67 Gervois P P, Torra I P, Chinetti G. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity.  Mol Endocrinol . 1999;  13 1535-1549
  • 68 Lu J-F, Lawler A M, Watkins P A. A mouse model for X-linked adrenoleukodystrophy.  Proc Natl Acad Sci U S A . 1997;  94 9366-9371
    >